201ab Quantitative methods Repeated Measures

- Measurements of the same thing are correlated.
- Why use 'repeated measures' designs?
- 1 within-subject factor, 1 measure per cell per subject
- 1 within-subject factor, >1 measure per cell per subject
- >1 within-subject factors
- Mixed designs: within and between subject effects
- What's the right error for each effect?
- Blocking as repeated measures.

Ed Vul \| UCSD Psychology

Correlations from sources of variability

- If we measure the same 'unit' multiple times, those measurements will be correlated. If we treat them as independent samples of the unit's population, we will be very wrong.
- Goal: put CI on average male height. Procedure: I measure my own height 10 times... 69.3, 68.6, 68.3, 69.1, 68.9, 68.0, 69.4, 69.5, 68.8, 68.4 Mean $=68.8 \quad$ SD $=0.5 \ldots$... sem $=0.16$. So, Cl on male height is 68.5 to 69.2 ...? What's wrong with this?
- No matter how many times I measure myself, I am not getting an estimate of the variability of heights across men. I am just getting an estimate of the error in my height measurements (and/or variability of my

Correlations from sources of variability

- Sometimes obvious, but hard to track in complex designs
- Example:
- I measure homework scores

I have 10 students. 5 assignments. 4 problems/assignment
So we have 20 measurements per student.
40 measurements per assignment.
1 measurement per problem.
What's the correlation structure / sources of variability?

- Sources of variation:
- Students (some do better overall).
- Problems (some are easier than others).
- Student*Assignment interaction (some students may have had less time on some assignments),

Correlations from sources of variability

- When doing repeated-measures or mixed designs, we have to grapple with 'nested' measurements and variability at different scales of our design.
- We now have conditionally independent residuals, but collapsing across the nested measurement structure, residuals are correlated.
- This can be very hard.
- The most general ways to deal with these kinds of data structures are 'hierarchical linear models' or 'linear mixed effects' models. We will talk about those later.
- Here we will consider the simpler (but still hard!) cases that can be analyzed using mixed-design ANOVAs.

Factor A: Country (index: i)

So far we have dealt with ANOVA designs/data in which all residuals are presumed to be independent.

Factor A (between subjects): Test (index: i)

So far we have dealt with ANOVA designs/data in which all residuals are presumed to be independent. But this is not always the case, indeed, there is virtue to introducing dependence.

Factor A (within subject): Test (index: j)

In repeated measures, sampling units (subjects) are measured multiple times; so we can estimate idiosyncratic effects of that unit. And we can factor them out, to reduce error, and gain power. Same logic as with a paired t-test, but gets trickier with ANOVA.

Ed Vul \| UCSD Psychology

Repeated measures

Factor A (within subject): Test (index: j)

$\mathrm{l}=4 \mathrm{y}_{4,1}=6 \mathrm{y} \mathrm{y}_{4,2}=79 \quad \mathrm{y}_{4,3}=69 \quad \mathrm{y}_{4,4}=84$

 | $1=6$ | $y_{6,1}=35$ | $y_{6,2}=59$ | $y_{6,3}=65$ | $y_{6,4}=69$ |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}1=7 & y_{7,1}=25 & y_{7,2}=55 & y_{7,3}=47 & y_{7,4}=65 \\ y & & \\ y & \end{array}$

- Multiple measurements now share common source of variability: variability of subject.
- In this case, we have a purely withinsubject design.
- We want to factor out subject effects (some students do better than others) and measure test effects.
- We are going to do this by saying that we expect different sources of error: some across subjects, some within subject.
- We're gonna need to look at some math to understand.

Ed Vul \| UCSD Psychology

Different models in cell-math.

Factor A (between subjects): Test (index: i)

| Midterm 201a | Final 201a |
| :--- | :--- | :--- |
| $y_{1,1}=67$
 $y_{1,2}=84$
 $y_{1,3}=73$
 $y_{1,4}=60$
 $y_{1,5}=45$
 $y_{1,6}=35$ | Midterm 201b
 $y_{2,1}=71$
 $y_{2,2}=67$
 $y_{2,3}=66$
 $y_{2,4}=79$ |

In a between subjects design, we have one measurement per subject, and multiple measurements per condition. So we just estimate a single subject error.
Data point j
in between-
subject cell i

Different models in cell-math.

Different models in cell-math.

Factor A (between subjects): Test (index: i)

But now let's measure

 each subject in each test....| Data point j |
| :--- |
| in between- |
| subject cell i |

Different models in cell-math.

Factor A (within subject): Test (index: j)
O

In a within-subject design we can estimate the subject effect, and take it out of our error term!
$\begin{aligned} & \underset{\text { Data point }}{\text { for subject }} \begin{array}{l}\text { in within- }\end{array}\end{aligned} y_{i, j}=\mu+\alpha_{j}+O_{i}+\mathcal{E}_{i, j}$ subject cell ${ }^{j}$

Overall
Additive effect of factor A treatment

Error of measuring subject j in the ith condition.

Note that this includes both measurement error as well as the subject-treatment interaction.

Different models in cell-math.

Factor A (within subject): Test (index: j)

In a within-subject design we can estimate the subject effect, and take it out of our error term!

In a between subject design, the subject effect would be lumped with the error. But, look: here, because we have multiple measurements per subject, we can estimate the "subject effect" and remove it from the error! This gives us power!
What kind of design would we need to estimate the subject-treatment
interaction?
Ed Vul \| UCSD Psychology

Simple 1-way repeated measure (1/cell)

D1. data			
	student	test	core
1	1	201-A.midterm	58
1.1	1	201-A.final	38
1.2	1	201-A. homework	26
1.3	1	201-B.midterm	32
1.4	1	201-B.final	38
1.5	1	201-B. homework	53
2	2	201-A.midterm	74
2.1	2	201-A.final	58
2.2	2	201-A. homework	50
2.3	2	201-B.midterm	68
2.4	2	201-B.final	64
2.5	2	201-B. homework	101
3	3	201-A.midterm	73
3.1	3	201-A.final	44
3.2	3	201-A. homework	29
3.3	3	201-B.midterm	55
10	10	201-A.midterm	81
10.1	10	201-A.final	58
10.2	10	201-A. homework	49
10.3	10	201-B.midterm	86
10.4	10	201-B.final	52
10.5	10	201-B. homework	86

The simplest possible repeated measures design is what we just saw: we have one within-subject factor (test), and one observation per subject per factor level.

Here we have 10 students, each being assessed on 6 different 'tests', with one score for each test.
Total measurements: 60 Measurements/subject: 6

Simple 1-way repeated measure (1/cell)

D1. data			
student		test	score
1	1	201-A.midterm	58
1.1	1	201-A.final	38
10.5	10	201-B. homework	86

The simplest possible repeated measures design: one within-subject factor, one observation per subject Here we have 10 students, eadfactor level assessed on 6 different 'tests', with one score for each test.

$y_{i, j}=\mu+\alpha_{j}+\rho_{i}+\varepsilon_{i, j}$ So we want to adopt this sort of model: one that factors out the subject effect from the error.

Like this, but with 10 subjects (rather than 8, as pictured) and including two more 'test' levels: 201a-homework and 201b-homework.

Ed Vul \| UCSD Psychology

Simple 1-way repeated measure (1/cell)

D1. data

	student		test	score
1	1	201-A.midterm	58	
1.1	1	$201-A . f i n a l$	38	
$\ldots \ldots$.	$\ldots .$.	$\ldots .$.
10.5	10	$201-B . h o m e w o r k$	86	

10 students, each assessed on 6 'tests';
with 1 score per student per test

The simplest possible repeated measures design: one within-subject factor, one observation per subject per factor level.

We could just ignore the subject effect, and then all the subject effects get lumped in with the error.

$$
y_{i, j}=\mu+\alpha_{i}+\varepsilon_{i, j}
$$

But that would be silly:
why lose power by failing to factor out subject effects?
Ed Vul \| UCSD Psychology

Simple 1-way repeated measure (1/cell)

D1. data			
student		test	score
1	1	201-A.midterm	58
1.1	1	201-A.final	38
10.5	10	201-B.homework	86

The simplest possible repeated measures design: one within-subject factor, one observation per subject per factor level.
To factor out subject effects, we have to add them to the model. In this simple case, we can add subject as a factor.
$y_{i, j}=\mu+\alpha_{j}+\rho_{i}+\varepsilon_{i, j}$
summary (aov (scorentest + student))

	Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$					
test	5	11251	2250.2	15.17	$9.99 \mathrm{e}-09$	$* * *$
student	9	5686	631.8	4.26	0.000487	$* * *$
Residuals	45	6675	148.3			

Note: our SS and df error dropped because that variability was rightly attributed to a main effect of subject.

Simple 1-way repeated measure (1/cell)

D1. data			
	student	test	score
1	1	201-A.midterm	58
1.1	1	201-A.final	38
10.5		201-B. homework	86

The simplest possible repeated measures design: one within-subject factor, one observation per subject To factor out subject effects, we havelt faget prelfryet the model. For consistency with other models, we should add them not as a factor, but as an 'error' / 'random effect' term.

$$
y_{i, j}=\mu+\alpha_{j}+\rho_{i}+\varepsilon_{i, j}
$$

summary (aov(scorentest + Error(student)))

Error: student				
Residuals	5686	631.8		
Error: Within				
D	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
test	11251	2250.2	15.17	9.99e-09
Residuals 45	6675	148.3		

Notes: (1) this analysis doesn't explicitly test if there is a significant subject effect, but we usually don't care about it anyway. (2) We see that we are 'splitting' the error into two strata: error between subjects, and error 'within' subjects.

Simple 1-way repeated measure (1/cell)

D1. data			
student		test	score
1	1	201-A.midterm	58
1.1	1	201-A.final	38
10.5	10	201-B. homework	86

repeated measures design: one within-subject factor, one observation per subject per factor level.

Something we can't do: Add a student:test interaction

summary (aov (scorentest*stud			
	Df	Sum Sq	Mean Sq
	5	11251	2250.2
test	9	5686	631.8
student	45	6675	148.3

Because we only have 1 measurement per student-test combination, if we estimate a student:test interaction, there is no error left over. Indeed, our previous error term was the student:test interaction!

Simple 1-way repeated measure (1/cell)

D1. data

student
11
dterm 58
10.5

The simplest possible repeated measures design: one within-subject factor, one observation per subject
If we write the model in the complete per factor level. specify ing which factors are nested within students, the fact that the student:test interaction is the within-subject error term is made explicit for us.

$$
y_{i, j}=\mu+\alpha_{j}+\rho_{i}+\varepsilon_{i, j}
$$

```
summary(aov(scorentest + Error(student/test)))
Error: student
        Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 5686 631.8
Error: student:test
        Df Sum Sq Mean Sq F value Pr(>F)
test 5 11251 2250.2 15.17 9.99e-09 ***
Residuals 45 6675 148.3
```


Simple 1-way repeated measure (1/cell)

For the simplest possible repeated measures design: one withinsubject factor and one observation per subject per factor level, we have three equivalent ways to specify the model.

summary (gov(score~test + Error(student)))

They all get the correct SS and F value for the effect of test.
They all get the correct within-subject error.
And they all factor out subject effects.
summary (gov(score~test + Error(student/test)))

Error:	student	
Df	Sum Sq	Mean Sq
Residuals	9	5686

ror: studen	t:test Sum Sq	Mean	valu	Pr(>F)
test 5	11251	2250. 2	15.17	9.99e-Q9
Residuals 45	6675	148.3		

Simple 1-way repeated measure (1/cell)

For the simplest possible repeated measures design: one withinsubject factor and one observation per subject per factor level, there are two wrong ways to specify the model
summary (gov(score~test))

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
test	5	11251	$225 Q .2$	9.83	$1 . Q 1 \mathrm{e}-\mathrm{Q} 6$	$* * *$
Residuals	54	12361	228.9			

WRONG: Don't add students to the model... Subject variability is now lumped in with the within-subject error. This is inefficient. Moreover, it will yield wrong answers when introducing more factors.

summary (gov(score~ ${ }^{\text {dest**student) }}$			
	Df	Sum Sq	Mean Sq
test	5	11251	225Q. 2
student	9	5686	631.8
test:student		6675	148.3

WRONG: Adding a test:student interaction doesn't work because the test:student interaction is our within-subject error term. Adding the interaction means there is no error left over!

Simple 1-way repeated measure (1/cell)

For the simplest possible repeated measures design: one withinsubject factor and one observation per subject per factor level, we have three equivalent ways to specify the model.

summary (gov(score ${ }_{\text {a }}$ test + student))						
	Df	Sum Sa	Mean Sa	F value	$\operatorname{Pr}(>\mathrm{F})$	
test	5	11251	225Q. 2	15.17	9.99e-89	***
student	9	5686	631.8	4.26	Q.QQQ487	***
Residuals	45	6675	148.3			

summary(gov(score~ ${ }^{\text {dest }}+$ Error(student)))					
Error: student ${ }_{\text {Df }}$ Sum Sa Mean Sa F value $\operatorname{Pr}(>F)$					
Residuals $9 \quad 5686 \quad 631.8$					
Error: Within					
	$\mathrm{f}_{5} \mathrm{Sum} \mathrm{Sa}$	Mean Sa	F value	$\operatorname{Pr}(>\mathrm{F})$	
test 5	511251	2250. 2	15.17	$9.99 \mathrm{e}-\mathrm{Q} 9$	
Residuals 45	56675	148.3			

(1) Add student as a factor. Works here, but will break if we have any between-subject factors.
(2) Add student as a general random effect. Works here, but will break if we have more than 1 within-subject factor.
(3) Add student as a random effect, specifying the nested within-subject factors. Works here, and will work for all balanced mixed designs with one random effect (aov can't handle crossed random effects - see Imer)

Simple 1-way repeated measure (1/cell)

For the simplest possible repeated measures design: one withinsubject factor and one observation per subject per factor level, we have three equivalent ways to specify the model.

```
summary(gov(score~test + Error(student/test)))
Error: student
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 5686 631.8
Error: student:test
```


We will stick with the most general method, so we don't have to adopt a new syntax every time we change models.

1-way repeated measure (>1/cell)

We have one within-subject factor (test), and more than one observation per subject per factor level.

Factor A (within subject): Test (index: j)

Ed Vul \| UCSD Psychology

1-way repeated measure (>1/cell)

D2.data				
student		test rep score		
1	1	201-A.midterm	1	67
1.6	1	201-A.midterm	2	79
1.7	1	201-A.midterm	3	63
1.1	1	201-A.final	1	79
1.1.1	1	201-A.final	2	101
1.1 .2	1	201-A.final	3	89
1.2	1	201-A. homework	1	37
1.2 .1	1	201-A . homework	2	28
1.2 .2	1	201-A. homework	3	53
1.3	1	201-B.midterm	1	41
1.3.1	1	201-B.midterm	2	38
1.3 .2	1	201-B.midterm	3	16
1.4	1	201-B.final	1	41
1.4.1	1	201-B.final	2	39
1.4 .2	1	201-B.final	3	12
1.5	1	201-B. homework	1	45
1.5.1	1	201-B. homework	2	56
1.5.2	1	201-B. homework	3	61
10.4 .2	10	201-B.final	3	55
10.5	10	201-B. homework	1	77
10.5.1	10	201-B. homework	2	81
10.5.2	10	201-B. homework	3	58
ED VUL \| UCSD Psychology				

We have one withinsubject factor (test), and more than one observation per subject per factor level.

Here we have 10 students, each being assessed on 6 different 'tests', with 3 scores for each test.
Total measurements: 180
Measurements/subject: 18 Measurements/sub-cell: 3

1-way repeated measure (>1/cell)

We have one within-subject factor (test), and more than one observation per subject per factor level.

D2. data			
student	test	rep	score
11	201-A.midterm	1	67
1.61	201-A.midterm	2	79
1.71	201-A.midterm	3	63
1.1 1	201-A.final	1	79
1.1.1 1	201-A.final	2	101
1.1.2 1	201-A.final	3	89
10.4.2 10	201-B.final	3	55
10.510	201-B. homework	1	77
10.5.1 10	201-B. homework	2	81
10.5.2 10	201-B. homework	3	58

What do we do with multiple observations per subject per level?
Option 1: Meh? Ignore it.
Option 2: Average to collapse them to 1 observation per subject per level. (not always possible)
Option 3: Specify the correct model to respect nesting structure.

1-way repeated measure (>1/cell)

We have 10 subjects. one within-subject factor (test: 6-levels), and 3 observation per subject per factor level.
What do we do with multiple observations per subject per level? Option 1: Meh? Ignore it.

```
summary(aov(scorentest + Error(student)))
Error: student
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 14896 1655
Error: Within
    Df Sum Sq Mean Sq F value Pr(>F)
test 5 13014 2602.7 10.56 8.14e-09 ***
Residuals 165 40649 246.4
```

BIG PROBLEM: This analysis assumes that every measurement is independent, but we may (and should!) expect that there may be some sort of interaction between test and student (e.g., some students are hung over for some tests, but not others). Thus, all measurements of that student-test will be correlated, because of this test:student interaction, and are not independent! This is like using multiple measurements of my height as independent samples of the population

1-way repeated measure (>1/cell)

We have 10 subjects. one within-subject factor (test: 6-levels), and 3 observation per subject per factor level.
What do we do with multiple observations per subject per level? Option 2: Aggregate to get 1 measure/cell

```
D1.data.agg = D1.data %>%
group_by(student,test) %>%
summarize(score=mean(score))
```

student		test	score
1	1	201-A.final	89.66667
2	2	201-A.final	90.66667
3	3	201-A.final	58.00000
4	4	201-A.final	82.66667
5	5	201-A.final	75.33333
6	6	201-A.final	42.00000
7	7	201-A.final	44.00000
8	8	201-A.final	65.33333
9	9	201-A.final	105.00000
10	10	201-A.final	46.33333
11	1	201-A. homework	39.33333
	.	-	
60	10	201-B.midterm	68.33333

So now, instead of having 180 measurements (with 3 per subject per test) we have 60 measurements with 1 per subject per cell. With that 1 corresponding to the average of the 3 we had before.

1-way repeated measure (>1/cell)

We have 10 subjects. one within-subject factor (test: 6-levels), and 3 observation per subject per factor level.
What do we do with multiple observations per subject per level? Option 2: Aggregate to get 1 measure/cell

```
summary(aov(scorentest + Error(student), data=D1.data.agg))
Error: student
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 4965 551.7
Error: Within
    Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
test 5 5 4338 867.6 4.648 0.00167 **
Residuals 45 8399 186.6
```

Everything looks peachy, and this is the correct answer. But... this strategy will not work if we have multiple within-subject factors!!

1-way repeated measure (>1/cell)

We have 10 subjects. one within-subject factor (test: 6-levels), and 3 observation per subject per factor level.
What do we do with multiple observations per subject per level? Option 3: Specify the correct nesting structure

summary(aov(scorentest + Error(student/test)))

Error: student
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Residuals 9148961655

Error: student:test					
	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
test	5	13014	2602.7	4.648	$0.00167 * *$
Residuals	45	25197	559.9		

Error: Within
Df Sum Sq Mean $S q$ F value $\operatorname{Pr}(>F)$
Residuals $120 \quad 15452 \quad 128.8$
This is the general strategy we need to use if we have multiple within-subject factorsos tovulutcorsycholesy

Note: We get the same answer as option 2 for the effect of test. But critically, we've clarified that the relevant error for the effect of test is the student:test interaction. The 'within' error, is the variability of multiple measurements per subject per test.

n-way repeated measures

We have multiple within-subject factors (class and test), and potentially, >1 measurement per subject per cell.

Factor A (within subject): Test

n－way repeated measures

Das data	ve two within－subject
	factors（class and test）．
	Here we have 10 students，
	each being assessed on 3
	＇tests＇in 2 classes，with 3
	scores for each test．
边	Total measurements： 180
边	Measurements／subject： 18
	Measurements／sub－cell： 3
边 ${ }^{1}$	But now we have 2 within－
	subject factors！
时－8	

n-way repeated measures

We have two within-subject factors (class and test).

What do we do with multiple within-subject factors? We can't ignore it, and we can't average to reduce to just one measurement.

Option 3: Specify the correct model to respect nesting structure.

n-way repeated measures

Option 3: Specify the correct nesting structure

n-way repeated measures

NOT SPECIFYING NESTING STRUCTURE GIVES WRONG ERROR TERMS!

summary (aov(scorenclass*test + Error(student)))						
Error: student						
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$						
Residuals	9	14896	1655			
Error: Within						
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$	
class	1	1755	1755	7.123	0.00837	
test	2	1957	978	3.972	0.02067	*
class:test	2	9302	4651	18.879	$4.14 \mathrm{e}-08$	***
Residuals	165	40649	246			

Because there is some correlation among multiple measurements of the same subject in the same condition, if we do not appropriately specify which conditions are nested in subjects, we do not account for these correlations. Thus, these correlation will yield spurious effects and Type 1 errors.

n-way repeated measures

What's happening here?

```
summary(aov(scorenclass*test + Error(student/(class*test))
Error: student
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 14896 1655
Error: student:class
    Df Sum Sq Mean Sq F value Pr(>F)
class 1}1\begin{array}{llllll}{1}&{1755}&{1754.7}&{2.378}&{0.157}
Residuals 9 6641 737.8
Error: student:test
    Df Sum Sq Mean Sq F value Pr(>F)
test }\begin{array}{llllll}{2}&{1957}&{978.4}&{2.392}&{0.12}
Residuals 18 7363 409.0
Error: student:class:test
    Df Sum Sq Mean Sq F value Pr(>F)
class:test 2 9302 4651 7.479 0.00432 **
Residuals 18 11194 622
Error: Within
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 120 15452 128.8
Ed Vul | UCSD Psychology
```

We partition into various error "Strata"

- sums of squares
- Degrees of freedom

Within each error stratum we partition the sums of squares and degrees of freedom into

- Explanatory variables
- Residuals

We then compute MS[effect]/MS[residual] within the error strata to get F ratios.

n-way repeated measures

What's happening here?

```
summary(aov(scorenclass*test + Error(student/(class*test))
Error: student:class
    Df Sum Sq Mean Sq F value Pr(>F)
class 1}1\begin{array}{llllll}{1}&{1755}&{1754.7}&{2.378}&{0.157}
Residuals 9 6641 737.8
Error: student:test
    Df Sum Sq Mean Sq F value Pr(>F)
test }\begin{array}{llllll}{2}&{1957}&{978.4}&{2.392}&{0.12}
Residuals 18 7363 409.0
Error: student:class:test
    lrram Sq Mean Sq F value 
Error: Within
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 120 15452 128.8
Ed Vul | UCSD Psychology
```

```
Error: student
```

Error: student
Df Sum Sq Mean Sq F value Pr(>F)
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 14896 1655

```
Residuals 9 14896 1655
```


How much variability is there in student scores averaging over all tests for each student?

n-way repeated measures

What's happening here?

Blocking

- We want to factor out subject effects via repeated-measures analysis, but we may not be able to do a within-subject design.
- We are comparing autistic to typical kids.
- We are assigning students to different classrooms.
- We are performing different kinds of surgery on patients.
- We give different sorts of drugs to patients.
- Etc.
- One approach: create fake 'pseudo-subjects' or 'blocks' that we think might share common sources of variability
- Block kids based on IQ
- Block students based on SES
- Block patients based on severity of ailment

Complete Block Designs

- You test kids:
- w/ Autism
- w/ Williams
- w/ Downs
- Controls
- Do they differ in spatial reasoning tasks controlling for SES?
- Create SES blocks

(a)

(b)

Mental Rotation Test-Are these two figures the same except for their orientation?

Complete Block Designs

SES measure (income percentile)

Controls	Autistics	Downs	Williams	
93	76	74	38	
15	82	59	12	
35	24	16	95	
47	48	25	67	
54	6	41	52	
68	35	39	86	
3	15	96	6	
85	99	86	44	
79	66	2	29	
27	55	66	77	

SES measure (income percentile)

	Autistics	Downs	Williams	Controls
block 1	6	2	6	3
block 2	15	16	12	15
block 3	24	25	29	27
block 4	35	39	38	35
block 5	48	41	44	47
block 6	55	59	52	54
block 7	66	66	67	68
block 8	76	74	77	79
block 9	82	86	86	85
block 10	99	96	95	93

- Create SES blocks
- Effectively: you've created a new factor.
- Each level of that factor corresponds to some approximate value of SES.
- Each kid group has 1 member in each block
- Kids are very closely matched within block
- This is a 'complete block' design.
- The blocks serve as repeated measures, and you can factor out variability due to SES block!

Complete Block Designs

SES measure (income percentile)

	Autistics	Downs	Williams	Controls
block 1	6	2	6	3
block 2	15	16	12	15
block 3	24	25	29	27
block 4	35	39	38	35
block 5	48	41	44	47
block 6	55	59	52	54
block 7	66	66	67	68
block 8	76	74	77	79
block 9	82	86	86	85
block 10	99	96	95	93

Spatial reasoning measure...

	Autistics	Downs	Williams	Controls
block 1	41	74	49	70
block 2	28	40	36	24
block 3	14	35	14	88
block 4	56	42	36	19
block 5	44	80	85	17
block 6	18	83	80	45
block 7	44	50	44	83
block 8	19	86	66	67
block 9	89	70	36	79
block 10	62	79	75	76

- Create complete SES blocks
- To analyze this, you would include the blocking measure as a repeated measure

```
aov(spatial.reasoning ~ kid.type + Error(ses.block / kid.type))
```

- Since this is now just a 1 factor repeated measures design, with one observation per unit-level, you could just add ses.block as a factor, but let's stick with being explicit.

Complete Block Designs

SES measure (income percentile)

	Autistics	Downs	Williams	Controls
block 1	6	2	6	3
block 2	15	16	12	15
block 3	24	25	29	27
block 4	35	39	38	35
block 5	48	41	44	47
block 6	55	59	52	54
block 7	66	66	67	68
block 8	76	74	77	79
block 9	82	86	86	85
block 10	99	96	95	93

Spatial reasoning measure...

| | Autistics | Downs | Williams | Controls |
| :---: | :---: | :---: | :---: | :---: | :---: |
| block 1 | 41 | 74 | 49 | 70 |
| block 2 | 28 | 40 | 36 | 24 |
| block 3 | 14 | 35 | 14 | 88 |
| block 4 | 56 | 42 | 36 | 19 |
| block 5 | 44 | 80 | 85 | 17 |
| block 6 | 18 | 83 | 80 | 45 |
| block 7 | 44 | 50 | 44 | 83 |
| block 8 | 19 | 86 | 66 | 67 |
| block 9 | 89 | 70 | 36 | 79 |
| block 10 | 62 | 79 | 75 | 76 |
| | | | | |

- Create complete SES blocks
- This is the ideal world where you can create complete blocks because magically, we had one kid from every group in every income range. This is unlikely to happen.
- Often: do a yoked experiment - pick control kids to match a special population kid. Feasible for one special population, not three. (often used to equate subject-driven

Complete Block Designs

SES measure (income percentile)

Autistics	Downs	Williams	Controls	
2	5	4	19	-
15	20	17	39	-
60	23	18	45	
72	25	22	45	
75	49	30	50	-
80	76	36	54	
82	76	44	56	
83	78	44	66	
93	95	78	70	

SES measure (income percentile)

	Autistics	Downs	Williams	Controls	
? Block 1	2	5	4	19	
? Block 2	15	20	17	39	
? Block 3	60	23	18	45	
? Block 4	72	25	22	45	
? Block 5	75	49	30	50	
? Block 6	80	76	36	54	
? Block 7	82	76	44	56	
? Block 8	83	78	44	66	
? Block 9	93	95	78	70	

- Real world: force blocking?
- This doesn't work. Our income measures are not distributed in a matched way across special populations, so our blocks don't have a useful meaning.

Blocking in the real world

- Real world blocking across populations is often hard, and requires some forethought
- E.g. yoked designs.
- If you are doing random assignment to conditions, then blocking becomes much easier.
- Someone comes in, you get a measure of their blocking variable, then assign them to a condition to ensure a complete block.
- This also yields a 'randomized complete block' design, where the blocking factor has no relationship to the treatment factor(s).
(if we have two factors outside of our control [SES and diagnosis], we don't get to randomize).

Factoring out extraneous variability

- There are sources of variability besides our factors of interest. We want to to account for this variability, to reduce error and gain power.
- Repeated measures: we measure each experimental unit (subject / family / school) in every treatment, this way factoring out all the variability due to the experimental unit.
Very powerful - always do this if you can.
- Blocks: Analysis/design constructs where we pool individuals matched on some variable into blocks. This is a good idea, but not always easy to do.
- Covariates: we measure continuous variables that contribute linearly to our measure of interest, and factor them out via regression (ANCOVA, later).

Factoring out extraneous variability

- We aim to gain power by factoring out variability
- We decrease SS[error] and df[error].
- We'd like the decrease in SS[error] to be a bigger proportion than the decrease in df[error] so that MS[error] also drops.
- Repeated measures
- df[error] loss: \# of subjects (-1)
- Blocks:
- df[error] loss: \# of blocks (-1)
- Covariates:
- df[error] loss: \# of covariates.
- Measurements of the same thing are correlated.
- Why use 'repeated measures' designs?
- 1 within-subject factor, 1 measure per cell per subject
- 1 within-subject factor, >1 measure per cell per subject
- >1 within-subject factors
- Mixed designs: within and between subject effects
- What's the right error for each effect?
- Blocking as repeated measures.

We have 10 teachers each teach 12 classes in a 2-way factorial (within-teacher) design: topic [physics, algebra, history, art] * method [lecture, "discovery", "flipped"]. In each class we measure the pre and post-class score on a standardized test for that topic for each of 15 students, and then record their pre-to-post percentile improvement (so we get one improvement number per student).

- Write:
- The R command you would use to do a repeated measures analysis on the effects of topic, teaching method, and their interaction on student improvement.
- Write out the structure of the ANOVA table(s) we would expect to get from this analysis, including the degrees of freedom for each entry.

| Source | Df | SS | MS | F | P |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Err: teacher | 9 | 5000 | | | |
| Residuals | 9 | 5000 | 555.6 | | |
| Err: teacher:topic | 30 | 1500 | | | |
| topic | 3 | | | 4 | |
| Residuals | 27 | | | | |
| Err: teacher:method | 20 | | 163 | | 0.01 |
| method | 2 | | | | |
| Residuals | 18 | | | | |
| Err: teacher:topic:method | 60 | | | | |
| topic:method | 6 | | | | |
| Residuals | 54 | | | | |
| Err: within | 1680 | 10000 | | | |
| Residuals | 1680 | 10000 | | | |
| Total | 1799 | 20000 | | | |

| Source | Df | SS | MS | F | P |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Err: teacher | 9 | 5000 | | | |
| Residuals | 9 | 5000 | 556 | | |
| Err: teacher:topic | 30 | 1500 | | | |
| topic | 3 | 462 | 154 | 4 | 0.018 |
| Residuals | 27 | 1038 | 38 | | |
| Err: teacher:method | 20 | 814 | | | |
| method | 2 | 326 | 163 | 6 | 0.01 |
| Residuals | 18 | 488 | 27 | | |
| Err: teacher:topic:method | 60 | 2686 | | | 0.013 |
| topic:method | 6 | 672 | 112 | 3 | 0.0 |
| Residuals | 54 | 2015 | 37 | What | |
| Err: within | 1680 | 10000 | | (roughly) do
 the different | |
| Residuals | 1680 | 10000 | 6 | MS/SS terms
 measure? | |
| Total | 1799 | 20000 | | | |

Factor A (between subjects): Program

Mixed design (factors within,between)

We have multiple within-subject factors (class and test), and potentially, >1 measurement per subject per cell.
Subjects, are in various between subject conditions.

- The complicated nesting structure of our variables means that different sources of variability will yield correlations.
- Some students do better than others, this will influence all their scores.
- Some students suffer under time pressure (this will influence al/ their midterm/final scores)
- Some students get complacent in one class, or another. This will influence all their scores in a class.
- Some students were hung over on some day. This will influence all their scores on that day.
- Our task is to factor out these different independent sources of variability, and then see if they can be explained by our factors.

Mixed design (factors within, between)

Mixed design (factors within,between)

11S :\%әдц шориеу

What's all this craziness?

 We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained variance.
Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error (student/(class*test)))

Each of these different sources of variability gets its own ANOVA:
Each one has a total sum of squares (e.g., SS[students], SS[student:class], etc.) and these get divided up into SS[factors] and SS[error]. The F value is computed within each ANOVA in the standard way
F = MS[factor]/MS[error]
With df[factor] and df[error]
So, after we understand what has been factored, how, and why, the rest is reasonably straight forward.

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error (student/(class*test)))

Mixed design (factors within, between)

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained masiancelent

	Df	Sum Sq	Mean Sq	value	$\operatorname{Pr}(>\mathrm{F})$
sex	1	48524	48524	2Q.409	$5.43 \mathrm{e}-85$
program	4	2143Q	5357	2.698	Q.Q442
sex:program	4	3712	928	Q. 467	. 7593
Residuals	40	79422	1986		

Factor A (between subjects): Program
Between subject variability.
Roughly:

- Average all data within a subject.
- Sum of squares of those subject averages is the total subject variability.
- Subject variability is divided into variability attributable to sex, program, sex:program interaction, and the residual error.
- Tests compare subject variability explained by these between-
Factor subject factors, and the remaining

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained warianceuent

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
sex	1	$4 Q 524$	$4 Q 524$	$2 Q .4 Q 9$	$5.43 \mathrm{e}-Q 5 * * *$
program	4	$2143 Q$	5357	2.698	$Q . Q 442 *$
sex:program	4	3712	928	$Q .467$	$Q .7593$
Residuals	$4 Q$	79422	1986		

Between subject variability.
How many degrees of freedom should there be in the between-subject variability, and how does it get divided?

- Number of subjects (here 5*5*2) -1: 49
These get divided into
- K-1 for each between subject factor ($2-1$, and $5-1$ here)
- (Ka-1)*(Kb-1) for the interaction (2-1)*(5-1)

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error (student/(class*test)))

Error: student:class:test					
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
class:test	2	6310	3155.1	13.579	8.37e-06
sex:class:test	2	387	193.5	0.833	0.439
program:class:test	8	1342	167.8	0.722	0.671
sex:program:class:test	8	1775	221.9	0.955	0.477
Residuals	80	18588	232.4		
Error: Within					
Df Sum Sq M	ean	Sq F va	ue $\operatorname{Pr}(>$		
Residuals 30020625		75			

Student:class variability (factoring out overall student performance, did they do better in one class or another on average) This can be explained by

- The class (e.g., everyone does bettern in 201a)
- Sex:Class interaction (e.g., men do better in 201b, women in 201a)
- The program:class interaction (e.g., psych students do better in 201a, rady in 201b)
- Program:Sex:class interaction (e.g., gender difference in 201a-201b performance differs by program)
Remaining error.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Error: student:class					
	Df	Sum Sq	Mean Sq F	value	$\operatorname{Pr}(>F)$
class	1	1933	1933.2	$9 . Q 72$	$Q . Q Q 448$
sex:class	1	81	$8 Q .6$	$Q .378$	$Q .542 Q 4$
program:class	4	417	$1 Q 4.3$	$Q .49 Q$	$Q .74329$
sex:program:class	4	$2 Q 8$	52.1	$Q .245$	$Q .91127$
Residuals	$4 Q$	8524	213.1		

Student:class variability. Roughly:

- Subtract subject effect from all data.
- Average result within each subject:class group.
- Compute SS of these averages.
- Assess whether this variability can be explained by class, or by class interacting with the between-subject factors.
- Compare explained and to unexplained variability.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Error: student:class					
	Df	Sum Sq Mean Sq F	value	$\operatorname{Pr}(>F)$	
class	1	1933	1933.2	$9 . Q 72$	$Q . Q Q 448$
sex:class	1	81	$8 Q .6$	$Q .378$	$Q .542 Q 4$
program:class	4	417	$1 Q 4.3$	$Q .49 Q$	$Q .74329$
sex:program:class	4	$2 Q 8$	52.1	$Q .245$	$Q .91127$
Residuals	$4 Q$	8524	213.1		

How many degrees of freedom should there be in the student:class variability, and how does it get divided?

- \# subjects * \# classes - \# subjects (because we factor out the subject effects): $50 * 2-50=50$ These get divided into
- 2-1 for class factor
- (2-1)*(2-1) for sex:class interaction (2-1)*(5-1) for program:class
(within ${ }_{\text {subilect) }}^{\text {lest }}$ interaction (2-1)*(2-1)*(5-1) for sex:program:class interaction Remainder into error (40)

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error (student/(class*test)))

Student:test variability
(factoring out overall student performance, did they do better on
midterms/finals/homework)
This can be explained by

- The test (e.g., everyone does better on hw)
- Sex:test interaction (e.g., men do well on midterm, women on finals)
- The program:tes interaction (e.g., psych students do better in hw, rady on finals)
- Program:Sex:test interaction (e.g., gender difference in midtermfinal performance differs by program)
Remaining error.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Student:test variability.
Roughly:

- Subtract subject effect from all data.
- Average result within each subject:test group.
- Compute variability of these averages.
- Assess whether this variability can be explained by test, or by testinteracting with the between-subject factors.
- Compare explained and to unexplained variability.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Df	Sum Sq	Mean Sq F value	Pr (>F)	
2	7826	3913	16.213	$1.23 e-Q 6$
2	321	$16 Q$	$Q .665$	$Q .517$
8	1253	157	$Q .649$	$Q .734$
8	2365	296	1.225	$Q .295$

Residuals
$8 Q 19306$
241

How many degrees of freedom should there be in the student:test variability, and how does it get divided?

- \# subjects * \# tests - \# subjects (because we factor out the subject effects):
$50 * 3-50=100$
These get divided into
- 3-1 for test factor
- (3-1)*(2-1) for sex:test interaction
- (3-1)*(5-1) for program:test

Factor interaction
 sex:program:test interaction Remainder into error (80)

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error(student/(class*test)))

Student:class:test variability
(factoring out overall student performance, class performance, and test performance, did they do better on particular combinations of 201a/201b and midterm/final/hw?)
This can be explained by

- Class:test (e.g., everyone does better on 201a-final)
- Sex:class:test interaction (e.g., men do well on 201a midterm, women on 201b final)
- The program:class:test interaction (e.g., psych students do better in 201ahw, rady on 201b-finals)
- Program:Sex:class:test (e.g., gender difference in 201a-midterm-201b-final differs by program)
Remaining error.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Error: student:class:test

Error: student:class:test					
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
class:test	2	$631 Q$	3155.1	13.579	$8.37 \mathrm{e}-\mathrm{Q6}$
sex:class:test	2	387	193.5	$Q .833$	$Q .439$
program:class:test	8	1342	167.8	$Q .722$	$Q .671$
sex:program:class:test	8	1775	221.9	$Q .955$	$Q .477$
Residuals	$8 Q$	18588	232.4		

Student:class:test variability.
Roughly:

- Subtract subject effect, subject:class interaction and subject:test interaction from all data.
- Average result within each subject:class:test group.
- Compute variability of these averages.
- Assess whether this variability can be explained by class:test, or by class:test interacting with the

subject Tost $C o m p a r e$ explained and to unexplained variability.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained

Error: student:class:test					
	Df	Sum	Sq	Mean Sq	F value

How many degrees of freedom should there be in the student:class:test variability, and how does it get divided?

- \# subjects * classes*\# tests - \# subjects - df. Student:class - df student:test
50*2*3-50-50-100 = $50 *(2-1) *(3-1)=100$
These get divided into
- (2-1)(3-1) for class:test
- (2-1)(3-1)(2-1) for sex:class:test

Factor ($2-1$) (3-1)(5-1) for
wititin
sublect)
program:class:test
${ }_{\text {Iest }}(2-1)(3-1)(2-1)(5-1)$ for sex:program:class:test Remainder into error (8o)

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error(student/(class*test)))

Within-Student:class:test variability (factoring out student:class:test average, what was the variability across problems?)

We have no explanatory variables for this, so it's just residuals.

Mixed design (factors within,between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained
variance

```
Error: Within
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3QQ 20625 68.75
```

Factor A (between subjects): Program

'Within' cell variability.
Roughly:

- Subtract subject effect, subject:class interaction, subject:test interaction, and subject:class:test interaction from all data.
- Compute variability of these data.
- This is just the extra measurement variability isolated.
- Since we have multiple measurements per subject-within-subject-cell, this is $\underset{\substack{\text { Factor } \text { c } \\ \text { (within }}}{\text { something we have, but don't }}$ $\underset{\substack{\text { subert } \\ \text { TTest }}}{\substack{\text { suse. } \\ \hline}}$

Total d.f.:
\# subjects * (\# test levels-1) * \# class levels-1) * (\# reps)

Mixed design (factors within,between)

summary (aov(score ~ sex*program*class*test + Error (student/(class*test)))

Factor A (between subjects): Program

Maybe helpful?

Each data point is nested inside a number of different 'scopes’ of variability.
Different students have different additive effects.
Different student:test combinations have different effects.
Different student:class combinations differ in effects.
Different student:class:test combinations differ in effects.

Some of each of these variance sources may be explained by various factors. That's what we aim to find out.
Ed Vul \| UCSD Psychology

Maybe helpful?

Total sum of squares, df.

Then, within each of these, the SS and df are split among explanatory factors and residuals.
Those can be compared via F tests.

Mixed design (factors within, between)

We partition all the variability into different independent sources. Then we partition those sources of variability into explained and unexplained variance Note: our strategy of pooling by averaging, or really any sum-of-squares strategy, won't work with unbalanced designs. As usual, unbalanced designs give us a credit-assignment problem, and in this case, we get 'leakage’ of variability across error strata. Unbalanced designs will thus give us nonsensical ANOVA tables. Beware! Let's avoid those, and ignore this complication until we start using likelihood-based methods later.

Factor A (between subjects): Program

Factor C
(within
(within
subject)
Test
Factor D
(within subject)
Class

a Sample trial

Fixate

Memory cue 200 ms

Fixate 500 ms

b Example of tasks

Spatiotopic task:

"Report the absolute location on the screen."

Retinotopic task:
"Report the location relative to your eyes."

Shafer-Skelton
Golomb
2017

load(url('http://vulstats.ucsd.edu/data/shaferskelton.rdata'))

Subject identifier:
Subject_Initials
Within subject conditions:
Task
Mouse/Touchscreen
saccade_condition
Response variable:
Error_Dist

Run appropriate aov()
Figure out why it didn't work right
Fix the data
Re-run appropriate aov()
Make a graph.

Correlations from sources of variability

- If we measure the same 'unit' multiple times, those measurements will be correlated. If we treat them as independent samples of the unit's population, we will be very wrong.
- Our task with mixed designs is
(a) identifying the 'units' being measured at different scales of the analysis.
(b) Factoring out different independent sources of variability arising from multiple measurements of the same 'unit'.
(c) Matching up variability of some units, to factors that might explain variability of those units, and then doing an Analysis of variance for each source of variability separately.

Repeated/Mixed ANOVAs

If we have between-subject factors b.A, b.B, b.C, ... and within subject factors w.A, w.B, w.C, ... we can analyze the data by specifying the model as follows to aov0

Y \sim b. $A * b . B * b . C * w . A * w . B * w . C+E r r o r(s u b j e c t /(w . A * w . B * w . C)) ~$

Aov0 will then split up the overall variability into different independent sources that apply at different scales.
(these are sometimes called 'error strata')
And will then do separate ANOVAs for each independent source of variability to figure out how much of that variability can be explained by relevant factors.

If we have unbalanced designs, this process goes awry

What can we not analyze in this way?

- Crossed random effects (subjects and items)
- Need linear mixed models and different least squares/likelihood calculation.
- Nested/hierarchical designs.
- Nested ANOVA to partition variance, or hierarchical models.
- Multivariate ANOVA (MANOVA)
- Relaxes assumptions about residual covariance structure, but loses some degrees of freedom.

