201ab Quantitative methods non-linear Transformations

Linearly transforming variables: $\mathbf{w}^{\mathbf{\prime}}=\mathbf{a *} \mathbf{w}+\mathbf{b}$

- Centering: $\mathrm{X}^{\prime}=\mathrm{X}$-mean (X) makes the intercept mean: Y value at average X
- Z scoring: $\mathrm{X}^{\prime}=(\mathrm{X}$-mean $(\mathrm{X})) / \mathrm{sd}(\mathrm{X})$ also makes the slope mean: change in $\mathrm{Y} /$ sd change in X
- Pick real units of X that are of the same order of magnitude as the sd of X.
- Scale dependent variable ($\mathrm{Y}^{\prime}=\mathrm{Y}^{*} \mathrm{k}$) to make the numerical values of slope and intercept be of a more manageable magnitude
There will be some tradeoffs, and there isn't one 'right' answer (depends on question!) but a bit of scale/unit optimization will help a lot.

Net worth

- Musk
- Bezos
- Gates
- Buffett
- Zuckerberg
- \{Alice,Jim,Rob\} Walton
- Marian Ilitch
- Oprah Winfrey
- Lebron James
- T-Swift
- Bottom 99\%
- Median
\$281B
\$201B
\$138B
\$104B
\$121B
\$68B
\$4.4B
\$2.6B
$\$ 850 \mathrm{M}$
\$370M
below $\$ 12 \mathrm{~m}$
\$125k

MONEY語

Dlasaters
\qquad

츨
$=$ Megaprocects
$\square=$
-

Ed Vul \| UCSD Psychology

The log transform

- Why use the log transform?
- For visualization: Some measures vary over orders of magnitude and are simply unmanageable on a linear scale.
- For your statistical model: usually those measures that vary over many orders of magnitude do not have linear relationships with other measures, and the kinds of non-linear relationships they have are well captured with a logarithm.

Transformations

- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (covered in logistic regression)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

Exponents and Logarithms

What do you get if you multiply a times itself b times.

How many times do you need to multiply a times itself to get this number

If you don't like standard notation: https://www.youtube.com/watch?v=sULa9Lc4pck

The log transform

$$
5^{6}=\underbrace{5 * 5 * 5 * 5 * 5 * 5}_{6 \text {-times }}=15625
$$

6

$\log _{5}[15625]=6$

- Common bases for logs
- Log2 (useful for binary things, e.g., bits in memory)
$\left.\begin{array}{ccccccccccc}2^{\wedge} C(& 1, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & 9, & 10\end{array}\right)$
- Log base e ('natural log') e $=2.718282$. (arises from continuous compounding)
$\exp (1)^{\wedge} c(1,2,3,4,5$, 6
2.77 .420 .154 .6148 .4403 .41096 .62981 .08103 .122026 .5
- Log base 10 (very intuitive - my preterred base!)
$\left.\begin{array}{llllllllll}10^{\wedge} C(1, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & 9, & 10\end{array}\right)$

Ed Vul \| UCSD Psychology

The log transform

- Exponents
- Logarithms

Definition

$$
\begin{array}{ll}
a^{n} a^{m}=a^{n+m} & \frac{a^{n}}{a^{m}}=a^{n-m}=\frac{1}{a^{m-n}} \\
\left(a^{n}\right)^{m}=a^{n m} & a^{0}=1, a \neq 0 \\
(a b)^{n}=a^{n} b^{n} & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
a^{-n}=\frac{1}{a^{n}} & \frac{1}{a^{-n}}=a^{n} \\
\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}} & a^{\frac{n}{m}}=\left(a^{\frac{1}{m}}\right)^{n}=\left(a^{n}\right)^{\frac{1}{m}}
\end{array}
$$

$y=\log _{b} x$ is equivalent to $x=b^{y}$

Example

$\log _{5} 125=3$ because $5^{3}=125$

Logarithm Properties

$$
\log _{b} b=1 \quad \log _{b} 1=0
$$

$$
\log _{b} b^{x}=x \quad b^{\log _{b} x}=x
$$

$$
\log _{b}\left(x^{r}\right)=r \log _{b} x
$$

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y
$$

$$
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y
$$

$$
\log _{a}(x)=\log _{b}(x) / \log _{b}(a)
$$

Log-math Practice

1) $\log _{10}(x)=4^{\star} \log _{10}(y)+2$. What is $y=$?
2) $\log _{10}(x)=4^{*} y+2$. What is $\log _{2}(x)=$?
3) $\log _{10}(y)=0.3^{*} x+3$
how does y change when x increases by +2 ? by ${ }^{*} 2$?
4) $\log _{10}(y)=0.3^{*} \log _{10}(x)+3$
how does y change when x increases by +2 ? by $* 2$?
5) $y=0.3^{*} \log _{10}(x)+3$
how does y change when x increases by +2 ? by $* 2$?

Reasoning about regressions with log transforms requires thinking about exponents and logarithms. If you are rusty on exponents and logarithms, please refresh.
Khan academy: https://www.khanacademy.org/math/algebra-home/alg-exp-and-log
Paul's Algebra notes: https://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx
Paul's Online Notes cheatsheet: https://tutorial.math.lamar.edu/getfile.aspx?file=B,30,N

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

The log transform

- Why use the log transform?
- Some measures vary over orders of magnitude and are simply unmanageable on a linear scale
- Some measures are not sums of their predictors, but products. (often yielding measures varying over orders of magnitude)
- A log transform makes them additive

$$
\log \left(x^{\star} y\right)=\log (x)+\log (y)
$$

log-transforming response variable

- Instead of:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}
$$

- We do:

$$
\log _{10}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}
$$

- Therefore:

$$
\begin{array}{r}
Y_{i}=10^{\left[\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}\right]} \\
Y_{i}=10^{\beta_{0}} 10^{\beta_{1} X_{1 i}} 10^{\beta_{2} X_{2 i}} 10^{\varepsilon_{i}}
\end{array}
$$

- So what does a slope of $B_{1}=2$ mean?

Ed Vul | UCSD Psychology

log-transforming response variable

$$
\begin{array}{r}
\log _{10}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} \\
Y_{i}=10^{\left[\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}\right]} \\
Y_{i}=10^{\beta_{0}} 10^{\beta_{1} X_{1 i}} 10^{\beta_{2} X_{2 i}} 10^{\varepsilon_{i}}
\end{array}
$$

- Therefore:
- So what does a slope of $B_{1}=2$ mean?
- For every unit increase of X_{1} (all else equal) the base-10 log of Y goes up by 2.
- For every unit increase of X_{1} (all else equal) Y goes up by a factor of10^${ }^{\boldsymbol{2}}=\mathbf{1 0 0}$!

Ed Vul \| UCSD Psychology

Log regression example

- Income vs height

Log regression example

- Income vs height

Ed Vul \| UCSD Psychology

Log regression example

- Log10(Income) vs height
- What does...
0.104162 mean?
-3.29 mean?

Log regression example

- Log10(Income) vs height
- What does...
0.104162 mean?
-3.29 mean?

Log regression example

- Log10(Income) vs height
- What does 0.104162 mean?
- For every inch taller, log1o(income) goes up by 0.1
- For every inch taller, income goes up by a factor of $10^{\wedge} 0.1$ (1.26).
- For every inch taller, you will make 26% more
- What does -3.29 mean?
- At height=0:

$$
\log 10(\text { income })=-3.29
$$

$$
\text { income }=10^{\wedge}-3.29
$$

income=\$0.0005

Log transform desiderata

- Which log?
- When to use log transform?
- When not to use it?
- What to do about zeros?
- Confidence intervals with non-linear transforms...

Natural log or log base 10?

- Log base 10 is handy because the predicted y values are easy to interpret.
- Log base e (natural log) is handy because the coefficients are easy to interpret due to small number approximation (a coefficient of 0.05 means a 5% increase per unit x)

When to log transform response variables?

- When effects of predictors and noise are proportional.
- As arise from various growth processes...
- This often arises when...
- ...response variable is bounded at (and is close to) zero Ratios, speed, income, time, height, distance, contrast, sensitivity, etc...
- ...variance scales with mean (Weber noise) Estimation of physical properties, spike counts, etc.
- These often co-occur: proportional effects yield proportional errors, variance scaling with mean, bounds at zero...

When not to log transform response variables

- When responses can be negative!
- Linear!
- When predictors seem to be additive.
- Linear!
- When you have an upper bound (e.g. proportions) (consider logit, later)

What to do about zeros?

$\log (\mathrm{o})$ is undefined... so if you have zeros, you can't log.

- Option 1: decide that zeros are real, and it would be wrong to coerce them to behave... try something else (maybe Poisson regression)
- Option 2: change zeros to something small (smaller than the smallest non-zero unit), to get them to behave (e.g., population=o? Call that population=1)
- Option 3: change everything by adding a small offset (e.g., pop' = population +1)

Have a principled reason for choosing small unit, and hope that it doesn't have much of an effect.

Confidence intervals for linearized Im

- Let's say $\log 10(y) \sim B o+B 1^{*} x$

Estimates: $\mathrm{B} 1=1, \mathrm{se}\{\mathrm{B} 1\}=0.2$

- What is the 95% interval on the change in y per unit increase of x ?

Confidence intervals for linearized Im

- Let's say $\log 10(y) \sim B 0+B 1^{*} x$

Estimates: $\mathrm{B} 1=1, \mathrm{se}\{\mathrm{B} 1\}=0.2$

- What is the 95% interval on the change in y per unit increase of x ?
$-95 \% \mathrm{Cl}$ on $\mathrm{B} 1=0.6$ to 1.4
(this is change in log10(y) per unit increase of x)
$-95 \% \mathrm{Cl}$ on proportional change to B1 per unit increase of x : $10^{\wedge} 0.6$ to $10^{\wedge} 1.4 \quad->\quad 4$ to 25
- Basically: transform afterobtaining a confidence interval - meaningless to transform before.

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

Transforming predictor variables...

Transforming predictor variables...

When to log transform predictor variables?

- When proportional changes in x yield constant changes in y .
- E.g., income/wealth
- When x is very positively skewed
- When x is bounded at o and is close to it
- These tend to co-occur.

Log-transforming predictor variable

$$
Y_{i}=\beta_{0}+\beta_{1} \log _{10}\left(X_{1 i}\right)+\varepsilon_{i}
$$

- So what does a slope of $B_{1}=2$ mean?
- For every unit increase of $\log 10\left(X_{1}\right)$ (all else equal), Y increments by 2.
- For every increase of X_{1} by a factor of 10 (all else equal) Y increments by 2.

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

Log transforming response and predictor

- When proportional changes in x yield proportional changes in y.
- E.g., doubling x causes quadrupling in y
- a power law relationship
$y \sim b^{*} x^{\wedge} a$
$\log (y) \sim a * \log (x)+\log (b)$
- Interpretation of slope / intercept:
- Slope: exponent of power law relationship 1: y proportional to x. 2: y proportional to $x^{\wedge} 2$, etc.
- Intercept: proportionality constant $y=$ intercept $^{*}\left(x^{\wedge}\right.$ slope)

Power Law: Kleiber's Law
 metabolic.rate $\sim \operatorname{mass}^{\wedge}(3 / 4)+c$

Fig. 1. Log. metabol. rate/log body weight
Ed Vul \| UCSD Psycıuusy

Log-linearized regression.

For each of these: how would you set up the regression, what would you expect the coefficients to be, what do they mean, and what do you expect the $\mathrm{R}^{\wedge} 2$ to be?

1) We are predicting number of murders as a function of city/town population size.
2) We are predicting theft rate (crimes per 100,000) as a function of the church density (churches per 100,000).
3) We are predicting time to solve a math problem as a function of GRE score.
4) We are predicting human weight as a function of human height.
5) We are predicting iq as a function of cranial volume.

Log-linearized regression.

For each of these: how would you set up the regression, what would you expect the coefficients to be, what do they mean, and what do you expect the $R^{\wedge} 2$ to be?

1) We are predicting number of murders as a function of city/town population size.

\# Murders vs City Population

Ed Vul \| UCSD Psychology

\# Murders vs City Population

Log(\# Murders) vs log(City Population)

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

Nonlinear Transformations

Log transform response variable:

$$
\log (y) \sim b o+b 1 \times 1+\ldots
$$

- Because...
- ...predictors make proportional changes to y
- ...y has a large positive skew
- ...y is bounded at (and close to) o
- ...y covers many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: exponential relationship slopes now mean: per unit increase in x...
- ... $\log _{10}(y)$ goes up by a constant B1
- ...y goes up by a factor of $10^{\wedge} \mathrm{B}_{1}\left(\exp \left(\mathrm{~B}_{1}\right)\right.$ if $\left.\ln \right)$

Nonlinear Transformations

Log transform predictor variable:

$$
y \sim b o+b 1 * \log (x 1)+\ldots
$$

- Because...
- ...response y is sensitive to proportional changes of x
- ...x has a large positive skew
- ...x is bounded at (and close to) o
- ...x covers many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: logarithmic relationship slopes: constant B1 increment to Y for every...
- unit increment in $\log _{10}(x)$, or...
- x10 multiplication (proportional change) of x

Nonlinear Transformations

Log transform response and predictor:

$$
\log (y) \sim \text { bo }+b_{1} * \log \left(x_{1}\right)+\ldots
$$

- Because...
- ...proportional changes to x yield proportional changes to y
- ...x and y have positive skew
- ...x and y are bounded at (and close to) o
- ...x and y cover many orders of magnitude
- Suggestions: Use base 10 log.
- Consequences: power law relationship $\log _{10}(\mathrm{y})=($ intercept $)+($ slope $) * \log _{10}(\mathrm{x})$ $y=10^{\wedge}$ (intercept) * x^{\wedge} slope

Nonlinear Transformations

- Log transform response variable: $\log (\mathrm{y}) \sim \mathrm{bo}+\mathrm{b}_{1}{ }^{*} \mathrm{x} 1+\ldots \quad$ Adding to $\mathrm{x} \rightarrow \mathrm{C}$ Multiplying y
- Log transform predictor variable: $y \sim b o+b 1 * \log \left(x_{1}\right)+\ldots \quad$ Multiplying $x \rightarrow$ Adding to y
- Log transform response and predictor: $\log (\mathrm{y}) \sim \mathrm{bo}^{2}+\mathrm{b}_{1}{ }^{*} \log \left(\mathrm{x}_{1}\right)+\ldots$ Multiplying $\mathrm{x} \rightarrow$ Multiplying Y
- Logit transform response variable:
$\operatorname{logit}(\mathrm{y}) \sim$ bo + b1*x1 + ...
- Logit transform predictor variable: y ~ bo + b1*logit(x1) + ...
- Logit transform response and predictor: logit(y) ~bo + b1*logit(x1) + ...

Log-linearized regression.

Interpret the coefficients/predictions for these regressions

1) life.expectancy $\sim \log 10(G D P /$ capita)* $9+35$
2) $\log 10\left(\right.$ city.GDP/capita) $\sim-0.4^{*}$ corruption.index + $0.5{ }^{*} \log _{10}\left(\right.$ population $\left./ \mathrm{mi}^{\wedge} 2\right)+2.5$
[corruption.index $=\{-5$ to 5$\}$ survey corruption prevalence estimate]
3) $\log _{10}$ (voter.turnout) $\sim 0.5^{*} \log _{10}$ (population) $+0.8^{*}$ pres+ 0.2^{*} sen $+0.4^{*}$ gov- 1
[pres $=\{1,0\}$ whether it is a presidential election] [sen $=\{1,0\}$ whether it is a senate election]
[gov $=\{1,0\}$ whether it is a state governor election]
4) $\log 10(R T) \sim$ accuracy - age $\{y\}$
[accuracy $=\{1,0\}$]
5) adult.IQ ~ -5*weeks.premature + 8*breast.fed + $4^{*} \log _{10}$ (mean.daily.calories) +93
[breast.fed $=\{1,0\}$ whether was breast fed as infant]

Transformations

- Linear transformations: don't change the regression, but make the coefficients more user-friendly.
- Log transformations: Linearize variables to make a linear regression behave like an exponential, logarithmic, or power law relationship. (proportional changes matter for logs)
- Variable-combination transformations: help extract more useful variables from ones that are perhaps correlated, or susceptible to extraneous fluctuations.
- In practice,
- all of these can (and should) be used in combination, but not in a fishing expedition: in a thoughtful theoretical manner.
- Check scatter-plots and histograms, to look for desirable transformations.

Wage gap data (2013 BLS)

bls <- read_csv('http://vulstats.ucsd.edu/data/BLS.2016.csv')
For each Occupation it shows the occupation Category, how many people have this occupation *.n (in 1000s), median weekly earnings *.earn, and std. err of earnings

Characterize as best as you can the relationship between male and female median weekly wages.

Consider:

- If you were to come up with just one number, of the form "women make x\% of what men make", how would you do it?
- What kinds of relationships can you capture regressing female~male wages with different transforms? Which formulation makes more sense a priori?
- What does the slope mean?
- What does the intercept mean? Should it be free to vary? What happens if you fix it?

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-\mathrm{Y} \sim \operatorname{logit}(\mathrm{x})$?

Why do a logit transform?

- If variable is bounded between o and 1...
or between any two values, and then rescaled to [0 1]; Most often: proportions (accuracy, etc.)
- A linear model will not work well - doesn't respect bounds.
- It usually gets progressively 'harder’ to get closer and closer to the bound
0.98 to 0.99 is a bigger 'change' than 0.58 to 0.59
e.g., improving from $50^{\text {th }}$ to $55^{\text {th }}$ percentile is relatively easy, from $90^{\text {th }}$ to $95^{\text {th }}$ is much harder (in anything!)
- Logit (or, log-odds) transform fixes both problems.
- Transforms variables from [0 1] to [-infinity +infinity] so now a linear model works fine.
- Log-odds differences for identical proportion increments are bigger near the bounds:
(0.50 -> 0.51): +0.04 log odds; (0.90 -> 0.91): +0.12 log odds

Ed Vul \| UCSD Psychology

Odds

- P: proportion or probability of outcome
- E.g. P(male), P(correct), etc.
- P/(1-P) : Odds of outcome
- Probability of getting outcome divided by probability of not getting outcome
- To go back to probability from odds: $\mathrm{P}=$ Odds / (1+Odds) Odds $=4 ; \mathrm{P}=0.8$ Odds $=1 / 5 ; P=1 / 6$

Log Odds

- Odds is on scale [o Infinity] - a ratio
- Log transforming linearizes (to scale [-inf inf])
- This is usually done with natural (base e) log. Let's keep it that way.
- $\log [$ odds] $=3$
$\log [p /(1-p)]=3$
$p /(1-p)=$ odds $=\exp (3)=20$
$p=20 / 21=0.95$

Probability, Odds, Log-odds

- P: proportion or probability of outcome
- Possible values: [0 1]
- P/(1-P) : Odds of outcome
- Possible values: [o +infinity]
- To go back to probability from odds: $\mathrm{P}=\mathrm{Odds} /(1+O d d s)$
- $\log [P /(1-p)]:$ Log-odds of outcome
- Possible values: [-infinity +infinity]
- To go back to odds from log-odds: Odds = exp[log.odds]

Logit (log odds) transform

- From [0 1] -> [-inf inf]

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)=\log (p)-\log (1-p)
$$

Ed Vul \| UCSD Psychology

Logit transforms

Logit transform of response variables logit(y)~...

- Useful when modeling proportions and changes in proportions - after logit transform you can use linear model to describe changes in logit(p)
- This is the basis of logistic regression (later)

Logit transform of predictor variables $y \sim \operatorname{logit}(x)$...

- (sometimes) useful when a proportion is a predictor
- not very often done:
- Not necessary since in linear model we don't much care about bounds on x.
- Sometimes the non-linear difficulty of being closer to bounds makes this transform better account for the data.

Logit transform of response variable

$$
\log \left(\frac{y}{1-y}\right)=B_{0}+B_{1} x_{1}+B_{2} x_{2}
$$

- What do the coefficients mean?

Logit transform of response variable

$$
\log \left(\frac{y}{1-y}\right)=B_{0}+B_{1} x_{1}+B_{2} x_{2}
$$

- What do the coefficients mean?
- Interpretation via log odds:
- B1 means: per unit of x 1 , log odds increment by B1
- Bo means: log odds of outcome when all $x=0$

Logit transform of response variable

$$
\log \left(\frac{y}{1-y}\right)=B_{0}+B_{1} x_{1}+B_{2} x_{2}
$$

- What do the coefficients mean?
- Interpretation via log odds:
- B1 means: per unit of $x 1$, log odds increment by B1
- Bo means: log odds of outcome when all $x=0$
$\left(\frac{y}{1-y}\right)=\exp \left(B_{0}\right)^{*} \exp \left(B_{1}\right)^{\wedge} x_{1} * \exp \left(B_{2}\right)^{\wedge} x_{2}$
- Interpretation via odds:
- B1 means: per unit increment of x 1 , odds multiply by $\exp (\mathrm{B} 1)$
- Bo means: when all $x=0$ odds of outcome are $\exp (\mathrm{Bo})$

Logit regression

Y is some proportion (e.g., GRE percentile) and x is some predictor (e.g., study time)

Logit regression

Y is some proportion (e.g., GRE percentile) and x is some predictor (e.g., study time)


```
summary(lm(y~x))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.839894 0.005363 156.61 <2e-16 ***
x 0.059567 0.002809 21.20 <2e-16 ***
Residual standard error: 0.05361 on 98 degrees of freedom
Multiple R-squared: 0.821, Adjusted R-squared: 0.8192
F-statistic: 449.6 on 1 and 98 DF, p-value: < 2.2e-16
```


Logit regression

Ed Vul \| UCSD Psychology

Logit regression

Logistic transform: undoing the logit

- $\operatorname{Logit}(p)=x$ p in $\left[\begin{array}{ll}0 & 1\end{array}\right] \quad->x$ in [-inf inf]
- Logistic $(x)=p \quad x$ in [-inf inf] $\quad \rightarrow p$ in $\left[\begin{array}{ll}0 & 1\end{array}\right]$
- Logistic $(\operatorname{Logit}(p))=p$
- Logit(Logistic $(x))=x$

$$
P(t)=\frac{e^{t}}{e^{t}+1}=\frac{1}{1+e^{-t}}
$$

Logistic transform: undoing the logit

- Logit(y)~B1*X+Bo
- Slope: increment 1 unit on logistic (log[odds]) scale

Ed Vul \| UCSD Psychology

Logit regression in probability space


```
Pred.log.odds = x*B1+B0
Pred.probability = logistic(Pred.log.odds)
```

Ed Vul \| UCSD Psychology

"Smoothing"

> If $y=0$ or $1, \operatorname{logit}(y)$ is undefined:
> $y /(1-y)=0$ or infinity; so $\log (y /(1-y))$ is undefined/infinite.

What to do in this case?

- Option 1: Give up on logit. - Not ideal if other reasons favor logit.
- Option 2: Smooth by adding constant to p and 1-p: $y^{\prime}=(y+e) /(1+2 e)$
- How to choose e?
- In case of empirically calculated proportions, easy to postulate two unobserved points: (one success and one failure). This brings all proportions a bit closer to 0.5 for accuracy: $\mathrm{y}=$ correct/total. $\mathrm{y}^{\prime}=($ correct +1$) /($ total +2$)$
- Otherwise, make e small (e.g., smaller than smallest y or (1-y)).

Working with logit regression

When: y is a proportion (or is bounded and scaled)
Why: because we assume that changes in log-odds are linear with our predictors.
not unreasonable, may not be exactly right, but the alternative (that proportion is linear in our predictors) is definitely wrong
How:
logit(y) ~Bo + B1x1 + B2x2 + ... + error
Alternatively (but not practically in $\operatorname{lm} 0$):
$y \sim \operatorname{logistic}(B 0+B 1 \times 1+B 2 \times 2+\ldots+$ error $)$
Cautions: Coefficients are tricky. Per unit increment in x...

- Log-odds(y) [logit(y)] increments by a constant B1
- Odds(y) multiplies by a factor of $\exp (\mathrm{B} 1)$
- y has no constant change (because proportional odds changes have different impacts on y depending on its initial value)

Ed Vul|UCSD Psychology

Nonlinear Transformations

- Logit transform predictor variable: y ~ bo + b1* $\operatorname{logit(x1)~+~...~}$
- Because...
- ...x is a proportion or is bounded (and scaled to [0 1] range)
- ...y should change linearly with log-odds of x.
- ...rarely used!

Nonlinear Transformations

- Logit transform response and predictor: logit(y) ~ bo + b1*logit(x1) + ...
- Because...
- Log-odds of x and log-odds of y are linearly related...
- ...rarely used!

Practice

1) Our regression predicts that logit(GRE percentile) will be 1.6 , what is the GRE percentile?

In a regression predicting logit(proportion correct) from IQ, we find a slope of 0.5, and an intercept of -50....
2) What will be the proportion correct for someone with an IQ of 80 ?
3) How will accuracy change when increasing IQ by 10 points?
4) What will be the difference in accuracy between those with an IQ of 100 and those with an IQ of 110 ?
5) What will be the difference in accuracy between those with an IQ of 140, and those with an IQ of 150?
6) Is the test that we are using here useful for assessing IQ? In what range?

Nonlinear Transformations

- Log transform response variable: $\log (y) \sim$ bo + b1x1 + ...
- Log transform predictor variable: $y \sim b o+b 1^{*} \log \left(x_{1}\right)+. .$.
- Log transform response and predictor: $\log (\mathrm{y}) \sim \mathrm{bo}+\mathrm{b}_{1} \star \log (\mathrm{x} 1)+\ldots$
- Logit transform response variable: $\operatorname{logit}(y) \sim$ bo $+b 1^{*} x 1+\ldots$
- Logit transform predictor variable: $y \sim b o+b 1 * \operatorname{logit}\left(x_{1}\right)+\ldots$
- Logit transform response and predictor: $\operatorname{logit}(\mathrm{y}) \sim$ bo + b1*logit(x1) + ...

Transformations

- Linear transformations
- Predicting variables
- Response variables
- Log transform
- Logarithms
- Log transforming response variables
- Log transforming predicting variables
- Log transforming response and predicting variables
- Logit transform (maybe today, maybe later in logistic)
- Logit and logistic transformations (inverses of each other)
- Logit(y) ~x
$-Y \sim \operatorname{logit}(x)$ or logit(y)~logit(x)?

