201ab Quantitative methods

Resampling
Randomization
Bootstrap
Cross-validation
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Why are we doing “statistics”?

We can calculate a statistic on the data — that’s an arbitrary
function... why don’t we just call it a day?

— There is variability in our measurements: noisy error in
measurements, random sampling of populations,
stochastic processes in the world.

Want to separate signal from noise, to figure out if our data
has certain structure or if that structure is just noise

— Null hypothesis testing, model selection, etc.

Want to quantify the uncertainty / error / confidence in our
statistics / estimates.

— Parameter estimation, confidence intervals, etc.
Want to predict future data, and predict our accuracy
— Danger of fitting and predicting noise (overfitting).
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Why are we doing “statistics”?

* How to quantify uncertainty and account for
variability/noise/error in our measurements?

— Classical frequentist stats: define models, derive their long-
run frequency behavior using probability, to analytically
obtain sampling distributions of statistic, under null, and of

new data.

— Resampling methods: use existing data (perhaps with
some invariances) as guess of population distribuion,
and generate sampling distributions numerically.

— Bayesian methods: define models, and their probability of
generating data, invert to calculate posterior probability of
model/parameters given data, and posterior predictive
distribution of new data.
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Resampling

* Use the current data as an approximation of future
data. “re”sample from current data in various ways to
generate distributions.

Randomization:

— Build a null hypothesis distribution (and thus p-values) by
shuffling the current data.

Bootstrap:

— Build sampling distribution of statistic by hallucinating
alternate samples of data, get confidence interval that way.

Cross-validation:

— Simulate the process of checking a model on yet-unseen
data by using one part to fit, another to validate.
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Resampling: Logic
* How statistics works:
— We get some data
— Make assumptions about the data-generating process

— Use the data to estimate properties of this process.

— Use our assumptions and estimates to infer general
properties of the process, and predict new outcomes.

 E.g.
— We measure heights
— We assume heights are normally distributed
— We estimate the mean, s.d. of heights

— We use the mean, s.d. via a normal distribution to make
inferences and predictions.
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Resampling: Logic
* How statistics works:
— We get some data
— Make assumptions about the data-generating process

— Use the data to estimate properties of this process.

— Use our assumptions and estimates to infer general
properties of the process, and predict new outcomes.

* How strong do our assumptions need to be?
— Parametric assumptions: Data follow a normal distribution?
— Let’s just assume that future data will be like previous data.
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Resampling: Logic

 Future data will be like the current data
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Resampling: Logic
 Future data will be like the current data

Histogram of x
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|
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* Histogram of x is our best estimate of the probability
distribution of future samples of x.

* More formally: PDF of X is a mixture of our data points.
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Resampling: Logic
e Future data will be like the current data

« We can generate more samples by resampling from the PDF
made up of our data.

« Byresampling in slightly different ways, we can get
sampling distributions to...
— ...build null hypothesis distributions (randomization)
— ...get confidence intervals (bootstrapping)
— ...obtain prediction distributions (cross-validation)

 When we are building sampling distributions of some
statistic, our resampled samples must be of the same size
as the real one, to obtain the sampling distribution of our
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Resampling: Overview

 Randomization / Permutation / Shuffling:
— Define a statistic that measures structure of interest
— Resample so as to destroy the structure of interest
— Calculate statistic on shuffled samples

— Distribution of shuffled statistics is the null hypothesis
sampling distribution of the statistic, compare statistic on
real data to this

* Bootstrapping:
— Draw more samples like the current one
— Run some estimator on those samples
— To build a sampling distribution of an estimate
— This is useful for confidence intervals, etc.
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Randomization intuition.
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Instead of making 20 graphs and doing this by eye.
We will generate a histogram of statistics measuring
structure, and compare our own.
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Basics > NHST

Null hypothesis significance testing

(1) Define a ‘statistic’ that measures some structure you want
to argue exists in the data.

(2) Define ‘null’ hypothesis (Ho): a model of your data if the
structure of interest didn’t exist.

(3) Derive (analytically or numerically) the sampling
distribution of the statistic of interest under Ho.

(4) What is the probability of seeing a statistic at least as
extreme as the one you saw under Ho? (p-value)

(5) Reject Ho if your p-value is lower than acceptable Type |

error rate (alpha)
(Mope if your p-value is higher than alpha)
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Theoretical population
Statistical model
Null hypothesis
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(sample of 9 female heights, in inches)
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72.5

A statistic
(arithmetic mean)

— mean(x) = 66.44

mean(x) = 65.3

mean(x) = 65.5 \

mean(x) = 65.4 ~.

mean(x) = 64.4 - 63 65 67 69

mean(x) = 65.5
Null Hypothesis testing:

What is the probability
that a random sample
from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0.06

This is the one-tailed
p-value.

mean(x) = 66.8



Basics > NHST

Null hypothesis significance testing

(1) Define a ‘statistic’ that measures some structure you want
to argue exists in the data.

(2) Define ‘null’ hypothesis (Ho): a model of your data if the
structure of interest didn’t exist.

(3) Derive (analytically or numerically) the sampling
distribution of the statistic of interest under Ho.

(4) What is the probability of seeing a statistic at least as
extreme as the one you saw under Ho? (p-value)

(5) Reject Ho if your p-value is lower than acceptable Type |
error rate (alpha)
(Mope if your p-value is higher than alpha)
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Resampling: Randomization

* |dentify structure of interest
e.g., different means across groups

* Define test statistic that measures structure
e.g., mean(x1)-mean(x2)
* Resample data while destroying structure of interest,
but preserving all other structure
e.g. preserve ns, destroy mean difference.
— Often done by reshuffling labels, somehow

— Permutation: Ho distribution built by considering every
label permutation

— Randomization: Ho dist. built by considering some (large
number of) random shuffles of labels
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Randomization tests: diff. in means

Pearson Father-Son height data (15 Fathers, 15 Sons, unrelated)

> dat %>% print(n=40) > glimpse(dat)
Rows: 30
Columns: 2

# A tibble: 30 x 2
person height

<chr> <dbl

Father 69.3 ) N " " " "
St RG s persont<chr> Eather" S 'EFather" ' Fathe=

Father  65.4 $ height <dbl> 69.3, 66.5, 65.4, 70.0, 61..

Father 70
Father 61.
Father 64.
Father 68.
Father 67.
Father 65.
Father U2
Father 7l
Father 68.
Father 69.
Father 68.
Father 69.
Son 67.
Son 69.
Son 66.
Son 68.
Son 66.
Son 66.
Son 69.
Son GO
Son 67.
Son T1.
Son 7l
Son 66.
Son 69.
Son 66.

O 0 N O U1 b W N =

dat
ggplot(aes(x=person, y=height, color=person
geom_point(position position_jitter (width
stat_summary (fun.data mean_se,

geom="point ge
color="'black Father Son

theme_minimal person

O 0 AN DM NN OGO KHEH DOWOWOWOWOU WEFEWRESNWOOGRAOO WRE O
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Randomization tests: statistic

Pearson Father-Son height data (15 Fathers, 15 Sons, unrelated)

> dat %>% print(n=40)
# A tibble: 30 x 2
person he

Gy b Test statistic that measures structure of
Father  69. . . .

Father  66. interest (here: difference in means)
Father 65.4
Father 70
Father 61.
Father 64.
Father 68.
Father 67.
Father 65.
Father U2
Father 7l
Father 68.
Father 69.
Father 68.
Father 69.
Son 67.
Son 69.
Son 66.
Son 68.
Son 66.
Son 66.
Son 69.
Son GO
Son 67.
Son T1.
Son 7l
Son 66.
Son 69.
Son 66.
Son 68.

statistic function(data
data
group_by (person
summarize(m mean (height

O 0 N O U1 b W N =

summarize(d m|[ person 'Son'
m| person 'Father'
pull(d

> (my_stat = statistic(dat))
[1] 06.5133333
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Randomization tests: shuffle

Pearson Father-Son height data (15 Fathers, 15 Sons, unrelated)

> dat %>% print(n=40) Randomize/shuffle data to destroy > shuffle(dat) %>% print(n=40)
# A tibble: 30 x 2 . # A tibble: 30 x 2
pooe structure of interest (here: shuffle group

person height
SCHEIscbl s shuffle = function(data
Father 69.3 data

Father 66.5
Father 65.4 mutate(person sample(person, n(), replace=F))

person height

<Gl <dbl>
Father 69.

Son 66.

Father 65.4
Son 70
Son 61.
Father 64.
Son 68.
Son (57 <
Father 65.
Father 72.
Father 71.
Father 68.
Father 69.
Son 68.
Son 69.
Son (5T <
Son 69.
Son 66.
Father 68.
Father 66.
Son 66.
Father 69.
Father 69.
Father B <
Son 7l
Son Tl e
Son 66.
Father 69.
Son 66.
Father 68.

Father 70
Father 61.
Father 64.
Father 68.
Father 67.
Father 65.
Father U2
Father 7l
Father 68.
Father 69.
Father 68.
Father 69.
Son 67.
Son 69.
Son 66.
Son 68.
Son 66.
Son 66.
Son 69.
Son GO
Son 67.
Son T1.
Son 7l
Son 66.
Son 69.
Son 66.
Son 68.

Note: Sample *without* replacement ->
shuffle labels.

O 0 N O U1 b W N =
O 0 N o b WN -

=
A WN RO

> statistic(shuffle(dat))
[1] 0.9933333
> statistic(shuffle(dat))

[T S SR Sy
© N o O

[1] 0.8866667
> statistic(shuffle(dat))
[1T =0.5

N NN
N = © O

N NN DNNNDN
O 0 N O U b W

O 0 AN DM NN OGO KHEH DOWOWOWOWOU WEFEWRESNWOOGRAOO WRE O
O© oo AN PO NGO EHE D OOOOOUGWEREWRESNWODMO WRE O R

w
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Randomization tests: build Ho distribution

Pearson Father-Son height data (15 Fathers, 15 Sons, unrelated)

> dat %>% print(n=40)
# A tibble: 30 x 2
person he

Generate null hypothesis (H0) samples of test statistic by computing it
on shuffled data.
n_shuffles

null _stat rep(NA, n_shuffles

e <dbl>
Father 69.3
Father 66.5
Father 65.4
Father 70
Father 61.
Father 64.
Father 68.

for(i in 1:n_shuffles
null_stat[i statistic(shuffle(dat

1
2
3
4
5
6
7
8
9

1
6
1
Father 67.3
Father 65.6
Father 72.4
Father 71505
Father 68.3 0
Father 69.7
Father 68.1
Father 69.3
300
Son 67.1
Son 69.3 -
[
son 66.5 3
el 68.8 200
Son 66.8
Son 66.4
Son 69.1
Son 69.5 100
Son 67.2
Son FI9N5
Son 71.4
Son 66.2 0 T
my statistic
Son 69.4
-2 0 2
Son 66.8 statistic
9

Son 68.



Randomization tests: calculate p value

Pearson Father-Son height data (15 Fathers, 15 Sons, unrelated)

> dat %>% print(n=40
S e o A P value numerically calculated from HO samples.
person hei 500

Sehi> dbl

Father

Father

Father .4 400

Father
Father
Father
Father
Father
Father
Father
Father
Father
Father
Father
Father
Son

300

O 0 N O U1 b W N =

count

200

100

Son
Son

Son
-2 0 2
statistic

Son
Son
Son

sum(null_stat my_stat al (n_shuffles

Son
Son

Note:
Here: one-tailed -- upper tail only
(x2 for second tail on symmetric stats)

Smoothed by assuming 2 extra observations to avoid p=0

Son
Son
Son
Son
Son

.1
.6
il
o
.6
.4
.5
e
.7
Sl
A
ol
.3
.5
.8
s
.4
il
.5
12
.5
.4
)
]
.8
.9

Son



You must respect other structure

> dat

# A tibble:

Father
<dbl> <dbl>

67

© 0 N O U1 b W N K

)
64.1
62 .
68.
7o,
72
65
&7 ¢
68.
72
65
64.
TAOK
71,
66

5)
il
2
6
9
2
2
4
4
9
2
9
8

1Ly B

Son

66.
66.

64

697

Teal

6:
ThiLy
7481

it 2

6.
52l
701
519
68.
68.

il
1

2
<

pair
<int>
3L
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Paired data statistic

statistic function(data
data
pivot_wider (id_cols pair,

> dat
# A tibble: 60 x 3
pair person height
<int>N<chr> <dbl>
Father 659
Son 69"
Father 65
Son S
Father 638
Son 63.
Father 63
Son S
Father 66.
Son T49) =

50 more rows

names_from person,
values_from height
mutate(delta Son-Father
summarize(md mean (delta
pull(md
# A tibble: 30 x 3
pair Father Son
<int> <dbl> <dbl>
65.4 69.
65.6 63.
63.3 63.
63.6 67.
66.1 70.
66.7 68.
69.9 77.
65.4 69.
72 69.
65.3 71.

1
2
5
4
5
6
7
8
9

o 00 D W WNDNRE B
W= OO N WL o = b
A O N O WO DN

O 0o N O 00 b WN K
O 00 N O U b WN K
O N DN O W OGN O

—
o
=
(o]

> (my_stat = statistic(dat))
Lib]] {0k clrdelieisleis]
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Paired data shuffling

shuffle function(data
dat
group_by (pair

> dat
# A tibble: 60 x 3
pair person height
<inht> <chr> <dbl>
Father 659
Son 659"
Father 65
Son S
Father 638
Son 65"
Father 63
Son S
Father 66.
Son T49) =

50 more rows

mutate (person sample(person, n(), replace
ungroup ()

Note: Shuffling within father-son pairs, to preserve that structure

> shuffle(dat)
A tibble: 60 x 3
pair person height
<TNT - W<Clf> <dbl>
1 Father 658
Son Siely
Son 65.
Father 650
Son Bk
Father 63.
Father 63.
Son AT
Father 66.
Son 70,

50 more rows

1
2
5
4
5
6
7
8
9

o o0 b D W W INDNRE PR
W = U1 ON W Ul OO B b

[
(O]

1
2
5
4
5
6
"
8
9

o a0 b p W WNDNKH
W K= 0o W o o B b

=
(O]
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Paired data Ho distribution and p value

> dat
# A tibble: 60 x 3
pair person height
<int> <chr> <dbl>
Father 659
Son 659"
Father 65
Son S
Father 638
Son 65"
Father 63
Son S
Father 66.
Son T49) =

50 more rows

1
2
5
4
5
6
7
8
9

o o0 b D W W INDNRE PR
W K= 000N W U O >

[
(O]
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n_shuffles 100
null_stat rep(NA, n_shuffles)
for(i in l:n_shuffles

nutstat ki statistic(shuffle(dat

600

400

count

200

-2 0 2
statistic

> (sum(null_stat >= my_stat) + 1) / (n_shuffles + 2)
Note: NIENECHCEEELEY]

One-tailed (upper tail only)
Smoothed by assuming 2 extra observations to avoid p=0
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Randomization

 Why are we doing this? Why don’t we just do a t-test?

— Sometimes: We don’t trust analytical model assumptions.
e.g., chi-squared test...

— Usually: Our structure is most effectively measured by some
weird statistic for which we do not have an analytical null
distribution
e.g., median? trimmed-mean? Ratio of variances?
Difference in kurtosis? Co-clustering rate from some weird
clustering algorithm? Whatever.

— Really general procedure: there is one test.
You just have to carefully think through
how to measure the structure of interest
how to define the null you want to compare against
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Randomization tests: diff. in means

Test statistic that measures structure of interest (here: difference in means)

statistic = function(dat){with(data=dat, mean(x[y==1])-mean(x[y==0]))}

Obtain statistic on your real data

statistic(dat) [1] ©.8049

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)
dat.shuffle = function(dat){data. frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

Generate null hypothesis (H0) samples of test statistic by computing it on shuffled data.
HO.samps = replicate(K, statistic(dat.shuffle(dat)))

™ =
= i -
w M .
N -
o .
o
g @B A a1
o ¥ H
(]
o o
o —
) Hﬂ
w
[ I I I
2 -1 0 1 2

P value numerically calculated from HO samples.

p.val = (sum(abs(HQ.samps)>=statistic(dat))+1)/(length(HO.samps)+2) [1] ©.2605



Randomization tests: slope of line

Test statistic that measures structure of interest (here: slope of regression line)

statistic = function(dat){with(data=dat, coefficients(Im(x~y))[2])}

Obtain statistic on your real data

statistic(dat) [1] ©.5323

Randomize/shuffle data to destroy structure of interest (here: shuffle y values)

dat.shuffle = function(dat){data. frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

p.val = (sum(abs(HQ.samps)>=statistic(dat))+1)/(length(HO.samps)+2) [1] ©.2605



Randomization tests: diff in variance

Test statistic that measures structure of interest (here: difference in variances)

statistic = function(dat){with(data=dat, log1@(var(x[y==1])/var(x[y==0])))}

Obtain statistic on your real data

statistic(dat) [1] 1.18

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)

dat.shuffle = function(dat){data. frame(x=dat$x, y=sample(dat$y, length(dat$y), replace=F))}

But wait — we destroyed all the structure,
not just the structure of interest!

p.val = (sum(abs(HQ.samps)>=statistic(dat))+1)/(length(HO.samps)+2) [1] 1e-04



Preserve other structure.

Test statistic that measures structure of interest (here: difference in variances)

Randomize/shuffle data to destroy structure of interest (here: shuffle group labels)

dat.shuffle = function(dat){data. frame(x=dat$x, y=sample(dat$y, length(dat$y)))}

2
‘@
c
@
©

density

X

Resampled without preserving means!
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Preserve other structure.

Test statistic that measures structure of interest (here: difference in variances)
Randomize/shuffle data to destroy structure of interest while preserving other structure!
(Here: shuffle residuals)

dat$r = residuals(1lm(data=dat, x~as.factor(y)))

dat$m = dat$x-dat$r
dat.shuffle = function(dat){data. frame(

x=dat$m+sample(dat$r, length(dat$r)),
y=dat$y)}

density

density

X

Ep VuL | UCSD Psychology Preserved mean difference!



Randomization: ANOVA

e How do we shuffle an ANOVA?

* |t depends on our null hypothesis.
— Ho.a: All cells have the same mean, no effect at all
— Ho.b: Main effect of A, but not B, and no interaction.
— Ho.c: Two main effects, but no interaction.
— Ho.d: Effect of covariate, but no effect of factors.

— Resampling has to preserve some structure, while destroying
other structure.

Ep VuL | UCSD Psychology



4)

5)

How to test the following?

We perform a robust regression (least-trimmed-squares), and
get some slope out. How do we tell if it is significantly greater
than we would expect under the null of no relationship?

2 groups with unequal means and variances. We want to know
if they have different skew.

30 countries of varying mean wealth. We have 1000 randomly
sampled people from each country. We want to know if there is
greater inequality (variance) of wealth within a country if that
couTth has a higher average wealth. (we want to deal with log-
wealth).

We find that when people are listing words off the top of their
heads sequential words tend to be more semantically related
than those that are further apart. How would you test if this is
significant?

We use a clustering algorithm to find ‘types’ of people based on
test performance. It seems that these clusters effectively
cluster autistic people together. How do we figure out if this is
the case above chance?

Ep VuL | UCSD Psychology



Randomization:
How many Ho samples can we get?

 How many Ho samples can we get?

 Number of permutations gives us upper bound for a
given shuffling scheme.

* E.g. we have two groups of 5, how many different
shuffled labelings can we have?

Ep VuL | UCSD Psychology



Randomization:
How many Ho samples can we get?

 How many Ho samples can we get?

* Number of permutation gives us upper bound for a given
shuffling scheme.

« E.g.we have two groups of 5, how many different shuffled
labelings can we have?
— 10 choose 5 =10! / 5lg! = 252

— S0, no matter how many times we randomize, we aren’t
going to get more than 252 unique Ho test statistic
samples.

— If sample sizes are small, this is worth considering, and
explicitly doing permutation tests is a better option.

« 2 groups of 10?7 184756; no longer matters.

Ep VuL | UCSD Psychology



Randomization/Permutation/Shuffling tests.

1) Identify structure you want to test.
2) Define a statistic that measures this structure.

3) Shuffle (resampling without replacement!) the data in a way
that disrupts this structure (capturing the null hypothesis)
without disrupting other structure (otherwise you are testing a
different null hypothesis).

4) Compute your statistic on lots of shuffled datasets, figure out if
your statistic on the real (unshuffled) dataset is extreme relative
to what is expected under the Ho shufflings.

Beware:

- All of this requires that you be thoughtful, rather than following

simple prescriptions in your analysis.

- The number of data permutations puts a limit on the possible
number of Ho samples. Use caution with small sample sizes.

- v.hlahorate procedures to deal with extreme value statistics.



Resampling: Overview

 Randomization / Permutation / Shuffling:
— Define a statistic that measures structure of interest
— Resample so as to destroy the structure of interest
— Calculate statistic on shuffled samples

— Distribution of shuffled statistics is the null hypothesis
sampling distribution of the statistic, compare statistic on
real data to this

* Bootstrapping:
— Draw more samples like the current one
— Run some estimator on those samples
— To build a sampling distribution of an estimate
— This is useful for confidence intervals, etc.
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Bootstrap: Logic

 Future data will be like the current data

* We can generate more samples of our data by
resampling from the PDF made up of our data.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[100] -0.81057568 -3.75588056 —0.77649265 -2.71176279 -0.72528754 —1.79951633 0.28982537 -1.86105795 -0.08463999 ©0.08801584 0.42490192 -0.32787760 1.40340032
0.35678602 -1.41562830 -1.04574622 ©.09898905 1.05035238 -2.16351814 —2.54987788 0.60558522 0.98092604 —0.61329110 -0.42499095 -0.75423395 —0.40166514
0.18090021 -0.57891140 -0.63355362 1.42385112 ©.19384376 -1.50328405 .16187994 -2.61733233 1.33129141 -0.63628871 -0.45647740 -5.07116647 -1.74510401 -
1.41756240 ©.19368629 -0.09093373 —0.97658404 -6.49857275 —-1.61333570 .22196662 -0.24209335 0.75823578 -0.31382485 1.22549832 2.26054057 0.18598882
1.78827723 1.21081248 -2.81913736 1.97343288 -1.28652368 1.54594865 .93246801 ©.23824970 ©.35839401 0.57989193 —4.64778399 -1.25622966 -4.42018876
0.20398443 -1.23291749 -0.44188558 0.61962049 0.81900205 -1.47554994 .03681568 -2.06985538 —0.26888997 -1.32263459 -1.31015657 ©.49810722 0.08016335
0.73409104 -0.37473450 -3.96311430 -3.79768621 ©0.06302523 1.16587685 .47153014 ©.54874491 -0.62163567 -1.88914946 -0.69980288 2.42535899 -1.59746565 —
6.15922478 ©0.40459299 1.05146166 0.47986380 ©.44199065 0.91806090 —0.49377271 1.20637696 ©.03993493

o000 O+

x.new = function(){sample(x, n, replace=TRUE)}

p '
I
Sample from the data With replacement!
Same sample size

* Each resampled sample is a glimpse at what other data
would look like, given current data.
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Resampling: Bootstrap.

skew = function(x)(mean(((x-mean(x))/sd(x))"3)) <— Estimator
S

* Generate new resampled samples of x, for each one
obtain an estimate

x.new = function(){sample(x, n, replace=TRUE)} <— Resample function

skew(x.new()) [1] -©0.876 <— One resampled skew estimate
resampled.skews = replicate(10000, skew(x.new()))

10000 resampled skew estimates
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Resampling: Bootstrap.

 Make an estimator (here, skew)

skew = function(x)(mean(((x-mean(x))/sd(x))"3)) <— Estimator

skew(x) [1] -1.218723

* Generate new resampled samples of x, for each one
obtain an estimate

x.new = function(){sample(x, n, replace=TRUE)} <— Resample function

resampled.skews = replicate(10000, skew(x.new()))
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Resampling: Bootstrap.

 Make an estimator (here, skew)

* Generate new resampled samples of x, for each one
obtain an estimate

* Thisis our guess as to the sampling distribution of the
estimator. So we can use it to do inference

Histogram of resampled.skews
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Resampling: Bootstrap.

 Make an estimator (here, skew)

* Generate new resampled samples of x, for each one
obtain an estimate

* Thisis our guess as to the sampling distribution of the
estimator. So we can use it to do inference

 Confidence intervals:

2.5% 97.5%
-1.625407 -0.680099

* |s skew less than o (2-tailed p.val for null of »0)

quantile(resampled.skews, c(0.025, ©.975))

2xsum(resampled.skews>@)/length(resampled. skews) 0.0002

Helpful to ‘smooth’ counts

2% (sum(resampled.skews>0)+1)/(length(resampled.skews)+2) 0.00039992
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Resampling: Bootstrapping.

Goal: Find sampling distribution of some statistic

Define an estimator for some statistic of interest

statistic = function(x)(...)

Define resampling function: draw samples of size length(data) from the data, with replacement.

x.new = function(){sample(x, length(x), replace=TRUE)}

Draw K samples of statistic estimated from resampled data. K should be large.

res.stats = replicate(K, statistic(x.new()))

Use sampled statistic to define confidence intervals...
CI = quantile(res.stats, c(alpha/2, 1-alpha/2))

Use sampled statistic to obtain p.values.

p.val = 2«(sum(res.stats »>= HO.stat)+1)/(length(res.stats)+2)
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Bootstrap variants

« Case resampling:
Resample data exactly
from current data

« Smoothed bootstrap:
Resample data with some extra ;- "

noise g;ﬂh Al mwmﬂ Jl

« Residual/Pivoted bootstrap:
Resample residuals (with
assumed symmetry?)

° Parametric bootstrap. ::l 4HH Ml ‘IIHH U 1 [
Resample data from some fitted :
distribution

o1 l Il Il 100

M I

o 41 ] [l [ 101
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Resampling: adding invariance / noise.

Histogram of x

R . statistic = function(x)(sd(x))
. - statistic(x) [1] 2.692358

Frequency
2

6 8

N[N (-

[2] 1.03 3.96

x.new = function(){rnorm(n,mean(x), sd(x))}

[2] 1.83 3.54

CI = quantile(replicate(K, statistic(x.new())), c(0.025, 0.975))
Parametric bootstrap generally not a good idea: removes most advantages of of resampling...
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Resampling structured data.

BO = function(dat){coefficients(Im(dat$y~dat$x))[1]}

B1 = function(dat){coefficients(Im(dat$y~dat$x))[2]}

BO(dat ) [1] ©.33
B1(dat) [1] @.99

5
|

How to do case resampling?

Which option should we prefer, and why?

dat.new = function(dat){idx = sample(1:n, n, TRUE);

data. frame(x=dat[idx, 'x’ ],
y=dat[idx, 'y’ ])}

This options preserves the relationship between x and y by resampling pairs of data points!

We really want this, otherwise we get samples from Null!
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Resampling structured data.

BO = function(dat){coefficients(Im(dat$y~dat$x))[1]}

B1 = function(dat){coefficients(Im(dat$y~dat$x))[2]}

Bo(dat) [1] ©.33
B1(dat) [1] ©.99

4 -2 0 2 4 6 8

Case resampling dat.new = function(dat){idx = sample(1:n, n, TRUE);
data. frame(x=dat[idx, 'x’ ],
y=dat[idx, 'y’ ])}

quantile(replicate(K, B@(dat.new(dat))), c(0.025, 0.975)) [2] -©.30 1.03

quantile(replicate(K, Bi(dat.new(dat))), c(0.025, 0.975)) [2] ©0.78 1.22
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Resampling structured data.

BO = function(dat){coefficients(Im(dat$y~dat$x))[1]}

B1 = function(dat){coefficients(Im(dat$y~dat$x))[2]}

Bo(dat) [1] ©.33
B1(dat) [1] ©.99

Case resampling dat.new = function(dat){idx = sample(1:n, n, TRUE);
data. frame(x=dat[idx, 'x’ ],
y=dat[idx, 'y’ ])}

quantile(replicate(K, B@(dat.new(dat))), c(0.025, 0.975)) [2] -©.30 1.03
quantile(replicate(K, Bi(dat.new(dat))), c(0.025, 0.975)) [2] ©0.78 1.22

Smooth dat.new = function(dat){idx = sample(1:n, n, TRUE);
resamolin data. frame(x=(dat[idx, 'x']+rnorm(n,Q,sd(dat$x)/10)),
pling y=(dat[idx, 'y']+rnorm(n,@,sd(dat$y)/10)))}

quantile(replicate(K, B@(dat.new(dat))), c(0.025, 0.975)) [2] -©.31 1.07
quantile(replicate(K, Bi(dat.new(dat))), c(0.025, 0.975)) [2] ©0.76 1.21
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Resampling: Benefits.

* Can build sampling distributions, estimate confidence
intervals for arbitrary statistics and measures.
— Consider: Skew, Kurtosis, etc.
— Various measures that make sense scientifically, but are
not convenient mathematically

* General purpose tool — no need to remember specific
rules for specific problems!

* Does not make distributional assumptions — respects
the data, and distributional assumptions can’t be
violated.
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Resampling: Costs.

 Computationally expensive: requires lots of resampling,
can take some time.

* Breaks down when sample sizes are small (bootstrap
estimates are too narrow).

* Tends to be somewhat narrow-minded: if | haven’t seen
outliers before, | imagine they do not exist.

— (Wild bootstrap, smooth bootstrap, and other techniques
exist for adding uncertainty to resampling, but how do you
know how much uncertainty to add?)

* Can get quite hairy for richly structured data that has
various dependencies...
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How many samples? How much data?

* How many bootstrap samples (K) should you use?

— The more the merrier — standards increase with Moore’s law

— Minimum: if you want to specify probability with a precision

of u, you should have at least 1/u bootstrap samples.
E.g., 95% interval requires 0.025% quantile (precision of 0.001), requires K¥>=1000

— | like K¥=10,000. | use K=1,000 if ’'m in a rush.

« How much data (n) do you need to bootstrap?

— Number of possible unique samples W=choose(2n-1,n-1)

n 1 2 3 4 ) 6 7 8 9 10 15
W 1 3 10 35 126 462 1716 6435 24310 92378 17558760

— Bootstrapping makes sense if W » K; let’s say n»=15 or 20

— However, the reliability of bootstrapped Cls etc. depends on
the statistic; the more the statistic measures extremes, the
more data you need.
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Resampling: Bootstrap

e Use case:

— You want a confidence interval / estimate of precision of some
statistic(s); however...

— You want to avoid parametric assumptions, or the statistic has
no analytical sampling distribution or likelihood function.

* Premise:
— treat your data histogram as the population distribution.

— Resample from your data with replacementto get bootstrapped
samples of the same sizeto approximate the true sampling
distribution of your statistic(s) of interest.

— Build confidence intervals using that bootstrapped sampling
distribution.

e Cautionary notes:
— You should have a reasonably large sample to begin with.
— Think carefully about resampling procedure for structured data.

— Some statistics (those sensitive to extremes) and population
distributions (very heavy tails) are not well suited for this.
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