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201ab Quantitative methods
L.10: Multiple regression

With great illustrations from Julian Parris.
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No dealing directly with 
estimation equations/calculations directly.

(it’s impractical here on out)

Good news!

Bad news!

From now on, getting an answer from R is much easier 
than understanding what question to ask 

(or which answer corresponds to which question).  
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models



ED VUL | UCSD Psychology

Single predictor regression model

4

εi ~ N(0,σε
2 )
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Two Predictor Regression Model

εi ~ N(0,σε
2 )
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Partial Regression coefficient
• Slope estimates are “partial regression coefficients”: 

the partial effect of one variable with the others held 
constant.
– b1: increase in Y per unit increase in X1, all else constant*
– E.g., how many inches taller will a daughter be if a mother 

was 1” taller, while keeping the father the same height.

* “all else constant” is often not plausible

15
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Multiple regression agenda
• What is it?
• Why do this?
– More complete model:

better predictions from conjunctions of variables
less residual error

– Assign credit to multiple predictors
Estimate effect of one variable while “statistically 
controlling” for others
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summary(lm(daughter~mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 34.17132    6.30603   5.419  4.3e-07
mom          0.48826    0.09636 5.067  1.9e-06

Residual standard error: 3.49 on 98 degrees of freedom
Multiple R-squared:  0.2076

summary(lm(daughter~dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  26.8399     5.9418   4.517 1.75e-05
dad           0.5641     0.0853 6.613 1.99e-09

Residual standard error: 3.26 on 98 degrees of freedom
Multiple R-squared:  0.3086,

summary(lm(daughter~mom+dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.94594    7.02683  -0.135    0.893    
mom          0.45337    0.07809 5.806 8.09e-08
dad          0.53768    0.07400 7.266 9.41e-11

Residual standard error: 2.823 on 97 degrees of freedom
Multiple R-squared:  0.4869,

Mom and dad are uncorrelated, they 
explain different variability, so we 
lower our residual sd, increase our 
R2, and get more precise estimates 
of the coefficients.

More complete model with uncorrelated predictors is a win all around.

Things get trickier when predictors are correlated.
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models
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summary(lm(daughter~dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 10.26150    4.82647   2.126    0.036 *  
dad          0.78125    0.06901  11.321   <2e-16 ***
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summary(lm(daughter~dad+mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   3.7872     4.6471   0.815 0.417082    
mom           0.5210     0.1164   4.477 2.06e-05 ***
dad           0.3900     0.1078   3.617 0.000475 ***

summary(lm(daughter~dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 10.26150    4.82647   2.126    0.036 *  
dad          0.78125    0.06901  11.321   <2e-16 ***

summary(lm(daughter~mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  8.88151    4.69354   1.892   0.0614 .  
mom          0.86209    0.07223  11.936   <2e-16 ***

Partial regression coefficients change a lot 
when adding correlated regressors/predictors.

Because “credit” (for the increase in Y) is split 
among the different predictors.
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summary(lm(daughter~dad+mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   3.7872     4.6471   0.815 0.417082    
mom           0.5210     0.1164   4.477 2.06e-05 ***
dad           0.3900     0.1078   3.617 0.000475 ***

summary(lm(daughter~dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 10.26150    4.82647   2.126    0.036 *  
dad          0.78125    0.06901  11.321   <2e-16 ***

summary(lm(daughter~mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  8.88151    4.69354   1.892   0.0614 .  
mom          0.86209    0.07223  11.936   <2e-16 ***

Partial regression coefficients errors tend to 
increase when adding correlated predictors.

Because there is ambiguity about how the 
credit should be split.  
(Variance inflation factor)
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Multicollinearity
Multicollinearity arises in multiple regression when predictors are correlated.

If this happens, we get:
(a) a credit assignment problem (which coefficients get credit for Y?)
(b) inflation of marginal standard errors for coefficients
(c) erratic changes in coefficients from small changes in the model or the data. 

Measuring multicolinearity:
- How well you can account for the variance in one predictor from a linear 

combination of the other predictors.  
- In a 2-predictor case, this boils down to their correlation:

E.g., how well correlated are father and mother heights?
A correlation of 1 or -1 means perfect multicolinearity.
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models
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SST (SS total, also SSY)

SSR[X1] (SS regression var 1) SSE[X1] (SS error)

R2

Variability in Y accounted for by X1
e.g., Variability in daughters’ heights accounted for by mothers’ height

1-R2

Variability unaccounted for by X1
e.g., Variability in daughters’ heights not 

accounted for by mothers’ height

1.0
Total variability in Y (around the mean)

e.g., total variability in daughter’s heights
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SST (SS total, also SSY)

SSR[X1] (SS regression var 1) SSE[X1] (SS error)

SSR[X2] (SS regression var 2) SSE[X2] (SS error)

R2

Variability in Y accounted for by X2
e.g., Variability in daughters’ heights accounted 

for by fathers’ height

1-R2

Variability unaccounted for by X2
e.g., Variability in daughters’ heights not accounted 

for by fathers’ height

R2

Variability in Y accounted for by X1
e.g., Variability in daughters’ heights accounted for by mothers’ height

1-R2

Variability unaccounted for by X1
e.g., Variability in daughters’ heights not 

accounted for by mothers’ height

1.0
Total variability in Y (around the mean)

e.g., total variability in daughter’s heights
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SST (SS total, also SSY)

SSR[X1] SSE[X1]

Variability in Y left over after factoring in X1

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]

Variability 
unaccounted 

for by X1 & X2
e.g., Variability in 

daughters’ heights 
not accounted for 
by mothers’ and 
fathers’ height

Extra sums of squares: Extra variability 
accounted for by taking into account X1 

after having considered X2.
e.g., Additional variability in daughters’ heights 

accounted for by taking into account mothers’ heights 
having already considered fathers’ height
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SST (SS total, also SSY)

SSR[X1] SSE[X1]

Variability in Y left over after factoring in X1

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]

Variability 
unaccounted for by 

X1 & X2
e.g., Variability in 

daughters’ heights not 
accounted for by mothers’ 

and fathers’ height

SSR[X1,X2] SSE[X1,X2]

Variability in Y accounted for by X1 & X2
e.g., Variability in daughters’ heights accounted for by mothers’ and fathers’ height
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Some arithmetic implications
• SST = SSR[X1,X2] + SSE[X1,X2]
• SST = SSR[X2] + SSR[X1 | X2] +  SSE[X1,X2]
• SSR[X1,X2] = SSR[X1] + SSR[X2 | X1] 
• SSR[X1|X2] + SSE[X1,X2] = SSE[X2]

• When we do multiple regression, we have to choose 
how to partition the sums of squares, to test if the SS 
allocated to a particular variable is larger than expected 
by chance.

37
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SST (SS total, also SSY)

SSR[X1] SSE[X1]

Variability in Y left over after factoring in X1

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]

SSR[X1,X2] SSE[X1,X2]

Variability in Y accounted for by X1 & X2
e.g., Variability in daughters’ heights accounted for by mothers’ and fathers’ height

Variability 
unaccounted 

for by X1 & X2

Extra sums of squares: Extra variability accounted for by taking into 
account X1 after having considered X2.

e.g., Additional variability in daughters’ heights accounted for by taking into account
mothers’ heights having already considered fathers’ height
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SST (SS total, also SSY)

SSR[X1] (SS regression var 1) SSE[X1] (SS error)

R2

Proportion of variability in Y accounted for by X1
e.g., Variability in daughters’ heights accounted for by mothers’ height

“Coefficient of determination”

1-R2

Proportion of variability 
unaccounted for by X1

e.g., Variability in daughters’ heights not 
accounted for by mothers’ height

SSR[X1] SSE[X1,X2]SSX[X2|X1]

SSR[X1,X2] SSE[X1,X2]

R2

Proportion of variability in Y accounted for by X1, X2
e.g., Variability in daughters’ heights accounted for by mothers’ and fathers’ height

“Coefficient of multiple determination”
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SST (SS total, also SSY)

SSR[X1] (SS regression var 1) SSE[X1] (SS error)

R2

Proportion of variability in Y accounted for by X1
e.g., Variability in daughters’ heights accounted for by mothers’ height

“Coefficient of determination”

1-R2

Proportion of Variability 
unaccounted for by X1

e.g., Variability in daughters’ heights not 
accounted for by mothers’ height

SSR[X1] SSE[X1,X2]SSX[X2|X1]

R2
Y,X2|X1

Proportion of variability previously 
unaccounted for by X1 that can be 

accounted for by X2
“Coefficient of partial 

determination”

RYX2|X1
2 =

SSX[X2 | X1]
SSE[X1]
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models
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Significance of predictors.
• Pairwise correlation t-test, coefficient t-test, and 

variance-partitioning F-tests were the same in single 
variable regression, they are all different in 
multivariate.

• This is a cause for confusion – what do the different 
significances mean?  Which ones should I care about?

• A more realistic example (less data, more noise), 
tenuous conclusions.
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Predict: son ~ mom+dad
summary(lm(son~mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)   

(Intercept)  23.4218    12.4358   1.883  0.09640 . 
mom           0.7184     0.1919   3.744  0.00567 **

So: in single-variate regressions both mom and dad are 
significant predictors of son’s height.

Also, anova and regression significance are the same.

anova(lm(son~mom))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523   14.02 0.00567 **
Residuals  8 45.377   5.672 

summary(lm(son~dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)   

(Intercept)  17.9579    13.8754   1.294  0.23170   
dad           0.7474     0.1994   3.749  0.00563 **

anova(lm(son~dad))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595  14.055 0.005632 **
Residuals  8 45.305   5.663 
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Predict: son ~ mom+dad
n 10

cor(mom,dad) 0.79

Mom and Dad height are highly correlated (colinear).

What will happen in the multiple regression?

(1) Both mom and dad coefficients will decrease (closer to 0)
(because they have same dir. Relationship w/ response , so are sharing credit)

(2) Both mom and dad coef. std. errors will go up 
(because of credit assignment ambiguity)

(3) They may stop being significant!  
(because t = B1/SE{B1})
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Predict: son ~ mom+dad
summary(lm(son~mom+dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  15.0009    13.4355   1.117    0.301
mom           0.4000     0.3004   1.331    0.225
dad           0.4176     0.3124   1.336    0.223

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

(1) Both mom and dad coefficients will decrease 
(closer to 0 – because they are sharing credit)

(2) Both mom and dad coef. std. errors will go up 
(because of credit assignment ambiguity)

(3) They may stop being significant!  
(because t = B1/SE{B1})

But the ANOVA analysis shows mom as 
significant, and dad as not… huh?
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Predict: son ~ mom+dad
summary(lm(son~mom+dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  15.0009    13.4355   1.117    0.301
mom           0.4000     0.3004   1.331    0.225
dad           0.4176     0.3124   1.336    0.223

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

summary(lm(son~dad+mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  15.0009    13.4355   1.117    0.301
dad           0.4176     0.3124   1.336    0.223
mom           0.4000     0.3004   1.331    0.225

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

And if we change their order… 
coefficients stay the same, but 
ANOVA results change!

What is going on?
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Coefficient significance.

47

summary(lm(son~mom+dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  15.0009    13.4355   1.117    0.301
mom           0.4000     0.3004   1.331    0.225
dad           0.4176     0.3124   1.336    0.223

summary(lm(son~dad+mom))

Significance of coefficients:
t=b1/s{b1}

s{b1} depends on s.d. of residuals 
(and independent variability of x1)

So: you fit the whole model (here: 
plane), find the residuals, then 
see whether the best estimated 
coefficient for x1 is significantly 
different from 0.

Formally: the partial slope on x1 is 
the slope of y as a function of 
residuals(x1~x2)
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ANOVA significance.

48

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

To sort this out, we have to understand sums of squares 
and F statistics a bit better.
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F(dfR−term,dferror ) =

SSR[? | ?]
dfR−term
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SSEFULL

dferror
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d.f. of 
numerator

d.f. of 
denominator

d.f. of numerator: 
number of 
parameters for 
regression term

d.f. of denominator: 
n minus number of 
parameters in full 
model

Sums of squares allocated to this 
regression term/component

Sum of squared 
residuals from 

full model
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F distribution
The F-statistic
The ratio of two (identical) sample 
variances estimated with different 
degrees of freedom.

Under H0, MSR (SSR/df_R) is 
expected to be equal to the variance 
of the residuals.  So numerator and 
denominator are two estimates of the 
same error variance, and the F-
statistic will follow F distribution.

So, given random variation, even 
under H0, we expect the regression to 
take up *some* variance, and our 
question is: does it account for more
variance than expected by chance?

So, F-test is, like Chi-squared, one 
tailed (positive tail). 



ED VUL | UCSD Psychology

SST (SS total, also SSY)

SSR[X1] SSE[X1]

Variability in Y left over after factoring in X1

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]

Variability 
unaccounted for by 

X1 & X2
e.g., Variability in 

daughters’ heights not 
accounted for by mothers’ 

and fathers’ height

SSR[X1,X2] SSE[X1,X2]

Variability in Y accounted for by X1 & X2
e.g., Variability in daughters’ heights accounted for by mothers’ and fathers’ height
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ANOVA significance.

52

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

F(dfn,dfd ) =
MSR
MSE

F(1, 7) = 79.523
5.165

1-pf(15.3911, 1, 7)

0.00572

F(1, 7) = 9.225
5.165

1-pf(1.7862, 1, 7)

0.2232
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ANOVA significance.

53

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

F(dfn,dfd ) =
MSR
MSE

But what are these sums of squares?

SS for mom = SSR[mom]
SS for dad    = SSR[dad | mom]
The SS. Corresponds to the extra sums of 
squares from adding the second 
regressor to the first.  So if we change 
the order of regressors, we get different 
results

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

SS for dad = SSR[dad]
SS for mom    = SSR[mom | dad]
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ANOVA significance.

54

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

Which is “right”?  
Neither.  
They are asking different questions.
Son~mom+dad asks:
(1) is having mom in the regression better than just the mean?
(2) is adding dad to a regression with mom, worth it?

Son~dad+mom asks:
(1) Is having dad in the regression better than just the mean
(2) Is adding mom to a regression with dad worth it?

What question are you trying to ask?
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ANOVA significance.
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anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 What should I do?

If your goal is to really assess the contribution of one of these predictors, you should 
clearly explain what the contribution is. 
In this case: mom’s height predicts son’s height, but because it is highly correlated with 
dad’s height, you can’t tell what the causal route is.  Moreover, adding mom’s height to a 
model that includes dad’s height doesn’t help: mom’s height accounts for the same 
variance in son’s height as dad’s height does.

Which of these things is worth emphasizing in your results depends on what your 
scientific question is; however, you should realize that the whole story involves 
understanding the full set of relationships among these variables, not just the 
significance assessed one way or another.
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ANOVA significance.
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anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

What should I do?
If your goal is to provide as comprehensible a model of your data 
as possible, consider recoding your predictors:

mean.mom.dad = (mom+dad)/2
diff.mom.dad = (mom-dad)
summary(lm(son~mean.mom.dad+diff.mom.dad))

Coefficients:
Estimate Std. Error t value Pr(>|t|)   

(Intercept)  15.000883  13.435464   1.117  0.30106   
mean.mom.dad 0.817540   0.197538   4.139  0.00436 **
diff.mom.dad -0.008794   0.290149  -0.030  0.97667
Residual standard error: 2.273 on 7 degrees of freedom
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Different tests for different questions
There isn’t one answer to “is this predictor significant”
• F-tests: “Does adding this predictor to some smaller model account 

for more variance than expected by chance?”
– Which “smaller model” we use depends on our question!

• T-tests for partial regression coefficients: 
“Does the allocation of credit to all the predictors for variation in Y 
necessitate that this predictor have non-zero credit?”
– If another, colinear predictor could take credit, then the 

answer may well be no, but that might not matter to you
• T-tests for pairwise correlation: 

“Is there a linear relationship between these two variables, 
disregarding relationships with all other variables?”
– Often useful to ask, but obscures the full picture.

57
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models



ED VUL | UCSD Psychology

• Nested Model: A smaller model that differs only by 
excluding some parameters of a larger model.
A) height ~ mom + dad + protein + exercise + milk 
B) height ~ mom + dad + protein + exercise
C) height ~ dad + protein + exercise
D) height ~ mom + dad
E) height ~ dad + protein
F) height ~ mom + dad + milk
G) height ~ exercise + milk + beer
H) weight ~ mom + dad + protein + exercise

B in A;      C in A, B;       D in A, B;       E in A, B, C;       F in A;       A, G, H are not nested in others.
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F-tests compare nested models

60

They ask: is a bigger model better than a smaller model?

height ~ mom + dad + protein + exercise + milk 
(nested)
height ~ mom + dad + protein + exercise
(nested)
height ~ dad + protein + exercise
(nested) 
height ~ protein + dad
(nested) 
height ~ dad
(nested)
height ~ 1
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F(pFULL − pREDUCED,n− pFULL ) =

SSEREDUCED − SSEFULL

pFULL − pREDUCED
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d.f. of numerator d.f. of 
denominator

d.f. of numerator: 
number of extra 
parameters in full 
model

d.f. of denominator: 
n minus number of 
parameters in full 
model

Extra sums of squares of full 
compared to reduced: Estimated by 
difference in SSE.

Remaining sums of 
squares error in 

full model
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- Extra sums of squares of full compared to reduced 
model is the difference in sums of squares of error.

- Degrees of freedom of the extra sums of squares is the 
number of parameters added.

- The remaining sums of squares error from the full model 
is the denominator.

- Degrees of freedom of error are n minus the number of 
parameters in full model.

F(pFULL − pREDUCED,n− pFULL ) =

SSEREDUCED − SSEFULL

pFULL − pREDUCED
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F(pFULL − pREDUCED,n− pFULL ) =

SSEREDUCED − SSEFULL

pFULL − pREDUCED
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• SSE reduced is just SST (a 1 parameter regression 
model considering only the mean of Y: B0)

• SSR[X1] = SST – SSE[x1]

SST (SS total, also SSY)

SSR[X1] (SS regression var 1) SSE[X1]

F = (SSR[x1] / (2-1)) / (SSE[x1] / (n-2))
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F(pFULL − pREDUCED,n− pFULL ) =
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• SSE reduced is SSE[x1].  SSE full is SSE[x1,x2,x3]
• SSX[x2,x3|x1] = SSE[x1]– SSE[x1,x2,x3]
• # parameters full: 4 (b0, b1, b2, b3)
• # parameters reduced: 2 (b0, b1)

SSR[X1] (SS regression var 1) SSE[X1,X2,
X3]SSX[X2,X3|X1]

F = (SSX[x2,x3|x1] / (2)) / (SSE[x1,x2,x3] / (n-4))

SSR[X1] (SS regression var 1) SSE[X1]
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F(pFULL − pREDUCED,n− pFULL ) =
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• SSE reduced is SSE[b0].  SSE full is SSE[x1,x2,x3]
• SSR[x2,x3,x1] = SSE[b0]– SSE[x1,x2,x3]
• # parameters full: 4 (b0, b1, b2, b3)
• # parameters reduced: 1 (b0)

SST (SS total, also SSY)

SSR[X1,X2,X3] SSE[X1,X2,
X3]

F = (SSR[x1,x2,x3] / (4-1)) / (SSE[x1,x2,x3] / (n-4))
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F(pFULL − pREDUCED,n− pFULL ) =
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• SSE reduced is SSE[x1,x3].  SSE full is SSE[x1,x2,x3]
• SSX[x2|x1,x3] = SSE[x1,x3]– SSE[x1,x2,x3]
• # parameters full: 4 (b0, b1, b2, b3)
• # parameters reduced: 3 (b0,b1,b3)

F = (SSX[x2|x1,x3] / (1)) / (SSE[x1,x2,x3] / (n-4))

SSR[X1,X3] SSX[X2|X
1,X3]

SSE[X1,X2,
X3]

SSR[X1,X3] SSE[X1,X3]
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SST (SS total, also SSY)

SSR[X1,X2,X3] SSE[X1,X2,
X3]

SSR[X1] (SS regression var 1) SSE[X1,X2,
X3]SSX[X2,X3|X1]

Comparisons: 

Does X2 account for the variability in Y left over after taking into account X1 and X2 
better than chance?

SSR[X1,X3] SSX[X2|X
1,X3]

SSE[X1,X2,
X3]

Omnibus: Do X1, X2, and X3 together account for the variability in Y better than chance?

Do X2 and X3 together account for the variability in Y left over after taking into account X1
better than chance?

SSR[X1] (SS regression var 1) SSE[X1]

OLS regression: Does X1 account for the variability in Y better than chance?
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SST (SS total, also SSY)

SSR[X1,X2,X3] SSE[X1,X2,
X3]

SSR[X1] (SS regression var 1) SSE[X1,X2,
X3]SSX[X2,X3|X1]

Comparisons: 

F = (SSX[x2|x1,x3] / (1)) / (SSE[x1,x2,x3] / (n-4))

SSR[X1,X3] SSX[X2|X
1,X3]

SSE[X1,X2,
X3]

F = (SSR[x1,x2,x3] / (4-1)) / (SSE[x1,x2,x3] / (n-4))

F = (SSX[x2,x3|x1] / (2)) / (SSE[x1,x2,x3] / (n-4))

SSR[X1] (SS regression var 1) SSE[X1]

F = (SSR[x1] / (2-1)) / (SSE[x1] / (n-2))
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models
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• F test allows us to compare nested
models. 

• How do we compare non-nested models?
– height ~ mom + dad
– height ~ mom + protein
– height ~ protein + exercise
– height ~ ethnicity
– weight ~ mom + dad

F(pFULL − pREDUCED,n− pFULL ) =

SSEREDUCED − SSEFULL

pFULL − pREDUCED
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“Model building” comparison:
Is it better to add dad or protein to 
model that already has mom?
Is it better to add mom or exercise
to a model that already has 
protein?

I am using these terms to describe different comparisons only for convenience, these are not 
really technical names for different non-nested model comparisons.  In reality, all of them are 
‘model selection’ problems.
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• F test allows us to compare nested
models. 

• How do we compare non-nested models?
– height ~ mom + dad
– height ~ mom + protein
– height ~ protein + exercise
– height ~ ethnicity
– weight ~ mom + dad

F(pFULL − pREDUCED,n− pFULL ) =
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“Model selection” comparison:
Is a model with mom and dad
better than a model with protein 
and exercise?  A model with 
ethnicity?
(These can also be seen as model 
building problems: would it be 
better to add these or those 
regressors to null model)

I am using these terms to describe different comparisons only for convenience, these are not 
really technical names for different non-nested model comparisons.  In reality, all of them are 
‘model selection’ problems.
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• F test allows us to compare nested
models. 

• How do we compare non-nested models?
– height ~ mom + dad
– height ~ mom + protein
– height ~ protein + exercise
– height ~ ethnicity
– weight ~ mom + dad

F(pFULL − pREDUCED,n− pFULL ) =
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Weird (but sometimes useful) 
model comparison:
Is height more/less predictable by 
mom and dad (height?) than 
weight?

I am using these terms to describe different comparisons only for convenience, these are not 
really technical names for different non-nested model comparisons.  In reality, all of them are 
‘model selection’ problems.
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• How do we compare non-nested models?
– There isn’t really a good way to test the null hypothesis that 

two non-nested models are equally good.  Because 
(a) we don’t know what ‘good’ means. 
Bigger models will have better fits, how do we trade off fit with model size
(b) Even if we define ‘good’, the difference in goodness of 
two models doesn’t have a definable null hypothesis 
distribution.

– Consequently, we just define some goodness statistic and 
compare the numerical difference in goodness.
(Bayesian methods offer ways to attach probability statements to 
goodness comparisons between non-nested models, but we will not be 
dealing with this now)
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• How do we compare non-nested models?
Goodness:
– R2 (no punishment for bigger models: fit is all that counts)

• Useful for simple model building when number of parameters is 
constant: which parameter is a better one to add to the model I 
already have? Which K parameter model better fits these data?
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• How do we compare non-nested models?
– Goodness:
– R2

a ‘Adjusted R squared’
(like R^2, but punished for having more parameters)

RA
2 = R2 =1− (1− R2 ) n−1

n− p
=1− SSE

SST
(n−1)
(n− p)
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• How do we compare non-nested models?
Goodness:
– R2

– R2
a ‘Adjusted R squared’

– Lots more available based on likelihood, rather than SS: 
AIC, BIC, WAIC, DIC, etc. (more next term)

– Complicated ones available based on “marginal likelihood” 
or “model evidence” via Bayesian methods: Bayes Factor

– They all define some trade off between number of 
parameters and fit to the data.
• Sometimes they will give you different answers!  If so, you 

should be worried.  A clearly better model should do better on all 
of these metrics.  When different metrics give you different 
answers you should not be confident.
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Multiple regression agenda
• What is it?  And why do this?
• Multicolinearity & its consequences
• Sums of squares partitioning in multiple regression
• Different hypothesis tests in multiple regression
• Nested model comparison
• Non-nested models
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Regression

Yi = β0 + β1X1i + β2X2i + ε i εi ~ N(0,σε
2 )

summary(lm(daughter~dad+mom))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   3.7872     4.6471   0.815 0.417082    
mom           0.5210     0.1164   4.477 2.06e-05 *
dad           0.3900     0.1078   3.617 0.000475 *

Coefficients:
- Partial slope: dY/dXj holding 

other Xs constant.

Multicolinearity:
- Correlation among 

predictors.
- Credit assignment is 

uncertain
- Coefficients change; are 

sensitive to model and 
noise; have higher marginal 
errors.
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SST (SS total, also SSY)

SSR[X1] SSE[X1]

Variability in Y left over after factoring in X1

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]

SSR[X1,X2] SSE[X1,X2]

Variability in Y accounted for by X1 & X2
e.g., Variability in daughters’ heights accounted for by mothers’ and fathers’ height

Variability 
unaccounted 

for by X1 & X2

Extra sums of squares: Extra variability accounted for by taking into 
account X1 after having considered X2.

e.g., Additional variability in daughters’ heights accounted for by taking into account 
mothers’ heights having already considered fathers’ height
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F(dfterm,dferror ) =

SSterm
dfterm

!
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SSEFULL

dferror
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%
&

d.f. of regression term: # parameters of this term

d.f. error: n minus # parameters in full model

SS: Sum of squares for this term

SSE: Sum of squared residuals

SST (SS total, also SSY)

SSR[X1,X2] SSE[X1,X2]

anova(lm(son~mom+dad))

Response: son
Df Sum Sq Mean Sq F value  Pr(>F)   

mom        1 79.523  79.523 15.3977 0.00572 **
dad        1  9.225   9.225  1.7862 0.22320   
Residuals  7 36.152   5.165 

anova(lm(son~dad+mom))

Response: son
Df Sum Sq Mean Sq F value   Pr(>F)   

dad        1 79.595  79.595 15.4116 0.005707 **
mom        1  9.153   9.153  1.7723 0.224818   
Residuals  7 36.152   5.165 

SSR[X1] SSE[X1,X2]SSR[X2|X1]

SSR[X2] SSE[X1,X2]SSR[X1|X2]
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F(pFULL − pREDUCED,n− pFULL ) =

SSEREDUCED − SSEFULL

pFULL − pREDUCED
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SSEFULL

n− pFULL
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Extra parameters in full model

n minus number of parameters in full model

Extra sums of squares of full compared to reduced

Remaining sums of squares error in full model

SSR[X1,X2,X3] SSE[X1,X2,X3
]

SSX[X2,X3|X1]

SSR[X1] (SS regression var 1) SSE[X1]
anova(lm(y~x1))

Df Sum Sq Mean Sq F value    Pr(>F)    
x1         1 517.18  517.18  64.373 2.263e-12 *
Residuals 98 787.34    8.03 

anova(lm(y~x1+x2+x3))

Df Sum Sq Mean Sq F value    Pr(>F)    
x1         1 517.18  517.18  545.73 < 2.2e-16 *
x2         1 460.22  460.22  485.62 < 2.2e-16 *
x3         1 236.15  236.15  249.19 < 2.2e-16 *
Residuals 96  90.98    0.95 anova( lm(y~x1) , lm(y~x1+x2+x3) )

Model 1: y ~ x1
Model 2: y ~ x1 + x2 + x3

Res.Df RSS Df Sum of Sq F      Pr(>F)    
1     98 787.34                                 
2     96  90.98  2     696.37   367.4   < 2.2e-16 *
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Significance in regression
• Pairwise correlation t-test.
– Is there a significant linear relationship between Y and Xj

ignoring other predictors?

• Coefficient t-test.
– Does the partial slope dY/dXj controlling for all other 

predictors differ significantly from zero?

• Variance-partitioning F-tests.
– Is the sums of squares allocated to this term (depends on 

order, SS type) significantly greater than chance?

• Nested model comparison F-tests.
– Does the larger model account for significantly more 

variance than the smaller model?

In some special cases, these end up equivalent.
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Fat
readr::read_tsv('http://vulstats.ucsd.edu/data/bodyfat.data2.txt')

What variables predict bodyfat percentage?
- We have a bunch of very correlated predictors; how can we make new 

variables to orthogonalize them?
- What’s a good model to predict bodyfat percentage?
- What would we predict is the bodyfat percentage of someone who is:

- Height: 69
- Weight: 175
- Neck: 36
- Chest: 100
- Abdomen: 90
- Hip: 99

-Thigh: 58
-Knee: 38
-Ankle: 22
-Bicep: 31
-Forearm: 28
-Wrist: 17


