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ANOVA Desiderata
• Peculiar designs: Imbalance, one data point per cell
• Effect sizes
• Power
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Multicolinearity in unbalanced ANOVA
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Unbalanced design: different ns in different cells, so 
factors are not independent, so we have 
multicolinearity, and a credit assignment problem.

Multicolinearity effects: Contamination across main 
effects, and order-dependence in sum sq. allocation.

anova(lm(height~country+sex))

Response: height
Df Sum Sq Mean Sq F value    Pr(>F)    

country    3 196.18  65.394  4.1827   0.01223 *  
sex        1 308.09 308.095 19.7060 8.217e-05 ***
Residuals 36 562.84  15.635 

anova(lm(height~sex+country))

Response: height
Df Sum Sq Mean Sq F value  Pr(>F)    

sex        1 316.23  316.23 20.2265 6.9e-05 ***
country    3 188.05   62.68  4.0092 0.01465 *  
Residuals 36 562.84   15.63 

SSR[country] and SSR[sex|country]

SSR[sex] and SSR[country|sex]

Type I sums of squares (R default) 
SS for factor 1: SSR[factor1]
SS for factor 2: SSR[factor2 | factor 1]

Type II and III sums of squares, calculate SS 
for a given factor controlling for other stuff.  
II and III do not depend on order, but also 
don’t preserve the SST = sum(all SS). 
Type III is default in SPSS.  They implicitly 
test slightly different null hypotheses.



ED VUL | UCSD Psychology

One observation per cell.
• If we have one observation per cell, 

the interaction is the error.
• Therefore, if we include interaction 

in the model, we have no error left 
over (data points do not deviate at 
all from cell means).
– Also n = # of parameters…  so df

error is 0…

• So we can’t compute any F ratios or 
ascertain significance.

• Solution: omit interaction term, 
then that variance will be error, and 
you can assess main effects.
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Percent variance accounted for….
• Counterpart of R2: 
η2 “eta squared”

Note that this is equal to full-model R2 when there is only 
one factor, but if there is more than one, it will be smaller.

ηA
2 =

SS[A]
SST

ηA
2 =

494.57
1716.3

= 0.288

ANOVA effect size
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Percent variance accounted for….
• Counterpart of R2: 
η2 “eta squared”

• Partial η2 (this is like “R2 everything else constant”)

ηA
2 =

SS[A]
SST

ηA
2 =

494.57
1716.3

= 0.288

partial :ηA
2 =

SS[A]
SS[A]+ SS[error]

partial :ηA
2 =

494.57
494.57+ 609.8

= 0.448

ANOVA effect size
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Percent variance accounted for….
• Counterpart of R2: proportion of all variance
η2 “eta squared”

• Counterpart of partial R2 : “R2 everything else constant”
Partial η2

But these measures are not good estimates of the effect 
size in the population – they are biased because SS[A] 
includes some variance due to noise…

ηA
2 =

SS[A]
SST

partial :ηA
2 =

SS[A]
SS[A]+ SS[error]

ANOVA effect size
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ANOVA effect size.
• There is a surprisingly large number of candidate effect 

sizes for an ANOVA, all interrelated, but with slightly 
different properties.
– η2, ω2, f2, f, Ψ, …

• What do we want from an effect size?
– Quantify standardized relationship strength in population 

(independence from sample size)
– …in an interpretable way
– …that we can estimate from a sample
– …and will allow us to predict power
– …while generalizing across study designs
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My preference: ω2 (omega squared) 
• Effect size: Variance of signal in population, 

relative to unexplained variance in population.

• It’s like partial η2, but is a population property
– So to generalize across designs, it must assume that 

variability due to other factors was introduced by the 
experiment, and will not occur otherwise.

• Partial η2 overestimates; we need a correction. 

ωSource
2 =

σ Source
2

σ Source
2 +σ Error

2

ω̂Source
2 =

SS[Source]− dfsource ⋅MS[Error]
SS[Source]+ (N − dfsource ) ⋅MS[Error]
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ω2 and other measures
fSource
2 =

ωSource
2

1−ωSource
2 =

σ Source
2

σ Error
2

fSource =
ωSource
2

1−ωSource
2 =

σ Source

σ Error

λ =Ν∗ fSource
2 = N * ωSource

2

1−ωSource
2

This is a “signal-to-noise” ratio measurement: 
Variance of signal divided by variance of noise.

This is a “signal-to-noise” ratio measurement in original 
(not squared) units, thus is more analogous to Cohen’s d

This is the F distribution “non-centrality parameter” used 
to describe the distribution of F statistics obtained when 
samples come from a distribution with some real effect.

What’s a big effect?  Some say ω2=0.15 is big, 0.06 is medium, 0.01 is small.  
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Power for the F-test

F value

Null hypothesis F distribution (with 3,16 df), 
but effect is zero (ω2=0)

True effect distribution (with 3,16 df),
And some non-zero effect (ω2>0)

F.crit

Alpha: Probability of rejecting Null when it is true

Power: Probability of rejecting Null when it is false

So, to figure out the power of an F test we need to know the sample size, alpha, and true effect.
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Power for the F-test
k=4Total number of cells

Total (balanced) 
sample size N = k*10

Effect size (ω2) w2 = 0.25

f.crit = qf(1-alpha, k-1, N-k)
F value at which 
we reject H0

alpha alpha = 0.05

lambda = N*w2/(1-w2)

Non-centrality parameter

[1] 2.866266

[1] 13.33

power = 1-pf(f.crit, k-1, N-k, lambda)Power [1] 0.84
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Required n for certain power
This is trickier, as changing n changes both the null 
distribution and the true-effect distribution

So we have to solve for it numerically…  I recommend using the pwr R 
package.

n = 5
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 6
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 7
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 8
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 9
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 10
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

n = 11
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))

[1] 0.46

[1] 0.56

[1] 0.65

[1] 0.73

[1] 0.79

[1] 0.84

[1] 0.88
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Regression safety tips.
Assumptions:
(1) Validity: Make sure your measures make sense, and map 

onto the substantive research questions you have.
(2) Additivity and linearity: The relationship between x and y 

may not be neatly linear, check scatterplots, residuals!  
Noise and predictors should be additive.

(3) Errors should have equal variance and be normally 
distributed 

(4) Independence of errors: errors should not be correlated 
with each other, y, x, have repeated measures, etc.

(5) Most error in y, not in x. (parameter estimates biased!)
Safety tips:
(1) Don’t trust extrapolation.
(2) Check for structure in the residuals.
(3) Be careful with causal interpretations.
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Assumptions (and when stuff breaks)
• Errors are independent…
– Violated under repeated measures, sequential / temporal 

dependence, non-random sampling, etc.
• Consider: mixed effects, covariates

• …identically distributed…
– Violated if some conditions have higher variance.

• Consider: ignoring (if not that different)
• Consider: log transform (if errors are multiplicative)

• …and Normal.
– Violated if measure has high skew, kurtosis, floor, ceiling 

effects.
• Consider: various transformations.
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Multicolinearity of predictors
• If predictors are somewhat colinear (i.e., you can 

predict one reasonably well via linear regression of 
other ones) you get problems from ambiguous credit 
assignment:
– Marginal standard errors of coefficients are inflated 

(variance inflation factor)
– Coefficient magnitudes tend to decrease 

(but may increase and reverse in some circumstances
more when we get to ANCOVA)

– Coefficient values change erratically with the addition of 
new predictors, or new data points
(because credit assignment is resolved by the noise)

(if you have perfect colinearity, you can’t do the regression at all)

Check via correlation matrices, variance inflation factors.
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Looking for multicolinearity
summary( lm(son ~ mom+dad+mgma+pgma+mgpa+pgpa) )

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) 28.04727   16.41549   1.709   0.0947 .
mom          0.33379    0.14885   2.243   0.0301 *
dad          0.27050    0.17126   1.580   0.1215  
mgma 0.11868    0.19411   0.611   0.5442  
pgma 0.21772    0.17592   1.238   0.2226  
mgpa -0.06801    0.23855  -0.285   0.7769  
pgpa -0.23884    0.22878  -1.044   0.3023 

I designed heavily correlated 
fake height data for families 
with a son:
Mom, dad, maternal grand ma, 
maternal grand pa, paternal 
grand ma, and paternal grand pa

Calculating correlation of a data frame 
gives us the full correlation matrix…
So, here it seems that everything is positively 
correlated.  
Some people would use this to drop particular 
variables, but that’s a little silly.  In this case, I 
would suggest making composite indexes.

cor(data.frame(son, mom, dad, 
mgma, mgpa, pgma, pgpa))

son  mom  dad mgma mgpa pgma pgpa
son  1.00 0.54 0.51 0.43 0.36 0.39 0.23
mom  0.54 1.00 0.37 0.70 0.70 0.12 0.38
dad  0.51 0.37 1.00 0.31 0.35 0.65 0.52
mgma 0.43 0.70 0.31 1.00 0.53 0.09 0.37
mgpa 0.36 0.70 0.35 0.53 1.00 0.14 0.45
pgma 0.39 0.12 0.65 0.09 0.14 1.00 0.25
pgpa 0.23 0.38 0.52 0.37 0.45 0.25 1.00

vif(lm(son~mom+dad+mgma+pgma+mgpa+pgpa))

mom   dad  mgma  pgma  mgpa  pgpa 
2.851 2.488 2.020 1.832 2.113 1.603 

Variance inflation factor: How much larger is 
coefficient error variance than it would be, if it 
were independent of other predictors?

Some people advocate specific cutoffs (like vif > 4 or 5 is bad).
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Look at the scatterplot!
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Residual plots
We may see a bit more by looking at different residual plots.

Residuals as a function of x position 
(impossible with many predictors)

Residuals as a function of 
predicted y  plot(lm, 1)

Residuals as a function of 
observation number

Residuals as a function of 
leverage plot(lm, 5)

Sometimes useful for non-linearities Useful to check for non-linearity

Useful to check for error aurocorrelation

Useful for detecting extreme influence.
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Checking for non-linearity
Residual ~ x Residual ~ y.hat

Residual plots highlight the non-linearity
For high dimensional data, only Residual ~ y.hat is really possible to look at.
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Checking for homoscedasticity
Homoscedasticity: variance of residuals is constant

spreadLevelPlot(lm(y~x))
plot(lm, 3)

|residual| ~ y.hat

ncvTest(lm(y~x))

Non-constant Variance Score Test 
Variance formula: ~ fitted.values 
Chisquare = 10.68375    Df = 1     p = 0.00108081

Test for non-constant variance (heteroscedasticity) based on regression of 
error^2 as a function of fitted y values (for regression):  “Breusch-Pagan test”

(different, and somewhat more powerful procedure for categorical predictors)
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Outliers and extreme influence
Data points with large residuals, and/or high leverage

How do we measure this apparent extreme influence?
Outlier detection

qqPlot
outlierTest

Look at residuals as a function of leverage
plot(lm(y~x), which=5)

Compute Cook’s distance
plot(lm(y~x), which=4)
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Studentized / Standardized residuals

ε̂i = yi − ŷi( )

Residuals (estimated error)
Deviation of real y value from line

ε̂i
(S ) = ε̂i / sr

Standardized residuals 
Residual divided by sd of residuals

These should be t distributed, so we can compare to t 
distribution to look for abnormalities / outliers.

qqPlot(lm(y~x))

Large deviations from 
theoretical t distribution 
can be tested for (via t-
test!) and extreme outliers 
will be evident this way.
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Testing for outliers

These tests for outliers tend to be less sensitive than the eye:
if there is a significant outlier, we will be able to see it, 

but if we can see it, it may still not be significant.

outlierTest(lm(y~x))

student uncorrectedBonferonni
#  error     p-value p-value
6   4.31      0.0004      0.0088
16 -4.31      0.0004      0.0088
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Leverage

Leverage in statistics is like 
leverage in physics: with a long 
enough lever (a predictor far 
enough away from the mean) you 
can make a regression line do 
whatever you want.

Leverage is potential influence.
With many predictors what matters is ~Mahalanobis distance: 

distance from the center of mass scaled by the covariance matrix.

This is hard to visualize, so it’s useful to just look at the leverage numbers, and 
particularly, whether there are large residuals at large leverage – that is bad.
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Cook’s distance

A data point with a lot 
of leverage and large 
residuals is exerting 

undue influence on the 
regression.

Cook’s distance 
measures this.

Several, equally correct, ways to think about Cook’s distance:
(1) How much will my regression coefficients change without this data point?
(2) How much will the predicted Y values change without this data point?
(3) A combination of leverage and residual to ascertain point’s influence.

plot(lm(y~x), which=5)
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Cook’s distance

We can just look at the 
Cook’s distance for different 
data points, to see if some 
are extremely influential.

Several, equally correct, ways to think about Cook’s distance:
(1) How much will my regression coefficients change without this data point?
(2) How much will the predicted Y values change without this data point?
(3) A combination of leverage and residual to ascertain point’s influence.

How much influence is 
too much?
(a) D > 1 ?  
(b) D > (4/n) ?
(c) D > (4/(n-k-1)) ?

Different folks have 
different standards…

plot(lm(y~x), which=4)
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Outliers and extreme influence
Data points with large residuals, and/or high leverage
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Checking for autocorrelated errors
Sometimes errors might be autocorrelated

(when there is a particular dependence in sample acquisition)

This is rarely considered unless we are dealing with clearly time-
based data.  (although our subjects vary over the quarter!)

Check for this by looking at residuals ~ observation_number

Test for this via durbinWatson test 
(default: tests for lag-1 autocorrelation, can consider higher lags)

If very concerned: look at autocorrelation plots of residuals…
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Checking for normal residuals
Look at qq plot, test with Kolmogorov-Smirnov test

qqPlot(lm(y~x))

Generally though, it’s fine to ignore slight but significant deviations

ks.test(rstudent(lm(y~x)), "pt", length(y)-2)

One-sample Kolmogorov-Smirnov test
data:  rstudent(lm(y ~ x))
D = 0.1398, p-value = 0.04002
alternative hypothesis: two-sided
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Checking for linear model assumptions
Linearity, Homoscedasticity, Uncorrelated residuals, Normal residuals

If you are really paranoid about making sure all assumptions are valid, you can 
even consider the “Global validation test for linear model assumptions”

library(gvlma)
gvlma(lm(y~x))

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance =  0.05 

Call:
gvlma(x = lm(y ~ x)) 

Value   p-value                   Decision
Global Stat        65.6446 1.882e-13 Assumptions NOT satisfied!
Skewness           21.3914 3.745e-06 Assumptions NOT satisfied!
Kurtosis           43.8742 3.502e-11 Assumptions NOT satisfied!
Link Function       0.2748 6.002e-01    Assumptions acceptable.
Heteroscedasticity  0.1043 7.467e-01    Assumptions acceptable.

Global statistic here combines statistics measuring skewness, kurtosis of 
residuals (for non-normality, outliers), link function linearity (based on residuals 
being consistent across y.hat values), and constant variance, uncorrelated 
variance (based on squared residuals as function of observation order).

With enough real data, it will ~always tell you assumptions are violated.


