201ab Quantitative methods non-linear Transformations

Linearly transforming variables: w' = a*w + b

- Centering: X' = X-mean(X) makes the intercept mean: Y value at average X
- Z scoring: X' = (X-mean(X))/sd(X) also makes the slope mean: change in Y/sd change in X
- Pick real units of X that are of the same order of magnitude as the sd of X.
- Scale dependent variable (Y' = Y*k) to make the numerical values of slope and intercept be of a more manageable magnitude

There will be some tradeoffs, and there isn't one 'right' answer (depends on question!) but a bit of scale/unit optimization will help a lot.

Net worth

• Musk	\$281B
• Bezos	\$201B
• Gates	\$138B
• Buffett	\$104B
 Zuckerberg 	\$121B
 {Alice,Jim,Rob} Walton 	\$68B
 Marian Ilitch 	\$4.4B
 Oprah Winfrey 	\$2.6B
 Lebron James 	\$850M
 T-Swift 	\$370M
 Bottom 99% 	below \$12m
 Median 	\$125k

SCIENCE TIP: LOG SCALES ARE FOR QUITTERS WHO CAN'T FIND ENOUGH PAPER TO MAKE THEIR POINT PROPERLY.

ED VUL | UCSD Psychology

ED VUL | UCSD Psychology

The log transform

- Why use the log transform?
- For visualization: Some measures vary over orders of magnitude and are simply unmanageable on a linear scale.
- For your statistical model: usually those measures that vary over many orders of magnitude do not have *linear* relationships with other measures, and the kinds of non-linear relationships they have are well captured with a logarithm.

Transformations

- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (covered in logistic regression)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

Exponents and Logarithms

a to the
power of b
$$a^{b} = \underbrace{a^{*}a^{*}a^{*}...^{*}a}_{b-times}$$

What do you get if you multiply a times itself b times.

 $\log_a[a^b] = b$ Loa "base a"

How many times do you need to multiply a times itself to get this number

If you don't like standard notation: https://www.youtube.com/watch?v=sULa9Lc4pck

The log transform

5^6

6

15625

log(15625,5)

$$5^{6} = \underbrace{5*5*5*5*5}_{6-times} = 15625$$

$\log_5[15625] = 6$

- Common bases for logs
 - Log2 (useful for binary things, e.g., bits in memory)

The log transform

Logarithms

- Exponents
 - $a^{n}a^{m} = a^{n+m} \qquad \qquad \frac{a^{n}}{a^{m}} = a^{n-m} = \frac{1}{a^{m-n}}$ $\begin{pmatrix} a^{n} \end{pmatrix}^{m} = a^{nm} \qquad \qquad a^{0} = 1, \quad a \neq 0$ $(ab)^{n} = a^{n}b^{n} \qquad \qquad \begin{pmatrix} \frac{a}{b} \end{pmatrix}^{n} = \frac{a^{n}}{b^{n}}$ $a^{-n} = \frac{1}{a^{n}} \qquad \qquad \frac{1}{a^{-n}} = a^{n}$ $\begin{pmatrix} \frac{a}{b} \end{pmatrix}^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}} \qquad \qquad a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = \left(a^{n}\right)^{\frac{1}{m}}$

ED VUL | UCSD Psychology

Definition $y = \log_b x$ is equivalent to $x = b^y$

Example $\log_5 125 = 3$ because $5^3 = 125$

Logarithm Properties $\log_b b = 1$ $\log_b 1 = 0$ $\log_b b^x = x$ $b^{\log_b x} = x$ $\log_b (x^r) = r \log_b x$ $\log_b (xy) = \log_b x + \log_b y$ $\log_b (\frac{x}{y}) = \log_b x - \log_b y$ $\log_b (\frac{x}{y}) = \log_b (x) / \log_b (a)$

Log-math Practice

- 1) $\log_{10}(x) = 4^{*}\log_{10}(y) + 2$. What is y=?
- 2) $\log_{10}(x) = 4^*y + 2$. What is $\log_2(x) = ?$
- 3) $\log_{10}(y) = 0.3*x + 3$ how does y change when x increases by +2? by *2?
- 4) $\log_{10}(y) = 0.3 * \log_{10}(x) + 3$ how does y change when x increases by +2? by *2?
- 5) $y = 0.3*\log_{10}(x) + 3$ how does y change when x increases by +2? by *2?

Reasoning about regressions with log transforms requires thinking about exponents and logarithms. If you are rusty on exponents and logarithms, please refresh. Khan academy: https://www.khanacademy.org/math/algebra-home/alg-exp-and-log Paul's Algebra notes: https://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx Paul's Online Notes cheatsheet: https://tutorial.math.lamar.edu/getfile.aspx?file=B,30,N

ED VUL | UCSD Psychology

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

The log transform

- Why use the log transform?
- Some measures vary over orders of magnitude and are simply unmanageable on a linear scale
- Some measures are not sums of their predictors, but products. (often yielding measures varying over orders of magnitude)
 - A log transform makes them additive log(x*y) = log(x) + log(y)

log-transforming response variable

• Instead of:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$$

• We do:

$$\log_{10}(Y_{i}) = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \varepsilon_{i}$$

• Therefore: $Y_i = 10^{\left[\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i\right]}$

$$Y_i = 10^{\beta_0} 10^{\beta_1 X_{1i}} 10^{\beta_2 X_{2i}} 10^{\varepsilon_i}$$

• So what does a slope of $B_1 = 2$ mean?

ED VUL | UCSD Psychology

$\begin{aligned} & \log_{10}(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i \\ & \log_{10}(Y_i) = Y_0 + \beta_0 Y_{1i} + \beta_2 X_{2i} + \varepsilon_i \\ & Y_i = 10^{\left[\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i\right]} \\ & Y_i = 10^{\beta_0} 10^{\beta_1 X_{1i}} 10^{\beta_2 X_{2i}} 10^{\varepsilon_i} \end{aligned}$

- So what does a slope of $B_1 = 2$ mean?
 - For every unit increase of X1 (all else equal) the base-10 log of Y goes up by 2.
 - For every unit increase of X1 (all else equal) Y goes up by a factor of10^2=100!

• Income vs height

- Log10(Income) vs height
- What does...
 0.104162 mean?
 -3.29 mean?

<pre>summary(lm(log10(income)~height))</pre>	
Residuals:	

Min	1Q	Median	ЗQ	Max
-0.404473	<u>-0.137240</u>	0.007002	0.129492	0.507423

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -3.290729 0.294412 -11.18 <2e-16 *** height 0.104162 0.004196 24.82 <2e-16 *** ---Residual standard error: 0.2188 on 98 degrees of freedom

Multiple R-squared: 0.8628, Adjusted R-squared: 0.8614 F-statistic: 616.3 on 1 and 98 DF, p-value: < 2.2e-16

- Log10(Income) vs height
- What does 0.104162 mean?
 - For every inch taller, log10(income) goes up by 0.1
 - For every inch taller, income goes up by a factor of 10^0.1 (1.26).
 - For every inch taller, you will make 26% more
- What does -3.29 mean?
 - At height=0: log10(income)=-3.29 income=10^-3.29 income=\$0.0005

<pre>summary(lm(l</pre>	<pre>summary(lm(log10(income)~height))</pre>						
Coefficients	:						
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	-3.290729	0.294412	-11.18	<2e-16	***		
height	0.104162	0.004196	24.82	<2e-16	***		

Log transform desiderata

- Which log?
- When to use log transform?
- When not to use it?
- What to do about zeros?
- Confidence intervals with non-linear transforms...

Natural log or log base 10?

- Log base 10 is handy because the predicted y values are easy to interpret.
- Log base e (natural log) is handy because the coefficients are easy to interpret due to small number approximation (a coefficient of 0.05 means a 5% increase per unit x)

When to log transform response variables?

- When effects of predictors and noise are proportional.
 - As arise from various growth processes...
- This often arises when...
 - ...response variable is bounded at (and is close to) zero Ratios, speed, income, time, height, distance, contrast, sensitivity, etc...
 - ...variance scales with mean (Weber noise)
 Estimation of physical properties, spike counts, etc.
- These often co-occur: proportional effects yield proportional errors, variance scaling with mean, bounds at zero...

When not to log transform response variables

- When responses can be negative!
 Linear!
- When predictors seem to be additive.
 Linear!
- When you have an upper bound (e.g. proportions) (consider logit, later)

What to do about zeros?

Log(o) is undefined... so if you have zeros, you can't log.

- Option 1: decide that zeros are real, and it would be wrong to coerce them to behave... try something else (maybe Poisson regression)
- Option 2: change zeros to something small (smaller than the smallest non-zero unit), to get them to behave (e.g., population=o? Call that population=1)
- Option 3: change everything by adding a small offset (e.g., pop' = population + 1)

Have a principled reason for choosing small unit, and hope that it doesn't have much of an effect.

Confidence intervals for linearized lm

- Let's say log10(y)~B0+B1*x
 Estimates: B1 = 1, se{B1} = 0.2
- What is the 95% interval on the change in y per unit increase of x?

Confidence intervals for linearized lm

- Let's say log10(y)~B0+B1*x
 Estimates: B1 = 1, se{B1} = 0.2
- What is the 95% interval on the change in y per unit increase of x?
 - 95% CI on B1 = 0.6 to 1.4
 (this is change in log10(y) per unit increase of x)
 - 95% CI on proportional change to B1 per unit increase of x:
 10^0.6 to 10^1.4 -> 4 to 25
- Basically: transform *after* obtaining a confidence interval – meaningless to transform before.

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

Transforming predictor variables...

Transforming predictor variables...

When to log transform *predictor* variables?

- When proportional changes in x yield constant changes in y.
 - E.g., income/wealth
- When x is very positively skewed
- When x is bounded at o and is close to it
- These tend to co-occur.

Log-transforming predictor variable $Y_i = \beta_0 + \beta_1 \log_{10}(X_{1i}) + \varepsilon_i$

- So what does a slope of $B_1 = 2$ mean?
 - For every unit increase of log10(X1) (all else equal),
 Y increments by 2.
 - For every increase of X1 by a factor of 10 (all else equal)
 Y increments by 2.

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

Log transforming response and predictor

- When proportional changes in x yield proportional changes in y.
 - E.g., doubling x causes quadrupling in y
 - a power law relationship y ~ b*x^a log(y) ~ a*log(x)+log(b)
 - Interpretation of slope / intercept:
 - Slope: exponent of power law relationship
 1: y proportional to x. 2: y proportional to x^2, etc.
 - Intercept: proportionality constant
 y = intercept*(x^slope)

ED VUL | UCSD Psychology

Power Law: Kleiber's law

metabolic.rate ~ mass $^{(3/4)}$ + c

Fig. 1. Log. metabol. rate/log body weight

ED VUL | UCSD Psychology

Log-linearized regression.

For each of these: how would you set up the regression, what would you expect the coefficients to be, what do they mean, and what do you expect the R^2 to be?

- 1) We are predicting number of murders as a function of city/town population size.
- 2) We are predicting theft rate (crimes per 100,000) as a function of the church density (churches per 100,000).
- 3) We are predicting time to solve a math problem as a function of GRE score.
- 4) We are predicting human weight as a function of human height.
- 5) We are predicting iq as a function of cranial volume.
Log-linearized regression.

For each of these: how would you set up the regression, what would you expect the coefficients to be, what do they mean, and what do you expect the R^2 to be?

1) We are predicting number of murders as a function of city/town population size.

Murders vs City Population

ED VUL | UCSD Psychology

Murders vs City Population

Log(# Murders) vs log(City Population)

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

Log transform response variable: Log(y) ~ bo + b1x1 + ...

- Because...
 - ...predictors make proportional changes to y
 - …y has a large positive skew
 - ...y is bounded at (and close to) o
 - ...y covers many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: exponential relationship slopes now mean: per unit increase in x...
 - $... \log_{10}(y)$ goes up by a constant B1
 - ...y goes up by a factor of 10^B1 (exp(B1) if ln)

Log transform predictor variable: y ~ bo + b1*log(x1) + ...

- Because...
 - ...response y is sensitive to proportional changes of x
 - ...x has a large positive skew
 - ...x is bounded at (and close to) o
 - ...x covers many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: logarithmic relationship slopes: constant B1 increment to Y for every...
 - unit increment in $log_{10}(x)$, or...
 - x10 multiplication (proportional change) of x

Log transform response and predictor: log(y) ~ bo + b1*log(x1) + ...

- Because...
 - ...proportional changes to x yield proportional changes to y
 - ...x and y have positive skew
 - ...x and y are bounded at (and close to) o
 - ...x and y cover many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: power law relationship log₁₀(y) = (intercept) + (slope)*log₁₀(x) y=10^(intercept) * x^slope

- Log transform response variable: $Log(y) \sim b0 + b1^*X1 + ...$ Adding to X -> Multiplying Y
- Log transform predictor variable: $y \sim b0 + b1*log(x1) + ...$ Multiplying X -> Adding to Y
- Log transform response and predictor:
 log(y) ~ b0 + b1*log(x1) + ... Multiplying X -> Multiplying Y
- Logit transform response variable: logit(y) ~ bo + b1*x1 + ...
- Logit transform predictor variable:
 y ~ bo + b1*logit(x1) + ...
- Logit transform response and predictor: logit(y) ~ bo + b1*logit(x1) + ...

ED VUL | UCSD Psychology

Log-linearized regression.

Interpret the coefficients/predictions for these regressions

- 1) life.expectancy ~ log10(GDP/capita)*9+35
- 2) log10(city.GDP/capita) ~ -0.4*corruption.index + 0.5*log10(population/mi^2) + 2.5 [corruption.index = {-5 to 5} survey corruption prevalence estimate]
- 3) log₁₀(voter.turnout) ~ 0.5*log₁₀(population) + 0.8*pres+ 0.2*sen + 0.4*gov - 1 [pres = {1,0} whether it is a presidential election] [sen = {1,0} whether it is a senate election] [gov = {1,0} whether it is a state governor election]
- 4) $log10(RT) \sim accuracy age{y}$ [accuracy = {1,0}]
- 5) adult.IQ ~ -5*weeks.premature + 8*breast.fed + 4*log₁₀(mean.daily.calories) + 93 [breast.fed = {1,0} whether was breast fed as infant]

Transformations

- Linear transformations: don't change the regression, but make the coefficients more user-friendly.
- Log transformations: Linearize variables to make a linear regression behave like an exponential, logarithmic, or power law relationship. (proportional changes matter for logs)
- Variable-combination transformations: help extract more useful variables from ones that are perhaps correlated, or susceptible to extraneous fluctuations.
- In practice,
 - all of these can (and should) be used in combination, but not in a fishing expedition: in a thoughtful theoretical manner.
 - Check scatter-plots and histograms, to look for desirable transformations.

ED VUL | UCSD Psychology

Wage gap data (2013 BLS)

bls <- read_csv('http://vulstats.ucsd.edu/data/BLS.2016.csv') For each *Occupation* it shows the occupation *Category*, how many people have this occupation *.n (in 1000s), median weekly earnings *.earn, and std. err of earnings *.earn.se. for everyone (all.*), females (f.*), and males (m.*).

Characterize as best as you can the relationship between male and female median weekly wages.

Consider:

- If you were to come up with just one number, of the form
 "women make x% of what men make", how would you do it?
- What kinds of relationships can you capture regressing female~male wages with different transforms? Which formulation makes more sense a priori?
- What does the slope mean?
- What does the intercept mean? Should it be free to vary? What happens if you fix it?

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) ?

Why do a logit transform?

- If variable is bounded between o and 1... or between any two values, and then rescaled to [o 1]; Most often: proportions (accuracy, etc.)
 - A linear model will not work well doesn't respect bounds.
 - It usually gets progressively 'harder' to get closer and closer to the bound

0.98 to 0.99 is a bigger 'change' than 0.58 to 0.59 e.g., improving from 50th to 55th percentile is relatively easy, from 90th to 95th is much harder (in anything!)

- Logit (or, log-odds) transform fixes both problems.
 - Transforms variables from [o 1] to [-infinity +infinity] so now a linear model works fine.
 - Log-odds differences for identical proportion increments are bigger near the bounds:

 $(0.50 \rightarrow 0.51)$: +0.04 log odds; $(0.90 \rightarrow 0.91)$: +0.12 log odds ED VUL | UCSD Psychology

Odds

- P : proportion or probability of outcome
 - E.g. P(male), P(correct), etc.
- P/(1-P) : Odds of outcome
 - Probability of getting outcome divided by probability of not getting outcome
 - To go back to probability from odds: P = Odds / (1+Odds)Odds = 4; P = 0.8Odds = 1/5; P = 1/6

Log Odds

- Odds is on scale [o Infinity] a ratio
- Log transforming linearizes (to scale [-inf inf])
- This is usually done with natural (base e) log. Let's keep it that way.

Probability, Odds, Log-odds

- P : proportion or probability of outcome
 - Possible values: [0 1]
- P/(1-P) : Odds of outcome
 - Possible values: [o +infinity]
 - To go back to probability from odds: P = Odds / (1+Odds)
- Log[P/(1-p)] : Log-odds of outcome
 - Possible values: [-infinity +infinity]
 - To go back to odds from log-odds: Odds = exp[log.odds]

Logit (log odds) transform

• From [0 1] -> [-inf inf]

$$logit(p) = log\left(\frac{p}{1-p}\right) = log(p) - log(1-p).$$

ED VUL | UCSD Psychology

Logit transforms

Logit transform of response variables logit(y)~...

 Useful when modeling proportions and changes in proportions – after logit transform you can use linear model to describe changes in logit(p)

This is the basis of logistic regression (later)

Logit transform of predictor variables y~logit(x)...

- (sometimes) useful when a proportion is a predictor
 - not very often done:
 - Not necessary since in linear model we don't much care about bounds on x.
 - Sometimes the non-linear difficulty of being closer to bounds makes this transform better account for the data.

Logit transform of response variable

$$\log\left(\frac{y}{1-y}\right) = B_0 + B_1 x_1 + B_2 x_2$$

• What do the coefficients mean?

Logit transform of response variable

$$log\left(\frac{y}{1-y}\right) = B_0 + B_1 x_1 + B_2 x_2$$

- What do the coefficients mean?
 - Interpretation via log odds:
 - B1 means: per unit of x1, log odds increment by B1
 - Bo means: log odds of outcome when all x=o

Logit transform of response variable

$$log\left(\frac{y}{1-y}\right) = B_0 + B_1 x_1 + B_2 x_2$$

- What do the coefficients mean?
 - Interpretation via log odds:
 - B1 means: per unit of x1, log odds increment by B1
 - Bo means: log odds of outcome when all x=o

$$\left(\frac{y}{1-y}\right) = \exp(B_0) * \exp(B_1) \wedge x_1 * \exp(B_2) \wedge x_2$$

- Interpretation via odds:
 - B1 means: per unit increment of x1, odds **multiply** by exp(B1)
 - Bo means: when all x=o odds of outcome are exp(Bo)

ED VUL | UCSD Psychology

 \mathbf{N}

1

Y is some proportion (e.g., GRE percentile) and x is some predictor (e.g., study time)

Y is some proportion (e.g., GRE percentile) and x is some predictor (e.g., study time)

х

logit = function(p){log(p/(1-p))}
plot(logit(y),x)

ED VUL | UCSD Psychology

Logistic transform: undoing the logit

- Logit(p)=x p in [0 1]
 -> x in [-inf inf]
- Logistic(x)=p x in [-inf inf] -> p in [0 1]
- Logistic(Logit(p)) = p
- Logit(Logistic(x)) = x

Logistic transform: undoing the logit

- Logit(y)~B1*X+Bo
- Slope: increment 1 unit on logistic (log[odds]) scale

Logit regression in probability space

Pred.log.odds = x*B1+B0
Pred.probability = logistic(Pred.log.odds)

"Smoothing"

If y = o or 1, logit(y) is undefined: y/(1-y) = o or infinity; so log(y/(1-y)) is undefined/infinite.

What to do in this case?

- Option 1: Give up on logit.
 Not ideal if other reasons favor logit.
- Option 2: Smooth by adding constant to p and 1-p:
 y' = (y+e)/(1+2e)
 - How to choose e?
 - In case of empirically calculated proportions, easy to postulate two unobserved points: (one success and one failure). This brings all proportions a bit closer to 0.5 for accuracy: y = correct/total. y' = (correct+1)/(total+2)
 - Otherwise, make e small (e.g., smaller than smallest y or (1-y)).

Working with logit regression

When: y is a proportion (or is bounded and scaled)

Why: because we assume that changes in log-odds are linear with our predictors.

not unreasonable, may not be exactly right, but the alternative (that proportion is linear in our predictors) is definitely wrong

How:

$logit(y) \sim Bo + B1x1 + B2x2 + ... + error$

Alternatively (but not practically in lm()):

y ~ logistic(Bo + B1x1 + B2x2 + ... + error)

Cautions: Coefficients are tricky. Per unit increment in x...

- Log-odds(y) [logit(y)] increments by a constant B1
- Odds(y) multiplies by a factor of exp(B1)
- y has no constant change (because proportional odds changes have different impacts on y depending on its initial value)

ED VUL | UCSD Psychology

- Logit transform predictor variable:
 y ~ bo + b1*logit(x1) + ...
- Because...
 - ...x is a proportion or is bounded (and scaled to [0 1] range)
 - ...y should change linearly with log-odds of x.
- ...rarely used!

- Logit transform response and predictor: logit(y) ~ bo + b1*logit(x1) + ...
- Because...

Log-odds of x and log-odds of y are linearly related...

• ...rarely used!

Practice

- Our regression predicts that logit(GRE percentile) will be
 1.6, what is the GRE percentile?
- In a regression predicting logit(proportion correct) from IQ, we find a slope of 0.5, and an intercept of -50....
- 2) What will be the proportion correct for someone with an IQ of 80?
- 3) How will accuracy change when increasing IQ by 10 points?
- 4) What will be the difference in accuracy between those with an IQ of 100 and those with an IQ of 110?
- 5) What will be the difference in accuracy between those with an IQ of 140, and those with an IQ of 150?
- 6) Is the test that we are using here useful for assessing IQ? In what range?

ED VUL | UCSD Psychology

- Log transform response variable:
 Log(y) ~ bo + b1x1 + ...
- Log transform predictor variable:
 y ~ bo + b1*log(x1) + ...
- Log transform response and predictor:
 log(y) ~ bo + b1*log(x1) + ...
- These are sometimes called "linearized" regression, because we can capture a non-linear relationship using the linear model by using a non-linear transformation.

- Logit transform response variable: logit(y) ~ bo + b1*x1 + ...
- Logit transform predictor variable:
 y ~ bo + b1*logit(x1) + ...
- Logit transform response and predictor: logit(y) ~ bo + b1*logit(x1) + ...

Transformations

- Linear transformations
 - Predicting variables
 - Response variables
- Log transform
 - Logarithms
 - Log transforming response variables
 - Log transforming predicting variables
 - Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
 - Logit and logistic transformations (inverses of each other)
 - Logit(y) \sim x
 - Y~logit(x) or logit(y)~logit(x)?