201ab Quantitative methods L. 12 Linear model: Categorical predictors

GLM: Categorical predictors (factors)

- Why?
- How to use categorical predictors in R?
- Perspectives on categorical predictors.
- Coding categorical variables in regression.
- Variations that require extensions of LM
- Unequal variance t-test or ANOVA
- Repeated measures and other random effects / correlated error structures.

Why categorical predictors?

- Does mean y differ between...
- Treatment and control?
- Males and females?
- Dogs and cats?
- Does mean y vary among...
- Drug types?
- Ethnicities? Religions? Etc.
- Dog breeds?

Predictor is treated as a dichotomous / binary categorical variable

Predictor is treated as a categorical variable

Do the groups have different means?

- If we have two groups, we can do a t-test.
-What if we have more than two groups?

North Korea	USA	South Korea	Netherlands
$\mathrm{y}_{1,1} 61$	$\mathrm{y}_{2,1} 71$	$\begin{array}{ll}y_{3,1} & 72\end{array}$	$\begin{array}{ll}\mathrm{y}_{4,1} & 75\end{array}$
$\begin{array}{ll}y_{1,2} & 62\end{array}$	$\mathrm{y}_{2,2} \quad 64$	$\begin{array}{ll}y_{3,2} & 67\end{array}$	$\mathrm{y}_{4,2} \quad 68$
$\mathrm{y}_{1,3} 6 \mathrm{Q}$	$\begin{array}{ll}\mathrm{y}_{2,3} & 7 \mathrm{Q}\end{array}$	$y_{3,3} 66$	$\mathrm{y}_{4,3} 63$
$\begin{array}{ll}\mathrm{y}_{1,4} & 73\end{array}$	$\mathrm{y}_{2,4} 69$		$\mathbf{y}_{4,4}$ 19
$\mathrm{y}_{1,5} 66$			$\mathrm{y}_{4,5} 68$
			$\begin{array}{ll}\mathrm{y}_{4,6} & 72 \\ \mathrm{y}_{4,7} & 73\end{array}$

- Lots of t-tests between pairs of groups are impractical, don't answer the right question.
- Instead we test the variance of means across groups: this is the "analysis of variance".

Overly specific named procedures

Common statistical tests are linear models
Last updated: 28 June, 2019.Also check out the Python version!

See worked examples and more details at the accompanying notebook: https://lindeloev. github.io/tests-as-linear

	Common name	Built-in function in \mathbf{R}	Equivalent linear model in R	Exact?	The linear model in words	Icon
	y is independent of x P : One-sample t-test N : Wilcoxon signed-rank	t.test(y) wilcox.test(y)	$\begin{aligned} & \text { Im(y } \sim 1) \\ & \text { Im(signed_rank }(y) \sim 1) \end{aligned}$	$\text { for } N>14$	One number (intercept, i.e., the mean) predicts \mathbf{y}. - (Same, but it predicts the signed rank of \mathbf{y}.)	$\frac{i}{i}$
	P: Paired-sample t-test N : Wilcoxon matched pairs	t.test($\mathrm{y}_{1}, \mathrm{y}_{2}$, paired=TRUE $)$ wilcox.test(y_{1}, y_{2}, paired=TRUE)	$\begin{aligned} & \operatorname{Im}\left(y_{2}-y_{1} \sim 1\right) \\ & \operatorname{Im}\left(\text { signed_rank }\left(y_{2}-y_{1}\right) \sim 1\right) \end{aligned}$	$\text { for } \mathrm{N}>14$	One intercept predicts the pairwise $\mathbf{y}_{2}-\mathbf{y}_{1}$ differences. - (Same, but it predicts the signed rank of $\mathbf{y}_{2}-\mathbf{y}_{1}$.)	
	$y \sim$ continuous x P: Pearson correlation $\mathrm{N}:$ Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	$\begin{aligned} & \operatorname{lm}(y \sim 1+x) \\ & \operatorname{lm}(\operatorname{rank}(y) \sim 1+\operatorname{rank}(x)) \end{aligned}$	$\begin{gathered} \checkmark \\ \text { for } \mathrm{N}>10 \end{gathered}$	One intercept plus \mathbf{x} multiplied by a number (slope) predicts \mathbf{y}. - (Same, but with ranked \mathbf{x} and \mathbf{y})	-
	$y \sim$ discrete x P: Two-sample t-test P: Welch's t-test $\mathrm{N}:$ Mann-Whitney U	t.test($\mathbf{y}_{1}, \mathbf{y}_{2}$, var.equal=TRUE) t.test($\mathrm{y}_{1}, \mathrm{y}_{2}$, var.equal=FALSE) wilcox.test $\left(y_{1}, y_{2}\right)$	$\begin{aligned} & \operatorname{lm}\left(y \sim 1+G_{2}\right)^{A} \\ & \operatorname{gls}\left(y \sim 1+G_{2}, \text { weights }=\ldots{ }^{B}\right)^{A} \\ & \operatorname{Im}\left(\text { signed_rank }(y) \sim 1+G_{2}\right)^{A} \end{aligned}$	$\begin{gathered} \checkmark \\ \checkmark \\ \text { for } \mathrm{N}>11 \end{gathered}$	An intercept for group 1 (plus a difference if group 2) predicts \mathbf{y}. - (Same, but with one variance per group instead of one common.) - (Same, but it predicts the signed rank of \mathbf{y}.)	
	P: One-way ANOVA N: Kruskal-Wallis	$\operatorname{aov}(y \sim$ group $)$ kruskal.test(y ~ group)	$\begin{aligned} & \operatorname{lm}\left(y \sim 1+G_{2}+G_{3}+\ldots+G_{N}\right)^{A} \\ & \operatorname{lm}\left(\operatorname{rank}(y) \sim 1+G_{2}+G_{3}+\ldots+G_{N}\right)^{A} \end{aligned}$	$\text { for } N>11$	An intercept for group 1 (plus a difference if group $\neq 1$) predicts \mathbf{y}. - (Same, but it predicts the rank of \mathbf{y}.)	$i+i$
	P: One-way ANCOVA	$\operatorname{aov}(\mathrm{y} \sim \mathrm{group}+\mathrm{x})$	$\operatorname{Im}\left(\mathrm{y} \sim 1+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}+\mathrm{x}\right)^{\text {A }}$	\checkmark	- (Same, but plus a slope on \mathbf{x}.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
	P: Two-way ANOVA	$\operatorname{aov}(\mathrm{y} \mathrm{\sim} \mathrm{group} \mathrm{*} \mathrm{sex)}$	$\begin{aligned} & \operatorname{Im}\left(\mathrm{y} \sim 1+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}+\right. \\ & \mathrm{S}_{2}+\mathrm{S}_{3}+\ldots+\mathrm{S}_{\mathrm{K}}+ \\ & \left.\mathrm{G}_{2}{ }^{*} \mathrm{~S}_{2}+\mathrm{G}_{3}{ }^{*} \mathrm{~S}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}{ }^{*} \mathrm{~S}_{\mathrm{K}}\right) \end{aligned}$	\checkmark	Interaction term: changing sex changes the $\mathbf{y} \sim$ group parameters. Note: $G_{2 \text { to }}$ is an indicator (0 or 1) for each non-intercept levels of the group variable. Similarly for $S_{2 \text { tok }}$ for sex. The first line (with G_{i}) is main effect of group, the second (with S.) for sex and the third is the group \times sex interaction. For two levels (e.g. male/female), line 2 would just be " S_{2} " and line 3 would be S_{2} multiplied with each $\mathrm{G}_{\text {. }}$.	[Coming]
	Counts ~ discrete x N : Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model $\begin{aligned} & \operatorname{glm}\left(y \sim 1+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}+\right. \\ & \mathrm{S}_{2}+\mathrm{S}_{3}+\ldots+\mathrm{S}_{\mathrm{K}}+ \\ & \left.\mathrm{G}_{2}{ }^{*} \mathrm{~S}_{2}+\mathrm{G}_{3}{ }^{*} \mathrm{~S}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}{ }^{*} \mathrm{~S}_{\mathrm{K}}, \text { family }=\ldots\right)^{A} \end{aligned}$	\checkmark	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $\operatorname{glm}($ mode 1, fami $1 y=p o i s s o n())$ As linear-model, the Chi-square test is $\log \left(y_{i}\right)=\log (N)+\log \left(\alpha_{i}\right)+\log \left(\beta_{i}\right)+\log \left(\alpha_{i}\right)$ where a_{i} and β_{j} are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
	$\mathrm{N}:$ Goodness of fit	chisq.test(y)	$\mathrm{glm}\left(\mathrm{y} \sim 1+\mathrm{G}_{2}+\mathrm{G}_{3}+\ldots+\mathrm{G}_{\mathrm{N}}, \text { family }=\ldots\right)^{\text {A }}$	\checkmark	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

 non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.io/tests-as-linear.
${ }^{\text {a }}$ See the note to the two-way ANOVA for explanation of the notation.
${ }^{\text {B }}$ Same model, but with one variance per group: gls (value $\sim 1+G_{2}$, weights $=$ varIdent (form $=\sim 1 \mid$ group), method="ML").

Overly specific named procedures

Response	\sim null	~binary	\sim category	\sim numerical	~numerical + category	
Numerical	1-sample T-test	2-sample Ttest	ANOVA	Regression, Pearson correlation	ANCOVA	
	$\operatorname{lm}(\mathrm{y} \sim 1)$	$\operatorname{lm}(\mathrm{y} \sim \mathrm{f})$		$\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$	$\operatorname{lm}(\mathrm{y} \sim \mathrm{x}+\mathrm{f})$	
Rankednumerical		Mann-Whitney-U	KruskallWallis	Spearman correlation		
		$\sim \operatorname{lm}(\operatorname{rank}(\mathrm{y}) \sim \mathrm{f})$		~ Im(rank	$\sim \operatorname{rank}(\mathrm{x})$)	
2-category	Binomial test	Fisher's exact test	Chi-sq. indep.		ic regression	
	glm(y~..., family=binomial())					
k-category	Chi-sq. goodness of fit	Chi-squared	ndependen			
Ed Vut \\| UCSD P	$\sim \operatorname{glm}(\mathrm{y} \sim \ldots$, family=poisson())					

Overly specific named procedures

Response	\sim null	-binary	\sim category	\sim numerical	~numerical + category	
Numerical	1-sample T-test	2-sample Ttest	ANOVA	Regression, Pearson correlation	ANCOVA	
	$\operatorname{lm}(\mathrm{y} \sim 1)$	$\operatorname{lm}(\mathrm{y} \sim \mathrm{f})$		$\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$	$\operatorname{lm}(\mathrm{y} \sim \mathrm{X}+\mathrm{f})$	
Rankednumerical		Mann-Whitney-U	KruskallWallis	Spearman correlation		
		$\sim \operatorname{lm}(\operatorname{rank}(\mathrm{y}) \sim \mathrm{f})$		~ 1 m (ran	$\sim \operatorname{rank}(\mathrm{x})$)	
2-category	Binomial test	Fisher's exact test	Chi-sq. indep.		c regression	
	glm(y~..., family=binomial())					
k-category	Chi-sq. goodness of fit	Chi-squared	ndependence			
Ed Vut \\| UCSD P	$\sim \mathrm{glm}(\mathrm{y} \sim \ldots .$, family=poisson())					

```
%r
    Column specification
cols(
    .default = col_double(),
    country =
    gender =
    hand = col character(),
    race =
    voted =
    married =
    operatingsystem =
    browser =
    Use `spec()` for the full column specifications.
    glimpse(grit)
Rows: 4,270
Columns: 27
$ country <chr> "RO", "US", "US", "KE", "JP", "AU", "US", "RO", "EU", "NZ", "A...
surveyelapse <dbl> 174, 120, 99, 5098, 340, 515, 126, 208, 130, 129, 592, 217, 26...
education
urban
$ gender
engnat
$ age
$ hand
$ religion
$ orientation
race
$ voted
married
familysize
operatingsystem
browser
screenw
screenh
$ introelapse
$ testelapse
extroversion
neuroticism
    agreeableness
conscientiousness
openness
$ grit
<chr> "RO", "US", "US", "KE", "Jp", "AU", "US", "RO", "EU", "NZ", "A... \(\langle d b l\rangle 4,2,1,3,4,3,3,2,3,1,3,2,3,2,2,1,3,3,2,4,2, \ldots\) \(\langle d b l\rangle 3,3,2,2,2,3,2,1,3,2,1,2,3,3,3,3,3,2,3,1,3, \ldots\) <chr> "female", "female", "female", "female", "male", "female", "mal... \(\langle d b l\rangle 2,1,2,1,2,2,1,2,2,1,2,1,1,2,2,1,2,2,2,2,1, \ldots\) <dbl> 28, 19, 16, 30, 38, 23, 35, 22, 50, 16, 52, 20, 23, 20, 23, 17... <chr> "right", "right", "right", "right", "right", "right", "right",.. \(\langle d b l\rangle 1,6,0,6,2,12,3,7,12,1,8,12,4,10,6,12,12,2,10 \ldots\) \(\langle d b l>1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,4,2,1, \ldots\) <chr> "white or indigenous", "white or indigenous", "asian", "black"... <chr> "yes", "no", "no", "yes", "no", "no", "no", "no", "no", "no", ... <chr> "never", "never", "never", "never", "currently", NA, "previous... \(\langle d b l\rangle 2,3,3,6,3,1,1,2,3,2,3,1,3,9,3,3,1,3,2,0,1, \ldots\) <chr> "Windows", "Macintosh", "Windows", "Windows", "Windows", "Wind... <chr> "Chrome", "Chrome", "Firefox", "Chrome", "Firefox", "Chrome", \(\langle d b l>1366,1280,1920,1600,1920,1920,1366,1366,1600,1440,12 .\). \(\langle d b l\rangle 768,800,1080,900,1080,1080,768,768,1000,900,1024,76 \ldots\) <dbl> 69590, 33657, 95550, 4, 3, 2090, 36, 6, 14, 68, 726, 376, 3, 3... <dbl> 307, 134, 138, 4440, 337, 554, 212, 207, 183, 143, 311, 407, 8... \(<d b l>1,10,-12,-11,-18,12,10,0,14,11,0,-10,0,-1,4,-13 .\). \(\langle d b l\rangle 18,30,23,6,23,2,28,32,3,20,2,37,13,17,27,25,2, \ldots\) \(\langle d b l\rangle 19,15,9,20,9,18,12,13,23,23,12,10,20,11,11,3,1 \ldots\) \(\langle d b l\rangle 4,11,10,20,14,18,10,18,16,10,14,15,13,7,-7,6,1 .\). \(<d b l>26,24,23,22,12,28,32,17,25,22,16,26,22,25,15,10 \ldots\) \(\langle d b l\rangle 0,-5,-3,-16,-1,-11,5,6,-15,-8,-2,12,-15,11,11,1 .\).

\section*{GLM: 1-sample t-test}
- Does the mean of a group differ from some null mean?
- E.g., does the mean level of conscientiousness deviate from random responses.
- 10 (1-5 likert items), 6 positively coded, 4 negatively coded.
- Mean expected from random responding: 6 (3*6-3*4)

\section*{GLM: 1-sample t-test}
- Does the mean of a group differ from some null mean?
- E.g., does the mean level of conscientiousness deviate from random responses.
- 10 (1-5 likert items), 6 positively coded, 4 negatively coded.
- Mean expected from random responding: \(6=\left(3^{*} 6-3 * 4\right)\)

Via Im()


Via t-test function
t = 30.883, df = 3811, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 6
95 percent confidence interval:
9.477293 9.948730
sample estimates:
mean of }
9.713012
```

One Sample t-test

```
```

data: grit\$conscientiousness

```
```

```
data: grit$conscientiousness
```


GLM: 2-sample t-test

- Do the two groups have the same mean?
- E.g., does the mean level of conscientiousness differ between males and females?

GLM: 2-sample t-test

- Do the two groups have the same mean?
- E.g., does the mean level of conscientiousness differ between males and females?

Via $\operatorname{lm}()$

Via t-test function

Do the groups have different means?

- If we have 1 group and a point null for mean, we test the intercept: $\operatorname{lm}(y \sim 1)--a$ "one-sample t-test"
- If we have 2 groups and a null of same means: we test the difference coef: $\operatorname{Im}(y \sim f)$-- a " 2 -sample ttest".
- If we have $3+$ groups and a null of same means: we test the ANOVA: $\operatorname{Im}(y \sim f)$ - an "analysis of variance"
- Lots of t-tests between pairs of groups are impractical, don't answer the right question.
- Instead we test the variance of means across groups: this is the "analysis of variance".

GLM: one-way anova

- Do the groups have the same mean? i.e., is there non-zero variance across group means?
- E.g., does the mean level of conscientiousness differ among religions?

GLM: one-way anova

- Do groups have same mean? Variance across group means?
- does mean conscientiousness differ among religions?

F-statistic: 9.791 on 10 and 3801 DF, p-value: 2.405e-16

GLM: two-way anova

- Does mean vary across either/both factors? Consistently? does mean conscientiousness vary among religion, gender?

GLM: two-way anova

- Does mean vary across either/both factors? Consistently? does mean conscientiousness vary

Three ways to think about factors

Cell organization:
Common formulation for doing ANOVA calculation by hand.

We avoid hand calculations, but this formulation helps understand what we are estimating.

Tidy data frame/table:
How we will see our data.

Matrix notation:
How statistical software represents our data to do the analysis.

Makes it easier to think about coding schemes.
Y
$\left(\begin{array}{c}61 \\ 62 \\ 60 \\ 73 \\ 66 \\ 71 \\ 64 \\ 7 Q \\ 69 \\ 72 \\ 67 \\ 66 \\ 75 \\ 68 \\ 63 \\ 79 \\ 68 \\ 72 \\ 73\end{array}\right)$
$\left.\begin{array}{llll}\text { X1 } & X 2 & X 3 & X 4 \\ 1 & Q & Q & Q \\ Q & 1 & Q & Q \\ Q & Q & 1 & Q \\ Q & Q & 1 & Q \\ Q & Q & 1 & Q \\ Q & Q & Q & 1 \\ Q & Q & Q & 1\end{array}\right)$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}
$$

$Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}$

$\underset{\text { Evvel Iucso Psychology }}{ }\left[\begin{array}{c}y_{1} \\ y_{2} \\ y_{3} \\ \ldots \\ y_{i} \\ \ldots \\ y_{n}\end{array}\right]=\left[\begin{array}{ccc}1 & x_{11} & x_{21} \\ 1 & x_{12} & x_{22} \\ 1 & x_{13} & x_{23} \\ \ldots & \ldots & \ldots \\ 1 & x_{1 i} & x_{2 i} \\ \ldots & \ldots & \ldots \\ 1 & x_{1 n} & x_{2 n}\end{array}\right]\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right]+\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \ldots \\ \varepsilon_{i} \\ \ldots \\ \varepsilon_{n}\end{array}\right]$

$Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i}$

All of the x predictors in one matrix.
(constant 1 for the intercept: sometimes called XO)

$Y_{i}=\beta_{0} \cdot 1+\beta_{1} \mid X_{1]}+\beta_{2} X_{2 i}+\varepsilon_{i}$

All of the x predictors in one matrix.
(constant 1 for the intercept: sometimes called XO)

All of the x predictors in one matrix.
(constant 1 for the intercept: sometimes called XO)

All of the x predictors in one matrix.
(constant 1 for the intercept: sometimes called XO)

This matrix multiplication yields an n unit vector, each element of which is
y.hat ${ }_{i}$: B0*1 + B1 $^{*} \mathbf{x}_{1 i}+$ B2 $^{*} \mathbf{x}_{2 i}$

- Matrix notation highlights...
- ...there is no qualitative difference between slopes and intercept.
- ...the design of various indicator variables.

The design matrix encodes variables for regression

Generally, this is something that R/SPSS/JMP does for us behind the scenes, and we don't need to worry about how the design matrix is set up. There are different acceptable/correct ways to do this coding, and a great many ways to do it very incorrectly.

Ed Vul \| UCSD Psychology

Different coding schemes

These (and other) categorical variable coding schemes can capture that men and women have different, non-zero means.

However, the interpretation of B_{0} and B_{1} is very different in these cases.

Eo vAndotheeneisignificance" of the coefficients means different things.

Lots of different coding schemes...

Dummy: compare each level to reference level, intercept at first level (default in R).
Simple: compare each level to reference level, but intercept is at overall mean
Deviation: Contrast coding comparing each level (except last) to grand mean.
Orthogonal polynomial: breaks down effects of ordinal variables into linear, quadratic, etc. trends.
Helmert: compare each level to mean of subsequent levels. (or reverse Helmert: each to mean of previous levels)
Forward difference: compare each level to the next. (or Backward difference: each level to the previous)

- Default factor coding scheme varies with software
- They all capture the same sources of variation, but the coefficients mean different things.
- We will consider these sorts of comparisons when we deal with contrasts, rather than altering R's default coding scheme.
Ed Vul \| UCSD Psychology

Geometric thinking about coefficients

Ed Vul \| UCSD Psychology

Geometric thinking about coefficients

height				
weight	sex			
1	70	121	m	
2	78	256	m	
3	69	153	m	
4	68	168	m	
5	70	147	m	
6	68	213	m	
7	65	91	m	
8	72	212	m	
9	66	135	m	
10	73	191	m	
11	60	101	f	
12	62	131	f	
13	69	152	f	
14	66	184	f	
15	63	88	f	
16	65	147	f	
17	63	122	f	
18	63	97	f	

Ed Vul \| UCSD Psychology

Geometric thinking about coefficients

height	weight	sex		
1	70	121	m	
2	78	256	m	
3	69	153	m	
4	68	168	m	
5	70	147	m	
6	68	213	m	
7	65	91	m	
8	72	212	m	
9	66	135	m	
10	73	191	m	
11	60	101	f	
12	62	131	f	
13	69	152	f	
14	66	184	f	
15	63	88	f	
16	65	147	f	
17	63	122	f	
18	63	97	f	

An alternate way to code for gender. Y: weight X: female? + male?
\longrightarrow
So the average of women is captured by Bo.
The average of men is captured by B1
Bo-B1 $=$ difference between avg men and women
$\left(\begin{array}{r}121 \\ 256 \\ 153 \\ 168 \\ 147 \\ 213 \\ 91 \\ 212 \\ 135 \\ 191 \\ 101 \\ 131 \\ 152 \\ 184 \\ 88 \\ 147 \\ 122 \\ 97\end{array}\right) \quad\left(\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right)$

Geometric thinking about coefficients

height				
weight	sex			
1	70	121	m	
2	78	256	m	
3	69	153	m	
4	68	168	m	
5	70	147	m	
6	68	213	m	
7	65	91	m	
8	72	212	m	
9	66	135	m	
10	73	191	m	
11	60	101	f	
12	62	131	f	
13	69	152	f	
14	66	184	f	
15	63	88	f	
16	65	147	f	
17	63	122	f	
18	63	97	f	

Geometric thinking about coefficients

height weight					sex
1	70	121	m		
2	78	256	m		
3	69	153	m		
4	68	168	m		
5	70	147	m		
6	68	213	m		
7	65	91	m		
8	72	212	m		
9	66	135	m		
10	73	191	m		
11	60	101	f		
12	62	131	f		
13	69	152	f		
14	66	184	f		
15	63	88	f		
16	65	147	f		
17	63	122	f		
18	63	97	f		

R's default coding scheme

 Intercept is the first factor level (default alphabetical order). Other coefficients are difference between nth level and the| sex | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| weight | | | | | |
| [18] 121250153168147213 91 $21213519110113115218488147122 \quad 97$ | | | | | |
| summary (lm(weight~sex)) | | | | | |
| Coefficients: | | | | | |
| Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | | | | |
| (Intercept) | 127.75 | 15.19 | 8.411 | $2.88 \mathrm{e}-07$ | |
| sexm | 40.95 | 20.38 | 2.010 | 0.0617 | |

The " m " indicates that this is coding for the offset of the " m " (here: male) category relative to the alphabetically first (here " f ", female) category.
The estimate of the intercept is the estimated average female weight, and the estimate of the 'slope' or the 'sexm' coefficient is Mean(male)-Mean(female)

1-factor 2-levels: single-var regression

Intercept is the first (alphabetical) category.
Other coefficients are difference between nth category and the first one

```
summary(lm(weight~sex))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
```



```
This 'slope' is mean(males) minus mean(females). With a std. err. And a t-
value. That's just a t-test. The same t-test we get if we assume equal var
t.test(weight~sex, var.equal=T)
    Two Sample t-test
data. woight hy cox
t = -2.0095, df = 16, p-value = 0.06166
```

F-statistic (comparing a model that codes for a gender difference to one that does not), is just the t-statistic squared. And the p-values are matched.

How does R code for categories?

How would R code for country if you fit height~country?

How does R code for categories?

Ed Vul \| UCSD Psychology
What do the coefficients mean?

How does R code for categories?

```
summary(lm(height~country))
```

Coefficients:

(Intercept) countryNorth K. countrySouth K. countryUSA	Estimat	Er	t val	$\operatorname{Pr}(>1$	
	73.296	2.589	28.316	9.25e-14	***
	-5.849	3.274	-1.786	0.0957	
	-3.666	3.424	-1.070	0.3025	
	-4.057	3.170	-1.280	0.2214	

What do the coefficients mean?
Mean height of Netherlands is 73"
Mean height of N.K. is 5.8" shorter than Netherlands
Mean height of S.K. is 3.7" shorter than Netherlands.
Mean height of USA is 4" shorter than Netherlands
Mean height of Netherlands is significantly different from 0.
Differences between Netherlands and other countries are not significant.
Ed Vul \| UCSD Psychology

Visualizing coefficients

summary (lm(height~country))

(Intercept): Mean height of Netherlands. Significance: comparison of Neth. mean to

Categorical coefficient estimates

summary (lm(height~country))					
Coefficients:					
	Estimate Std.	Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	73.296	2.589	28.316	9.25e-14	***
countryNorth K.	-5.849	3.274	-1.786	0.0957	.
countrySouth K.	-3.666	3.424	-1.070	0.3025	
countryUSA	-4.057	3.170	-1.280	0.2214	

From this we learn:

Mean height of Netherlands is significantly different from o. Other pairwise differences with Netherlands are not significant.

But that's not what we want to know. We want to know:
Does mean height vary as a function of country?
So we do the F-test: An analysis of variance across means

Does the mean vary with a factor?

```
summary(lm(height~country))
```

```
Coefficients:
```

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 73.296 | 2.589 | 28.316 | $9.25 e-14$ | *** |
| countryNorth K. | -5.849 | 3.274 | -1.786 | 0.0957 | . |
| countrySouth K. | -3.666 | 3.424 | -1.070 | 0.3025 | |
| countryUSA | -4.057 | 3.170 | -1.280 | 0.2214 | |

But that's not what we want to know.
We want to know: does mean height vary as a function of country?

```
anova(lm(height~country))
Response: height
    Df Sum Sq Mean Sq F value Pr(>F)
country }\begin{array}{lllll}{3}&{64.782}&{21.594}&{1.0743}&{0.3917}
Residuals 14 281.414 20.101
```

It doesn't, but at least that's the answer we're after.

Does the mean vary with a factor?

```
anova(lm(height~country))
Response: height
    Df Sum Sq Mean Sq F value Pr(>F)
country 3 64.782 21.594 1.0743 0.3917
Residuals 14 281.414 20.101
```

Note: df of country factor is not 1, but 3, because it takes 3 variables to code for differences among 4 categories.

F = SSR[country] / (4-1) / SSE[country] / (n-4)
$\mathrm{p}=1$-pf(F, 4-1, n-4)
So, the country factor does not account for a significant amount of variance, compared to a model that only captures the average height.

Visualizing sums of squares

anova(lm(height~country))

Response: height
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
country $\quad 3 \quad 923.72307 .906 \quad 19.54 \quad 5.567 e-11 \quad * * *$
Residuals $1762773.38 \quad 15.758$
SST: sum of squared deviations of all data points from overall (grand) mean. (not in R

Ed Vul \| UCSD Psychology

Visualizing sums of squares

```
anova(lm(height~country))
Response: height
```


SSR[country]: sum(deviations^^2) of country means from grand mean.
This is equivalent to Sum_country((mean(country) - grand_mean)^^*n_country)

Ed Vul | UCSD Psychology

Visualizing sums of squares

SSE[country]: sum(deviations ${ }^{\wedge} \mathbf{2}$) of data points from respective country means.

Ed Vul \| UCSD Psychology

Factor significance

anova(lm(height~country))

Response: height

F test compares the SSR (or equivalently: SSE, or $\mathbf{R}^{\wedge} \mathbf{2}$) for a model that includes 3 regressors to capture country effects, to a null model where that SS allocation arises only from random variation due to residuals.

$$
F\left(p_{\text {SOURCE }}, n-p_{\text {FULL }}\right)=\frac{\left(\frac{\operatorname{SSR}_{\text {SOURCE }}}{p_{\text {SOURCE }}}\right)}{\left(\frac{S S E_{\text {FULL }}}{n-p_{\text {FULL }}}\right)}
$$

F. Country $=(923 / 3) /(2773 / 176)$

F statistic measures how much variance is explained by factor.

More "signal variance" always means bigger F, so we do a onetailed test.

Ed Vul \| UCSD Psychology

Does the mean vary with a factor?
 New data (n *10)

```
anova(lm(height~country))
Response: height
    Df Sum Sq Mean Sq F value Pr(>F)
country 3 923.72 307.906 19.54 5.567e-11 ***
Residuals 176 2773.38 15.758
```

So now it's significant. What does that mean?
Equivalent statements:
(1) Variation of mean height among countries is significantly bigger than expected by chance if all means are really equal in population.
(2) Adding regressors to capture differences among countries accounts for more variance than expected by chance (because of 1!)

One way ANOVA summary.

As always: SST = SSR + SSE
SSE = (1-R^2)*SST $\mathbf{R}^{\wedge} \mathbf{2}=\mathbf{S S R} / \mathrm{SST}$ although we now call it $\underset{\eta^{2}}{\text { eta }} \mathbf{2}$,
This is not just to mess with you - with more factors it ends up a bit different, but with one factor, it's the same.

As always with linear model, we calculate significance of SS allocation using the F statistic.

$$
F\left(p_{\text {SOURCE }}, n-p_{\text {FULL }}\right)=\frac{\left(\frac{S S R_{\text {SOURCE }}}{p_{\text {SOURCE }}}\right)}{\left(\frac{S S E_{\text {FULL }}}{n-p_{\text {FULL }}}\right)}
$$

```
major height
cogs:10 Min. :58.18
ling:10 1st Qu.:62.62
math:10 Median :65.08
psyc:10 Mean :65.09
rady:10 3rd Qu.:67.55
    Max. :71.73
```

anova(lm(data=df, height~major))

```
Response: height
    Df Sum Sq
major 4 397.04
Residuals 45 786.75
```

- What's the mean height of cogs majors?
- What's the mean height of math majors?
- What's the difference between mean height of psyc and rady?
- What's the t-test statistic and significance of the "math" coefficient? What does it mean?
- What’s effect size (eta^2 / R^2) of major on height?
- Is the ANOVA on the major factor significant? What's the F statistic? P-value?

```
t.test(df$height[df$major=='math'], df$height[df$major=='cogs'])
t = -3.8896, df = 17.922, p-value = 0.001081
```

t.test(df\$height[df\$major=='math'], df\$height[df\$major=='cogs'], var.equal =T)
$\mathrm{t}=-3.8896, \mathrm{df}=18, \mathrm{p}$-value $=0.001074$

Coefficients:					
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	69.6589	1.3222	52.682	< 2e-16	**
majorling	-1.5687	1.8699	-0.839	0.40597	
majormath	-7.4371	1.8699	-3.977	0.00025	***
majorpsyc	0.4074	1.8699	0.218	0.82850	
majorrady	-2.7078	1.8699	-1.448	0.15453	

- What's the difference between the eq. var t-test of math-cogs and the t-test on the math coefficient?

height	sex	country
62	f	N.Korea
57	f	N. Korea
60	f	N. Korea
57	f	N. Korea
59	f	N. Korea
67	m	S.Korea
61	m	- S.Korea
57	m	- S.Korea
68	m	S.Korea
60	f	USA
60	f	USA
60	f	USA
64	f	USA
65	f	USA
74	m	Netherlands
69	m	Netherlands
62	m	Netherlands
74	m	Netherlands
63	m	Netherlands
59	f	N. Korea
63	f	N. Korea
67	f	N. Korea
68	f	N. Korea
72	f	N. Korea
61	f	N. Korea
63	m	S.Korea
72	m	S.Korea
67	m	S.Korea
67	m	S.Korea
64	f	USA
64	f	USA
65	f	USA
63	f	USA
56	f	USA
64	f	USA
68	m	Netherlands
67	m	Netherlands
72	m	Netherlands
71	m	Netherlands
73	m	Netherlands
74		Netherlands

(Intercept) c:Neth c:S.K. c:USA sex:m

(Intercept) c:Neth c:S.K. c:USA sex:m				
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	1
1	0	0	1	1
1	0	0	1	1
1	0	0	1	1
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1
1	1	0	0	1
1	1	0	0	1
1	0	0	1	
1		0	1	
1				

<- Coding just for "main effects": additive effects of a factor.
Main effect of sex: average difference between men and women
Main effect of country: average differences between countries.
summary (1 m (height~country+sex))

| Estimate Std. Error t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 58.437 | 1.429 | 40.891 | $<2 \mathrm{e}-16 * * *$ |
| countryNetherlands | 5.555 | 1.745 | 3.183 | 0.00300 ** |
| countryS.Korea | 3.905 | 1.818 | 2.148 | $0.03855 *$ |
| countryUSA | 5.256 | 1.818 | 2.892 | 0.00646 ** |
| sexm | 5.517 | 1.243 | 4.439 | $8.22 \mathrm{e}-05 * *$ |

So, the model predicts different cell means to be:
N.K. females = B0 (intercept)
N.K. females = B0 (intercept)
Netherlands females = B0 + B1 + (countryNetherlands)
Netherlands females = B0 + B1 + (countryNetherlands)
S.K. females = B0 + B2 + (countryS.Korea)
S.K. females = B0 + B2 + (countryS.Korea)
USA females = B0 + B3 + (countryUSA)
USA females = B0 + B3 + (countryUSA)
N.K. males = B0 + B4 + (sexm)
N.K. males = B0 + B4 + (sexm)
Netherlands males = B0 + B1 + B4 + (netherlands) + (sexm)
Netherlands males = B0 + B1 + B4 + (netherlands) + (sexm)
S.K. males = B0 + B2 + B4 + (S.K.) + (sexm)
S.K. males = B0 + B2 + B4 + (S.K.) + (sexm)
USA males = B0 + B3 + B4 + (USA) + (sexm)
USA males = B0 + B3 + B4 + (USA) + (sexm)
"main effects":
"main effects":
Effect of maleness is additive with effect of country.
Effect of maleness is additive with effect of country.
Difference between males and females is the same for
Difference between males and females is the same for
every country, and differences among countries are the
every country, and differences among countries are the
same within males and within females.
same within males and within females.

What does a sig. main effect mean?

1. Amount of variance accounted for by factor levels is bigger than chance.
2. Variance of means across factor level is greater than zero.
3. Evidence that not all factor level means are equal.

Compare mean of left vs right, and mean of red vs blue...

What does a sig. main effect mean?

1. Amount of variance accounted for by factor levels is bigger than chance.
2. Variance of means across factor level is greater than zero.
3. Evidence that not all factor level means are equal. What it does not mean:

- That there is a uniform additive offset of factor level. (just one rogue cell would do)
- Or that the means vary in any other particular pattern. (mean changes might not coincide with your prediction)

Ed Vul \| UCSD Psychology
\longleftarrow Ugh: main effects will show up, but they aren't consistent with intuitive interpretation.

(Intercept) c:Neth c:S.K. c:USA sex:m				
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	0
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	0	0	0	1
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	1	0	1
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	0
1	0	0	1	1
1	0	0	1	1
1	0	0	1	1
1	0	0	1	1
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1
1	1	0	0	1
1	1	0	0	1
1	0	0	1	
1	0	1		
1				

```
anova(lm(height~country+sex))
```

Response: height
$\begin{array}{lrlrcc} & \text { Df } & \text { Sum Sq Mean Sq F value } & \operatorname{Pr}(>F) \\ \text { country } & 3 & 196.18 & 65.394 & 4.1827 & 0.01223\end{array}$ *
$\begin{array}{lrrrrr} \\ \text { country } & 3 & 196.18 & 65.394 & 4.1827 & 0.01223\end{array} *$
Residuals $36562.84 \quad 15.635$
"Main effects"
Effect of maleness is additive with effect of country.
Difference between males and females is the same
for every country, and differences among countries
are the same within males and within females.
But, critically, this cannot capture "interactions"
some differences in differences among means.
E.g., mean(male)-mean(female) varies across
countries.

Ed Vul \| UCSD Psychology

The overall mean.

Ed Vul \| UCSD Psychology

Main effects capture deviations of specific factor level means from overall mean

Ed Vul \| UCSD Psychology

Main effects capture deviations of specific factor level means from overall mean

Ed Vul \| UCSD Psychology

So the treatment 'main effects' are additive offsets for each treatment 'level' that are constant for all conditions at that treatment level.

Ed Vul \| UCSD Psychology

So the treatment 'main effects' are offsets for each treatment 'level' that are constant for all conditions at that treatment level and additive across factors.

But they don't necessarily match the cell means. The distance left over is the "interaction".
Ed Vul \| UCSD Psychology


```
anova(lm(height~country+sex+country:sex))
Response: height
\begin{tabular}{rrrrr} 
Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) & \\
3 & 196.18 & 65.394 & 4.2342 & 0.01226
\end{tabular}\(*\)
```

So, here we have Type I sums of squares results
The interpretation is:

- Adding country regressors to a null (grand mean) model accounts for significantly more variation than expected by chance. (variation in mean height across countries is greater than o)
- Adding sex regressors to a model with country accounts for significantly more variation (variation in mean height across sex is greater than o)
- Adding country:sex interaction regressors to a model with country and sex main effects does not account for significantly more variation (pattern of mean differences across countries is not significantly different for males than females)

Ed Vul \| UCSD Psychology

Interpreting coefs with interactions

This means that...

- Main effect + intercept codes for mean of cell at first level of the other factor:
e.g., Intercept = mean of female australians
e.g,. Intercept + B_male = mean of male australians
e.g., Intercept + B_canada = mean of female canadians
- Interaction coefficients code for the difference unaccounted for by the $\mathbf{2 +}$ levels of factors
e.g., B_male:canada = mean(male canadians) - intercept B_male - B_canada
- Consequently, to estimate the net effect of maleness, you have to consider both the B_male coefficient and the various
B_male:country interaction terms.
(this is something we will do more effectively with contrasts)
- Moreover, the main effect coefficients estimated without an interaction will differ from those with the interaction.
Ed Vul \| UCSD Psychology

So the treatment 'main effects' are offsets for each treatment 'level' that are constant for all conditions at that treatment level and additive across factors.

But they don't necessarily match the cell means. The distance left over is the "interaction".
Ed Vul \| UCSD Psychology

What does a sig. interaction mean?

1. The variables coding for interaction account for more variance than expected by chance.
2. The additive main effects alone fail to capture variation in cell means.
3. Cell means deviate from sum of main effects.

What does it not mean?

- Effect of factor levels changes with levels of other factor. (consider ceiling, floor effects and other non-linearities)
- Means, differences, and differences of differences are what you expected.

What does a sig. interaction mean?

- Interaction: Main effects don’t sum linearly.
- Why?
- Influence of factor A on response variable differs in some interesting way over levels of factor B . eg: Major influences income only for the not rich.

What does a sig. interaction mean?

- Interaction: Main effects don't sum linearly.
- Why?
- Influence of factor A on response variable differs in some interesting way over levels of factor B.
- Response variable or factor effects are not linear...
- Ceiling effects
- Floor effects

- Multiplicative effects
- Etc.
- For this reason, crossover interactions are the gold standard: they rule out many non-linearities.

Interactions

- So what's an 'interaction'?
- There is a difference of differences. e.g., the difference between male and female heights varies across countries.
- The effect of one factor is different for different levels of an orthogonal factor.
- More generally: influence of predictive variables (factors) on the measured variable is not additive.

Interactions

Showing an interaction

- Option 1: Bar graphs
- Factor A: Different bars.
- Factor B: Different groups of bars
- Factor C: yet another grouping, or a new plot.
- Factor D: ???
- Factors often collapsed for display.

Ed Vul \| UCSD Psychology

Showing an interaction

- Option 2: Line graphs
- Factor A: different points on x axis.
- Factor B: different lines.
- Factor C: different panels
- Factor D: another dimension for different panels

Showing an interaction

- Option 1: Bar graphs
+ Very common!
+ Easy to read means
- Wasted ink
- Lower data density.

- Option 2: Line graphs
+ High data density
+ Easy to read interactions
+ Less wasted ink
- Less common in psych.

Sleepy				
Awake	Food	No food		

+ Called 'interaction plots' for a reason.

What's in these data?

- Main effect of Major?
- Main effect of Parent's SES?
- Interaction between SES and Major?

Ed Vul \| UCSD Psychology

What's in these data?

- Main effect of Major?
- Main effect of Parent's SES?
- Interaction between SES and Major?

Ed Vul \| UCSD Psychology

Differences of differences

- Main effect: there are differences between means of factor levels.
- 2-way interaction: the differences between means of factor A levels differ across factor B levels.
- 3-way interaction: the (differences of (differences of means of factor A levels) across factor B levels) differ across factor C levels.

Interaction: differences

- Main effects (0th order interaction?)
- Different levels of main effect factor have different means.

Mean(Sleepy) < Mean(Awake)
Mean(Male) < Mean(Female)

- There is a difference between levels of a factor.

Sleepy
Awake

Sleepy
Awake

Interaction: differences

- 2-way Interaction ($1^{\text {st }}$ order interaction)
- Differences between levels of a factor vary as a function of another factor level. [Mean(SleepylMale) - Mean(AwakelMale)] < [Mean(SleepylFemale) - Mean(AwakelFemale)]
- There is a difference of differences.

Interaction: differences

- 2-way Interaction ($1^{\text {st }}$ order interaction)
- Differences between levels of a factor vary as a function of another factor level. [Mean(Male, Sleepy) - Mean(Female, Sleepy)] $>$
[Mean(Male, Awake) - Mean(Female, Awake)]
- There is a difference of differences.

Interaction: differences

- 3-way Interaction (2 ${ }^{\text {nd }}$ order interaction)
- Differences between interaction between two factors varies as a function of third-factor level. \{[Mean(MalelSleepy,Food) - Mean(FemalelSleepy,Food)]
-[Mean(MalelAwake,Food) - Mean(FemalelAwake,Food)]\}
$>$
\{[Mean(MalelSleepy,NoFood) - Mean(FemalelSleepy, NoFood)]
- [Mean(MalelAwake,NoFood) - Mean(FemalelAwake,NoFood)]\}
- There is a difference of differences of differences.

Interaction: differences

- 4-way Interaction (3 ${ }^{\text {rd }}$ order interaction)
- Differences between interaction between three factors varies as a function of fourth-factor level.
- There is a difference of differences of differences of differences.

Sleepy	Food	No food
Awake		
		∞
	M F	$\mathrm{M} \quad \mathrm{F}$

Interaction: differences

- 5-way Interaction (4 $4^{\text {th }}$ order interaction)
- There is a difference of differences of differences of differences of differences...
- ...You get the idea... Stay away.

Interpreting higher order interactions via differences

- Take the difference along one factor...

Interpreting higher order interactions via differences

- Take the difference along one factor...

Interpreting higher order interactions via differences

- Take the difference along one factor...

Interpreting higher order interactions via differences

- Take the difference along one factor...

Temperature difference [M-F]

Interpreting higher order interactions via differences

- Take the difference along one factor...

Difference (across Rit. Sal.) of temperature difference across [M-F]
$[M-F]_{R}-[M-F]_{S}$

Interpreting higher order interactions via differences

- Take the difference along one factor...

Difference (across Rit. Sal.) of temperature difference across [M-F]
$[M-F]_{R}-[M-F]_{S}$

Interpreting higher order interactions via differences

- Take the difference along one factor...

Difference (across Rit. Sal.) of temperature difference across [M-F]
Sleepy
Temperature

The difference between male and female temperatures differs across ritalin vs. saline
 but only when the hamsters are fed and sleepy.

You see why higher order interactions are unwieldy...

\square Main effects? Interactions?

Ed Vul \| UCSD Psychology

No Main effect of R / B
Main effect of L / R
No Interaction

Main effect of R / B
Main effect of L / R
No Interaction

Main effect of R / B
Main effect of L / R
Interaction

Main effect of R / B
Main effect of L / R Interaction

Main effect of R / B
Main effect of L / R Interaction

Interactions Cautions

- Higher order interactions are hard to interpret: many (qualitatively different) patterns of means can yield the same difference of differences of differences of
- Main effects in the presence of an interaction (or lower order interactions in the presence of a higher order interactions) should be subject to scrutiny.

- Better to stay away from highly factorial designs unless they are strictly necessary.

Interactions Cautions

- Higher order interactions are hard to interpret: many (qualitatively different) patterns of means can yield the same difference of differences of differences of
- Main effects in the presence of an interaction (or lower order interactions in the presence of a higher order interactions) should be subject to scrutiny.

- Better to stay away from highly factorial designs unless they are strictly necessary.

Sums of squares in full factorial ANOVA

- SS[main effects] = sum of the squared deviations of factor level means from overall mean.
- SS[interactions] = sum of squared deviations of cell means from mean predicted by main effects.
- SS[error] = sum of squared deviations of data points from their respective cell means (deviation from predicted mean using main effects and interactions).

ANOVA table shows variance partition

```
anova(lm(height~country+sex+country:sex))
\begin{tabular}{lrrrrr} 
Response: height & & & \\
& Df & Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
country & 3 & 196.18 & 65.394 & 4.2342 & 0.01226
\end{tabular}\(*\)
```

Type I (sequential) Sums of squares: (default in R)

How much variance can country explain? How much more variance can sex explain? How much more variance can the interaction explain?

SSR(country)
SSR(sex | country)
SSR(sex:country | sex, country)

Consequently, order of factors will matter if the design is not perfectly balanced.

Type II SS:	SSR(country \| sex),	Type III SS:	SSR(country \| sex, sex:country), SSR(sex \| country), SSR(sex:country \| sex, country)
		SSR(sex \| country, sex:country),	
			SSR(sex:country \| sex, country)

Type I, II, III sums of squares make different comparisons, and thus are testing different null hypotheses. Which is more appropriate depends on your question.

Ed Vul \| UCSD Psychology

Degrees of freedom

- How many regressors does it take to capture a main effect?
- \# of levels minus 1
- How many regressors does it take to capture an interaction?
- (\# of levels of A minus 1)*(\# of levels of B minus 1)
- think of it this way: if we code for the full model with interactions, \# of parameters = \# of cells (to be able to capture a unique mean for each cell).
These get divided among intercept, main effects and interactions.

Assumptions (and when stuff breaks)

Same as regression:

- Errors are independent...
- Violated under sequential / temporal dependence, nonrandom sampling, etc.
- Consider: mixed effects, covariates
- ...identically distributed...
- Violated if some conditions have higher variance.
- Consider: ignoring (if not that different)
- Consider: log transform (if errors are multiplicative)
- ...and Normal.
- Violated if measure has high skew, kurtosis, floor, ceiling effects.
- Consider: various transformations.

Multicolinearity in unbalanced designs

Type I sums of squares (R default) SS for factor 1: SSR[factor1] SS for factor 2: SSR[factor2 | factor 1]

Type II and III sums of squares, calculate SS for a given factor controlling for other stuff. II and III do not depend on order, but also don't preserve the SST = sum(all SS).
Type III is default in SPSS. They implicitly test slightly different null hypotheses.
Ed Vut | UCSD Psychology

Unbalanced design: different ns in different cells, so factors are not independent, so we have multicolinearity, and a credit assignment problem.

Multicolinearity effects: Contamination across main effects, and order-dependence in sum sq. allocation.

anova(lm(height~country+sex))
Response: height Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
country $3196.18 \quad 65.3944 .1827 \quad 0.01223$.
Residuals 36562.8415 .635
SSR[country] and SSR[sex\|country]
anova(lm(height~sex+country))
Response: height Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
country 3 188.05 62.68 4.0092 0.01465 *
Residuals 36562.8415 .63
SSR[sex] and SSR[country\|sex]

Need for contrasts...

- For designs of any sort of complexity, we often are interested in specific patterns of differences, not just the presence of some differences.
- To test for these specific patterns, we need contrasts. We will deal with those in 201b.

One observation per cell.

- If we have one observation per cell, the interaction is the error.
- Therefore, if we include interaction in the model, we have no error left over (data points do not deviate at all from cell means).
- Also $\mathrm{n}=$ \# of parameters... so df error is o...
- So we can't compute any F ratios or ascertain significance.
- Solution: omit interaction term, then that variance will be error, and you can assess main effects.

ANOVA effect size

Percent variance accounted for....

- Counterpart of R: η^{2} "eta squared"
$\eta_{A}^{2}=\frac{S S[A]}{S S T}$
$\eta_{A}^{2}=\frac{494.57}{1716.3}=0.288$

Source	df	SS	MS	F	p
A (Country)	3	494.57	164.86	10	<0.001
B (Gender)	1	469.80	469.80	28.5	<0.001
A*B (Country*Gender)	3	142.14	47.38	2.87	0.049
Residuals	37	609.8	21.98		
Total	44	1716.3	25.69		

Note that this is equal to full-model R^{2} when there is only one factor, but if there is more than one, it will be smaller.

ANOVA effect size

Percent variance accounted for....

- Counterpart of R: η^{2} "eta squared"
$\eta_{A}^{2}=\frac{S S[A]}{S S T}$
$\eta_{A}^{2}=\frac{494.57}{1716.3}=0.288$

Source	df	SS	MS	F	p
A (Country)	3	494.57	164.86	10	<0.001
B (Gender)	1	469.80	469.80	28.5	<0.001
A*B (Country*Gender)	3	142.14	47.38	2.87	0.049
Residuals	37	609.8	21.98		
Total	44	1716.3	25.69		

- Partial η^{2} (this is like " R^{2} everything else constant")
partial $: \eta_{A}^{2}=\frac{S S[A]}{S S[A]+S S[\text { error }]}$
partial $: \eta_{A}^{2}=\frac{494.57}{494.57+609.8}=0.448$
Ed Vul \| UCSD Psychology

ANOVA effect size

Percent variance accounted for....

- Counterpart of R^{2} : proportion of all variance η^{2} "eta squared"

$$
\eta_{A}^{2}=\frac{S S[A]}{S S T}
$$

- Counterpart of partial R^{2} : " R^{2} everything else constant" Partial η^{2}
partial $: \eta_{A}^{2}=\frac{S S[A]}{S S[A]+S S[\text { error }]}$
But these measures are not good estimates of the effect size in the population - they are biased because SS[A] includes some variance due to noise...

ANOVA effect size.

- There is a surprisingly large number of candidate effect sizes for an ANOVA, all interrelated, but with slightly different properties.
$-\eta^{2}, \omega^{2}, f^{2}, f, \Psi, \ldots$
- What do we want from an effect size?
- Quantify standardized relationship strength in population (independence from sample size)
- ...in an interpretable way
- ...that we can estimate from a sample
- ...and will allow us to predict power
- ...while generalizing across study designs

My preference: ω^{2} (omega squared)

- Effect size: Variance of signal in population, relative to unexplained variance in population.

$$
\omega_{\text {Source }}^{2}=\frac{\sigma_{\text {Saurre }}^{2}}{\sigma_{\text {Saurce }}^{2}+\sigma_{\text {Error }}^{2}}
$$

- It's like partial η^{2}, but is a population property
- So to generalize across designs, it must assume that variability due to other factors was introduced by the experiment, and will not occur otherwise.
- Partial η^{2} overestimates; we need a correction.

$$
\hat{\omega}_{\text {Source }}^{2}=\frac{S S[\text { Source }]-d f_{\text {source }} \cdot M S[\text { Error }]}{S S[\text { Source }]+\left(N-d f_{\text {source }}\right) \cdot M S[\text { Error }]}
$$

ω^{2} and other measures

$$
f_{\text {Source }}^{2}=\frac{\omega_{\text {Source }}^{2}}{1-\omega_{\text {Source }}^{2}}=\frac{\sigma_{\text {Source }}^{2}}{\sigma_{\text {Error }}^{2}} \quad \begin{aligned}
& \text { This is a "signal-to-noise" ratio measurement: } \\
& \text { Variance of signal divided by variance of noise. }
\end{aligned}
$$

$$
f_{\text {Source }}=\sqrt{\frac{\omega_{\text {Source }}^{2}}{1-\omega_{\text {Source }}^{2}}}=\frac{\sigma_{\text {Source }}}{\sigma_{\text {Error }}}
$$

This is a "signal-to-noise" ratio measurement in original (not squared) units, thus is more analogous to Cohen's d
$\lambda=\mathrm{N} * f_{\text {Source }}^{2}=N * \frac{\omega_{\text {Source }}^{2}}{1-\omega_{\text {Source }}^{2}}$
This is the F distribution "non-centrality parameter" used to describe the distribution of F statistics obtained when samples come from a distribution with some real effect.

What's a big effect? Some say $\omega^{2}=0.15$ is big, 0.06 is medium, 0.01 is small.

Power for the F-test

So, to figure out the power of an F test we need to know the sample size, alpha, and true effect.

Power for the F-test

Required \mathbf{n} for certain power

This is trickier, as changing n changes both the null distribution and the true-effect distribution

```
n = 5
power = 1-pf(qf(0.95,k-1,k*(n-1)),k-1,k*(n-1), n*k*w2/(1-w2))
n = 6
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))
n = 7
power = 1-pf(qf(0.95,k-1,k*(n-1)),k-1,k*(n-1), n*k*w2/(1-w2))
n = 8
power = 1-pf(qf(0.95,k-1,k*(n-1)), k-1,k*(n-1), n*k*w2/(1-w2))
n = 9
power = 1-pf(qf(0.95,k-1,k*(n-1)), k-1,k*(n-1), n*k*w2/(1-w2))
n = 10
power = 1-pf(qf(0.95, k-1, k*(n-1)), k-1, k*(n-1), n*k*w2/(1-w2))
n = 11
power = 1-pf(qf(0.95,k-1,k*(n-1)),k-1,k*(n-1), n*k*w2/(1-w2))
```

[1] 0.46
[1] 0.56
[1] 0.65
[1] 0.73
[1] 0.79
[1] 0.84
[1] 0.88

So we have to solve for it numerically... I recommend using the pwr R package.

Drawing data consistent with ANOVA

1) The San Diego K-12 Education board is trying to evaluate the efficacy of their math teachers. They measure average pre-to-post class improvement on a standardized test for different teachers, as a function of teacher seniority (years teaching: $0-5,5-10,10-15,15-20,20+$), teacher gender (male, female), and teacher college major (STEM, Humanities, Social Science). Their analysis reveals no main effect of seniority, no main effect of gender, a significant main effect of major (STEM > Social Science > Humanities), and a significant interaction between a quadratic trend for seniority and gender. No other effects were found. Draw plot(s) showing a pattern of means that would be consistent with these effects.

ANOVA table sudoku

Length of prison sentence was measured as a function of Crime (3 levels: theft, fraud, arson) and Time of day that the judge made the decision. (5 levels: 8-9:30, 9:30-11, 11-12:30, 1:30-3, 3-4:30)

3a. Fill in the blanks given that there are five observations per condition. (write p to 3 sig digits)

Source	SS	df	MS	F	p
Crime	45	-			
Time	85	-	-	-	-
Crime*Time	120	-	-	-	-
Error	-	-	-	-	-
Total	700				

Coefficients

Length of prison sentence was measured as a function of Crime (3 levels: theft, fraud, arson) and Time of day that the judge made the decision. (5 levels: 8-9:30, 9:30-11, 11-12:30, 1:30-3, 3-4:30)

summary (lm(sentence.moncrime*time))		
Coefficients:		
	Estimate	
(Intercept)	60	
Crime-fraud	-12	
Crime-theft	4	deun!
Time-0930	-3	s-Madeup!
Time-1100	8	
Time-1330	-5	
Time-1500	6	
Crime-fraud: Time-0930	0	
Crime-theft:Time-0930	-3	
Crime-fraud: Time-1100	+5	
Crime-theft:Time-1100	-2	
Crime-fraud: Time-1330	-2	
Crime-theft:Time-1330	2	
Crime-fraud: Time-1500	-1	
Crime-theft:Time-1500	10	

What are the mean prison sentences in all 15 crime*time cells? (assuming R's default factor coding scheme)

Ed Vul \| UCSD Psychology

ANOVA table sudoku

4a) You get your own data on math education teacher efficacy. You measure pre-post test improvement in 120 classes, 10 in each cell of a 3 teacher-major [STEM/humanities/social science] by 4 time-of-day [9:30am, 11am, 12:30pm, 2pm] design. Please fill in the following ANOVA table

	SS	df	MS	F	p
TeacherMajor				2.5	
TimeOfDay	300				
TeacherMajor X TimeOfDay					
Error			10		
Total	1610				

