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201ab Quantitative methods

Resampling
Randomization

Bootstrap
Cross-validation
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Why are we doing “statistics”?
• We can calculate a statistic on the data – that’s an arbitrary 

function… why don’t we just call it a day?
– There is variability in our measurements: noisy error in 

measurements, random sampling of populations, 
stochastic processes in the world.

• Want to separate signal from noise, to figure out if our data 
has certain structure or if that structure is just noise
– Null hypothesis testing, model selection, etc.

• Want to quantify the uncertainty / error / confidence in our 
statistics / estimates.
– Parameter estimation, confidence intervals, etc.

• Want to predict future data, and predict our accuracy
– Danger of fitting and predicting noise (overfitting).
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Why are we doing “statistics”?
• How to quantify uncertainty and account for 

variability/noise/error in our measurements?
– Classical frequentist stats: define models, derive their long-

run frequency behavior using probability, to analytically 
obtain sampling distributions of statistic, under null, and of 
new data.

– Resampling methods: use existing data (perhaps with 
some invariances) as guess of population distribuion, 
and generate sampling distributions numerically.

– Bayesian methods: define models, and their probability of 
generating data, invert to calculate posterior probability of 
model/parameters given data, and posterior predictive 
distribution of new data.
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Resampling
• Use the current data as an approximation of future 

data.  “re”sample from current data in various ways to 
generate distributions.

• Randomization:
– Build a null hypothesis distribution (and thus p-values) by 

shuffling the current data.

• Bootstrap:
– Build sampling distribution of statistic by hallucinating 

alternate samples of data, get confidence interval that way.

• Cross-validation:
– Simulate the process of checking a model on yet-unseen 

data by using one part to fit, another to validate.
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Resampling: Logic
• How statistics works:
– We get some data
– Make assumptions about the data-generating process
– Use the data to estimate properties of this process.
– Use our assumptions and estimates to infer general 

properties of the process, and predict new outcomes.

• E.g.
– We measure heights
– We assume heights are normally distributed
– We estimate the mean, s.d. of heights
– We use the mean, s.d. via a normal distribution to make 

inferences and predictions.
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Resampling: Logic
• How statistics works:
– We get some data
– Make assumptions about the data-generating process
– Use the data to estimate properties of this process.
– Use our assumptions and estimates to infer general 

properties of the process, and predict new outcomes.

• How strong do our assumptions need to be?
– Parametric assumptions: Data follow a normal distribution?
– Let’s just assume that future data will be like previous data.
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Resampling: Logic
• Future data will be like the current data

x
[100] -0.81057568 -3.75588056 -0.77649265 -2.71176279 -0.72528754 -1.79951633  0.28982537 -1.86105795 -0.08463999  0.08801584  0.42490192 -0.32787760  1.40340032 
0.35678602 -1.41562830 -1.04574622  0.09898905  1.05035238 -2.16351814 -2.54987788  0.60558522  0.98092604 -0.61329110 -0.42499095 -0.75423395 -0.40166514 
0.18090021 -0.57891140 -0.63355362  1.42385112  0.19384376 -1.50328405  1.16187994 -2.61733233  1.33129141 -0.63628871 -0.45647740 -5.07116647 -1.74510401 -
1.41756240  0.19368629 -0.09093373 -0.97658404 -6.49857275 -1.61333570  0.22196662 -0.24209335  0.75823578 -0.31382485  1.22549832  2.26054057  0.18598882 
1.78827723  1.21081248 -2.81913736  1.97343288 -1.28652368  1.54594865  0.93246801  0.23824970  0.35839401  0.57989193 -4.64778399 -1.25622966 -4.42018876 
0.20398443 -1.23291749 -0.44188558  0.61962049  0.81900205 -1.47554994  0.03681568 -2.06985538 -0.26888997 -1.32263459 -1.31015657  0.49810722  0.08016335 
0.73409104 -0.37473450 -3.96311430 -3.79768621  0.06302523  1.16587685  1.47153014  0.54874491 -0.62163567 -1.88914946 -0.69980288  2.42535899 -1.59746565 -
6.15922478  0.40459299  1.05146166  0.47986380  0.44199065  0.91806090 -0.49377271  1.20637696  0.03993493

hist(x)
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Resampling: Logic
• Future data will be like the current data

• Histogram of x is our best estimate of the probability 
distribution of future samples of x.

• More formally: PDF of X is a mixture of our data points.
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Resampling: Logic
• Future data will be like the current data
• We can generate more samples by resampling from the PDF 

made up of our data.

• By resampling in slightly different ways, we can get 
sampling distributions to…
– …build null hypothesis distributions (randomization)
– …get confidence intervals (bootstrapping)
– …obtain prediction distributions (cross-validation)

• When we are building sampling distributions of some 
statistic, our resampled samples must be of the same size 
as the real one, to obtain the sampling distribution of our 
statistic.
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Resampling: Overview
• Randomization / Permutation / Shuffling:
– Define a statistic that measures structure of interest
– Resample so as to destroy the structure of interest
– Calculate statistic on shuffled samples
– Distribution of shuffled statistics is the null hypothesis 

sampling distribution of the statistic, compare statistic on 
real data to this

• Bootstrapping:
– Draw more samples like the current one
– Run some estimator on those samples
– To build a sampling distribution of an estimate
– This is useful for confidence intervals, etc.
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Randomization intuition.

11

This is a scatterplot 
from the real data.
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Instead of making 20 graphs and doing this by eye. 
We will generate a histogram of statistics measuring 
structure, and compare our own.
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Basics > NHST
Null hypothesis significance testing

(1) Define a ‘statistic’ that measures some structure you want 
to argue exists in the data.
(2) Define ‘null’ hypothesis (H0): a model of your data if the 
structure of interest didn’t exist.
(3) Derive (analytically or numerically) the sampling 
distribution of the statistic of interest under H0.
(4) What is the probability of seeing a statistic at least as 
extreme as the one you saw under H0? (p-value)
(5) Reject H0 if your p-value is lower than acceptable Type I 
error rate (alpha)

(Mope if your p-value is higher than alpha)
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mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.06

This is the one-tailed 
p-value.

mean(x) = 66.44

Our data 
(sample of 9 female heights, in inches)

A statistic 
(arithmetic mean)
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Basics > NHST
Null hypothesis significance testing

(1) Define a ‘statistic’ that measures some structure you want 
to argue exists in the data.
(2) Define ‘null’ hypothesis (H0): a model of your data if the 
structure of interest didn’t exist.
(3) Derive (analytically or numerically) the sampling 
distribution of the statistic of interest under H0.
(4) What is the probability of seeing a statistic at least as 
extreme as the one you saw under H0? (p-value)
(5) Reject H0 if your p-value is lower than acceptable Type I 
error rate (alpha)

(Mope if your p-value is higher than alpha)
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Resampling: Randomization
• Identify structure of interest

e.g., different means across groups
• Define test statistic that measures structure

e.g., mean(x1)-mean(x2)
• Resample data while destroying structure of interest, 

but preserving all other structure
e.g. preserve ns, destroy mean difference.
– Often done by reshuffling labels, somehow
– Permutation: H0 distribution built by considering every 

label permutation
– Randomization: H0 dist. built by considering some (large 

number of) random shuffles of labels
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Randomization tests: diff. in means
Pearson Father-Son height data   (15 Fathers, 15 Sons, unrelated)
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Randomization tests: statistic

Test statistic that measures structure of 
interest (here: difference in means)

Pearson Father-Son height data   (15 Fathers, 15 Sons, unrelated)
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Randomization tests: shuffle
Randomize/shuffle data to destroy 
structure of interest (here: shuffle group 
labels)

Note: Sample *without* replacement -> 
shuffle labels.

Pearson Father-Son height data   (15 Fathers, 15 Sons, unrelated)
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Randomization tests: build H0 distribution

Generate null hypothesis (H0) samples of test statistic by computing it 
on shuffled data.

Pearson Father-Son height data   (15 Fathers, 15 Sons, unrelated)
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Randomization tests: calculate p value
P value numerically calculated from H0 samples.

Note:   
Here: one-tailed -- upper tail only  

(x2 for second tail on symmetric stats)
Smoothed by assuming 2 extra observations to avoid p=0

Pearson Father-Son height data   (15 Fathers, 15 Sons, unrelated)
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You must respect other structure
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Paired data statistic
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Paired data shuffling

28

Note:   Shuffling within father-son pairs, to preserve that structure
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Paired data H0 distribution and p value

29

Note:   
One-tailed (upper tail only)
Smoothed by assuming 2 extra observations to avoid p=0
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Randomization
• Why are we doing this?  Why don’t we just do a t-test?
– Sometimes: We don’t trust analytical model assumptions. 

e.g., chi-squared test…
– Usually: Our structure is most effectively measured by some 

weird statistic for which we do not have an analytical null 
distribution
e.g., median? trimmed-mean? Ratio of variances?  
Difference in kurtosis?  Co-clustering rate from some weird 
clustering algorithm? Whatever.  

– Really general procedure: there is one test. 
You just have to carefully think through 
how to measure the structure of interest
how to define the null you want to compare against

30
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Randomization tests: diff. in means
statistic = function(dat){with(data=dat, mean(x[y==1])-mean(x[y==0]))}

statistic(dat) [1] 0.8049

dat.shuffle = function(dat){data.frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

Test statistic that measures structure of interest (here: difference in means)

Obtain statistic on your real data

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)

H0.samps = replicate(K, statistic(dat.shuffle(dat)))

Generate null hypothesis (H0) samples of test statistic by computing it on shuffled data.

p.val = (sum(abs(H0.samps)>=statistic(dat))+1)/(length(H0.samps)+2)

P value numerically calculated from H0 samples.
[1] 0.2605
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Randomization tests: slope of line

statistic = function(dat){with(data=dat, coefficients(lm(x~y))[2])}

statistic(dat) [1] 0.5323

dat.shuffle = function(dat){data.frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

Test statistic that measures structure of interest (here: slope of regression line)

Obtain statistic on your real data

Randomize/shuffle data to destroy structure of interest (here: shuffle y values)

H0.samps = replicate(K, statistic(dat.shuffle(dat)))

Generate null hypothesis (H0) samples of test statistic by computing it on shuffled data.

[1] 0.0098p.val = (sum(abs(H0.samps)>=statistic(dat))+1)/(length(H0.samps)+2) [1] 0.2605
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Randomization tests: diff in variance

statistic = function(dat){with(data=dat, log10(var(x[y==1])/var(x[y==0])))}

statistic(dat) [1] 1.18

Test statistic that measures structure of interest (here: difference in variances)

Obtain statistic on your real data

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)

H0.samps = replicate(K, statistic(dat.shuffle(dat)))

Generate null hypothesis (H0) samples of test statistic by computing it on shuffled data.

p.val = (sum(abs(H0.samps)>=statistic(dat))+1)/(length(H0.samps)+2) [1] 1e-04

dat.shuffle = function(dat){data.frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

But wait – we destroyed all the structure, 
not just the structure of interest!
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Preserve other structure.
Test statistic that measures structure of interest (here: difference in variances)

Resampled without preserving means!

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)
dat.shuffle = function(dat){data.frame(x=dat$x, y=sample(dat$y, length(dat$y)))}
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Preserve other structure.
Test statistic that measures structure of interest (here: difference in variances)

Preserved mean difference!

Randomize/shuffle data to destroy structure of interest while preserving other structure! 
(Here: shuffle residuals)
dat$r = residuals(lm(data=dat, x~as.factor(y)))
dat$m = dat$x-dat$r
dat.shuffle = function(dat){data.frame(

x=dat$m+sample(dat$r,length(dat$r)), 
y=dat$y)}
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Randomization: ANOVA
• How do we shuffle an ANOVA?
• It depends on our null hypothesis.

– H0.a: All cells have the same mean, no effect at all
– H0.b: Main effect of A, but not B, and no interaction.
– H0.c: Two main effects, but no interaction.
– H0.d: Effect of covariate, but no effect of factors.
– Resampling has to preserve some structure, while destroying 

other structure.
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How to test the following?
1) We perform a robust regression (least-trimmed-squares), and

get some slope out.  How do we tell if it is significantly greater 
than we would expect under the null of no relationship?

2) 2 groups with unequal means and variances.  We want to know 
if they have different skew.

3) 30 countries of varying mean wealth.  We have 1000 randomly 
sampled people from each country.  We want to know if there is 
greater inequality (variance) of wealth within a country if that 
country has a higher average wealth. (we want to deal with log-
wealth).

4) We find that when people are listing words off the top of their 
heads sequential words tend to be more semantically related 
than those that are further apart.  How would you test if this is 
significant?

5) We use a clustering algorithm to find ‘types’ of people based on 
test performance.  It seems that these clusters effectively 
cluster autistic people together.  How do we figure out if this is 
the case above chance?
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Randomization: 
How many H0 samples can we get?

• How many H0 samples can we get?  
• Number of permutations gives us upper bound for a 

given shuffling scheme.

• E.g. we have two groups of 5, how many different 
shuffled labelings can we have?
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Randomization: 
How many H0 samples can we get?
• How many H0 samples can we get?  
• Number of permutation gives us upper bound for a given 

shuffling scheme.
• E.g. we have two groups of 5, how many different shuffled 

labelings can we have?
– 10 choose 5 = 10! / 5!5! = 252
– So, no matter how many times we randomize, we aren’t 

going to get more than 252 unique H0 test statistic 
samples.

– If sample sizes are small, this is worth considering, and 
explicitly doing permutation tests is a better option.

• 2 groups of 10? 184756; no longer matters.
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Randomization/Permutation/Shuffling tests.
1) Identify structure you want to test.
2) Define a statistic that measures this structure.
3) Shuffle (resampling without replacement!) the data in a way 

that disrupts this structure (capturing the null hypothesis) 
without disrupting other structure (otherwise you are testing a 
different null hypothesis).

4) Compute your statistic on lots of shuffled datasets, figure out if 
your statistic on the real (unshuffled) dataset is extreme relative 
to what is expected under the H0 shufflings.

Beware: 
- All of this requires that you be thoughtful, rather than following 

simple prescriptions in your analysis.
- The number of data permutations puts a limit on the possible 

number of H0 samples.  Use caution with small sample sizes.  
- Elaborate procedures to deal with extreme value statistics.
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Resampling: Overview
• Randomization / Permutation / Shuffling:
– Define a statistic that measures structure of interest
– Resample so as to destroy the structure of interest
– Calculate statistic on shuffled samples
– Distribution of shuffled statistics is the null hypothesis 

sampling distribution of the statistic, compare statistic on 
real data to this

• Bootstrapping:
– Draw more samples like the current one
– Run some estimator on those samples
– To build a sampling distribution of an estimate
– This is useful for confidence intervals, etc.
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Bootstrap: Logic
• Future data will be like the current data
• We can generate more samples of our data by 

resampling from the PDF made up of our data.

• Each resampled sample is a glimpse at what other data 
would look like, given current data.

x.new = function(){sample(x, n, replace=TRUE)}

x
[100] -0.81057568 -3.75588056 -0.77649265 -2.71176279 -0.72528754 -1.79951633  0.28982537 -1.86105795 -0.08463999  0.08801584  0.42490192 -0.32787760  1.40340032 
0.35678602 -1.41562830 -1.04574622  0.09898905  1.05035238 -2.16351814 -2.54987788  0.60558522  0.98092604 -0.61329110 -0.42499095 -0.75423395 -0.40166514 
0.18090021 -0.57891140 -0.63355362  1.42385112  0.19384376 -1.50328405  1.16187994 -2.61733233  1.33129141 -0.63628871 -0.45647740 -5.07116647 -1.74510401 -
1.41756240  0.19368629 -0.09093373 -0.97658404 -6.49857275 -1.61333570  0.22196662 -0.24209335  0.75823578 -0.31382485  1.22549832  2.26054057  0.18598882 
1.78827723  1.21081248 -2.81913736  1.97343288 -1.28652368  1.54594865  0.93246801  0.23824970  0.35839401  0.57989193 -4.64778399 -1.25622966 -4.42018876 
0.20398443 -1.23291749 -0.44188558  0.61962049  0.81900205 -1.47554994  0.03681568 -2.06985538 -0.26888997 -1.32263459 -1.31015657  0.49810722  0.08016335 
0.73409104 -0.37473450 -3.96311430 -3.79768621  0.06302523  1.16587685  1.47153014  0.54874491 -0.62163567 -1.88914946 -0.69980288  2.42535899 -1.59746565 -
6.15922478  0.40459299  1.05146166  0.47986380  0.44199065  0.91806090 -0.49377271  1.20637696  0.03993493

Sample from the data
Same sample size

With replacement!
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Resampling: Bootstrap.
• Make an estimator (here, skew)

• Generate new resampled samples of x, for each one 
obtain an estimate

x.new = function(){sample(x, n, replace=TRUE)}

skew = function(x)(mean(((x-mean(x))/sd(x))^3))

skew(x) [1] -1.218723

skew(x.new())

<- Estimator

<- Resample function

[1] -0.876 <- One resampled skew estimate

resampled.skews = replicate(10000, skew(x.new()))

10000 resampled skew estimates
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Resampling: Bootstrap.
• Make an estimator (here, skew)

• Generate new resampled samples of x, for each one 
obtain an estimate

x.new = function(){sample(x, n, replace=TRUE)}

skew = function(x)(mean(((x-mean(x))/sd(x))^3))

skew(x) [1] -1.218723

<- Estimator

<- Resample function

resampled.skews = replicate(10000, skew(x.new()))

hist(resampled.skews)
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Resampling: Bootstrap.
• Make an estimator (here, skew)
• Generate new resampled samples of x, for each one 

obtain an estimate
• This is our guess as to the sampling distribution of the 

estimator.  So we can use it to do inference

hist(resampled.skews)
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Resampling: Bootstrap.
• Make an estimator (here, skew)
• Generate new resampled samples of x, for each one 

obtain an estimate
• This is our guess as to the sampling distribution of the 

estimator.  So we can use it to do inference
• Confidence intervals:

• Is skew less than 0 (2-tailed p.val for null of >0)

Helpful to ‘smooth’ counts

quantile(resampled.skews, c(0.025, 0.975))
2.5%     97.5% 

-1.625407 -0.680099

2*sum(resampled.skews>0)/length(resampled.skews) 0.0002

2*(sum(resampled.skews>0)+1)/(length(resampled.skews)+2) 0.00039992
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Resampling: Bootstrapping.
Goal: Find sampling distribution of some statistic

statistic = function(x)(...)

x.new = function(){sample(x, length(x), replace=TRUE)}

res.stats = replicate(K, statistic(x.new()))

CI = quantile(res.stats, c(alpha/2, 1-alpha/2))

p.val = 2*(sum(res.stats >= H0.stat)+1)/(length(res.stats)+2)

Define an estimator for some statistic of interest

Define resampling function: draw samples of size length(data) from the data, with replacement.

Draw K samples of statistic estimated from resampled data.  K should be large.

Use sampled statistic to define confidence intervals…

Use sampled statistic to obtain p.values.
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Bootstrap variants
• Case resampling:

Resample data exactly 
from current data

• Smoothed bootstrap:
Resample data with some extra 
noise 

• Residual/Pivoted bootstrap:
Resample residuals (with 
assumed symmetry?)

• Parametric bootstrap:
Resample data from some fitted 
distribution
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Resampling: adding invariance / noise.
statistic = function(x)(sd(x))

x.new = function(){sample(x, n, TRUE)}

CI = quantile(replicate(K, statistic(x.new())), c(0.025, 0.975)) [2] 1.01 3.87

Case resampling

x.new = function(){sample(x, n, TRUE)+rnorm(n,0,sd(x)/10)}

CI = quantile(replicate(K, statistic(x.new())), c(0.025, 0.975)) [2] 0.98 3.92

Smooth resampling

x.new = function(){sample(x-mean(x), n, TRUE)*sample(c(-1,1), n, TRUE)+mean(x)}

CI = quantile(replicate(K, statistic(x.new())), c(0.025, 0.975)) [2] 1.03 3.96

Pivoted resampling

x.new = function(){rnorm(n,mean(x), sd(x))}

CI = quantile(replicate(K, statistic(x.new())), c(0.025, 0.975)) [2] 1.83 3.54

Parametric bootstrap

Parametric bootstrap generally not a good idea: removes most advantages of of resampling…

statistic(x) [1] 2.692358
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Resampling structured data.

B0 = function(dat){coefficients(lm(dat$y~dat$x))[1]}

B0(dat) [1] 0.33

B1 = function(dat){coefficients(lm(dat$y~dat$x))[2]}

B1(dat) [1] 0.99

How to do case resampling?

dat.new = function(dat){
data.frame(x=dat[sample(1:n, n, TRUE),'x’],.

y=dat[sample(1:n, n, TRUE),'y’])}

dat.new = function(dat){idx = sample(1:n, n, TRUE); 
data.frame(x=dat[idx,'x’],.

y=dat[idx,'y’])}

Which option should we prefer, and why?

dat.new = function(dat){idx = sample(1:n, n, TRUE); 
data.frame(x=dat[idx,'x’],.

y=dat[idx,'y’])}

This options preserves the relationship between x and y by resampling pairs of data points!
We really want this, otherwise we get samples from Null!
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Resampling structured data.

B0 = function(dat){coefficients(lm(dat$y~dat$x))[1]}

B0(dat) [1] 0.33

B1 = function(dat){coefficients(lm(dat$y~dat$x))[2]}

B1(dat) [1] 0.99

B0.CI = quantile(replicate(K, B0(dat.new(dat))), c(0.025, 0.975))

Case resampling

[2] -0.30 1.03

B1.CI = quantile(replicate(K, B1(dat.new(dat))), c(0.025, 0.975)) [2] 0.78 1.22

dat.new = function(dat){idx = sample(1:n, n, TRUE); 
data.frame(x=dat[idx,'x’],.

y=dat[idx,'y’])}
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Resampling structured data.
B0 = function(dat){coefficients(lm(dat$y~dat$x))[1]}

B0(dat) [1] 0.33

B1 = function(dat){coefficients(lm(dat$y~dat$x))[2]}

B1(dat) [1] 0.99

dat.new = function(dat){idx = sample(1:n, n, TRUE);
data.frame(x=(dat[idx,'x']+rnorm(n,0,sd(dat$x)/10)),.

y=(dat[idx,'y']+rnorm(n,0,sd(dat$y)/10)))}

B0.CI = quantile(replicate(K, B0(dat.new(dat))), c(0.025, 0.975))

Smooth 
resampling

[2] -0.31 1.07

B1.CI = quantile(replicate(K, B1(dat.new(dat))), c(0.025, 0.975)) [2] 0.76 1.21

B0.CI = quantile(replicate(K, B0(dat.new(dat))), c(0.025, 0.975))

Case resampling

[2] -0.30 1.03

B1.CI = quantile(replicate(K, B1(dat.new(dat))), c(0.025, 0.975)) [2] 0.78 1.22

dat.new = function(dat){idx = sample(1:n, n, TRUE); 
data.frame(x=dat[idx,'x’],.

y=dat[idx,'y’])}
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Resampling: Benefits.
• Can build sampling distributions, estimate confidence 

intervals for arbitrary statistics and measures.
– Consider: Skew, Kurtosis, etc.
– Various measures that make sense scientifically, but are 

not convenient mathematically

• General purpose tool – no need to remember specific 
rules for specific problems!

• Does not make distributional assumptions – respects 
the data, and distributional assumptions can’t be 
violated.
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Resampling: Costs.
• Computationally expensive: requires lots of resampling, 

can take some time.
• Breaks down when sample sizes are small (bootstrap 

estimates are too narrow).
• Tends to be somewhat narrow-minded: if I haven’t seen 

outliers before, I imagine they do not exist.
– (Wild bootstrap, smooth bootstrap, and other techniques 

exist for adding uncertainty to resampling, but how do you 
know how much uncertainty to add?)

• Can get quite hairy for richly structured data that has 
various dependencies…
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How many samples? How much data?
• How many bootstrap samples (K) should you use?
– The more the merrier – standards increase with Moore’s law
– Minimum: if you want to specify probability with a precision 

of u, you should have at least 1/u bootstrap samples.
E.g., 95% interval requires 0.025th quantile (precision of 0.001), requires K>=1000

– I like K>=10,000.  I use K=1,000 if I’m in a rush.

• How much data (n) do you need to bootstrap?
– Number of possible unique samples W=choose(2n-1,n-1)

n 1 2 3 4 5 6 7 8 9 10 15
W 1 3 10 35 126 462 1716 6435 24310 92378 77558760

– Bootstrapping makes sense if W >> K; let’s say n>=15 or 20
– However, the reliability of bootstrapped CIs etc. depends on 

the statistic; the more the statistic measures extremes, the 
more data you need.
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Resampling: Bootstrap
• Use case: 

– You want a confidence interval / estimate of precision of some 
statistic(s); however…

– You want to avoid parametric assumptions, or the statistic has 
no analytical sampling distribution or likelihood function.

• Premise: 
– treat your data histogram as the population distribution.
– Resample from your data with replacement to get bootstrapped 

samples of the same size to approximate the true sampling 
distribution of your statistic(s) of interest.

– Build confidence intervals using that bootstrapped sampling 
distribution. 

• Cautionary notes:
– You should have a reasonably large sample to begin with.
– Think carefully about resampling procedure for structured data.
– Some statistics (those sensitive to extremes) and population 

distributions (very heavy tails) are not well suited for this.


