
201ab Quantitative methods
L.09: Correlation, regression (2)



Linear relationship.

X and Y can be…
– Independent.
– Dependent, but not linearly (tricky to measure in general)
– Linearly dependent (this is what we are measuring)



Ordinary, least-squares regression

β̂1 = rxy
sy
sx

β̂0 = y − β̂1x

Least squares estimates

Prediction (mean of y at each x) 
where the estimated line passes at each x value

ŷi = β̂0 + β̂1xi

ε̂i = yi − ŷi( )

Residuals (estimated error)
Deviation of real y value from line prediction

The sum of squared errors: SS[e]

Standard deviation of residuals

σ̂ ε = sr =
1

n− 2
yi − ŷi( )2

i=1

n

∑

df=n-2; we fit two parameters (B0,B1)



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

cov(f,s)

cor(f,s)

3.8733

0.5011627

cor.test(f,s)

t = 18.997, df = 1076, p-value < 2.2e-16

95 percent confidence interval:
0.4550726 0.5445746
sample estimates: cor 0.5011627



• In regression, ANOVA, GLM, 
etc. we partition variance of an 
outcome measure into different 
sources.
• Our null hypotheses are that a 

given source contributes zero 
variance.

• If a source contributes non-zero 
variance then we can use it to 
improve predictions of the 
outcome.

Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Sums of squares
Sums of squares are handy for doing calculations by hand (which 
was the only option when they were developed), because you don’t 
have to divide or take square roots.  As we have learned: they are a 
step along the way to getting sample variance (before we divide by 
the degrees of freedom).

sx
2 =

1
n−1

(xi − x )
2

i=1

n

∑

Sample variance of X

Sum of squares of X
“SS[X]” or “SSX”

SS[x]= (xi − x )
2

i=1

n

∑

Degrees of freedom for 
estimate of variance of X



Sums of squares
So, when we are dealing with analyses of sums of squares, just 
keep in mind that these sums of squares are just measuring 
variance components (scaled by sample size).

There are many things we can square and sum 
(and estimate the variance of)

SS[x]= (xi − x )
2

i=1

n

∑

SS[y]= (yi − y )
2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

We are focused on the relationship between the last three:

SS[y] “Sum of squares of y”.  
Also called “SS total”, SST, SSTO, …

SS[e] “Sum of squares of the residuals”.  
Also called “SS error”, SSE.

SS[y.hat] “Sum of squares of the regression”.  
Also called “SS regression”, SSR, and more.



Sums of squares
SS[y]= (yi − y )

2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

SS[y] “Sum of squares of y”.  
Also called “SS total”, SST, SSTO, …

“Sum of squares of y”
“Sum of squares total”
The net deviation of the 
ys from the mean of y



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Sums of squares

SS[y]= (yi − y )
2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑ SS[y.hat] “Sum of squares of the regression”.  
Also called “SS regression”, SSR, and more.

Sum of squares 
regression.  The net 
deviation of predicted 
ys from the mean of y.  
How much variability is 
captured by the 
regression line?



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Sums of squares
SS[y]= (yi − y )

2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

SS[e] “Sum of squares of the residuals”.  
Also called “SS error”, SSE.

Sum of squares error.  The net 
deviation of real ys from the 
predicted ys.  How much 
variance is left over in the 
residuals?



Sums of squares
SS[y]= (yi − y )

2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

SS 
total

SS 
error

SS 
regression

The deviation of y from the 
mean, should be equal to the 
deviation of the regression 
line from the mean, plus the 
deviation of y from the 
regression line.

yi − y = (ŷi − y )+ (yi − ŷi )
Similarly: 

SST = SSE+SSR



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Coefficient of determination
SS[y]= (yi − y )

2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

SS 
total

SS 
error

SS 
regression

SST = SSE+SSR
So, proportion of total 
variance accounted for 
by the regression:

R2 = SSR / SST
Proportion left to error:

1-R2 = SSE/SST

(Yes,  R2 is just the correlation coefficient squared in this case.)



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Analysis of variance via Sums of squares

These are not included in the R anova table, as they are only useful for pedagogical reasons.



Analysis of variance via Sums of squares

anova(lm(sons~fathers))

Analysis of Variance Table

Response: sons
Df Sum Sq Mean Sq F value    Pr(>F)    

fathers      1 2144.6 2144.58  361.23 < 2.2e-16
Residuals 1076 6388.0    5.94                      

SS[y]= (yi − y )
2

i=1

n

∑

SS[e]= (yi − ŷi )
2

i=1

n

∑

SS[ ŷi ]= (ŷi − y )
2

i=1

n

∑

SS 
total

SS 
error

SS 
regression

SST = sum((sons-mean(sons))^2)

[1] 8532.581

SSE = sum((sons-fathers*b1-b0)^2)

[1] 6388.001

SSR = sum((fathers*b1+b0-mean(sons))^2)

[1] 2144.580

SSR+SSE

[1] 8532.581

SSR/SST

[1] 0.2513401



anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94 d.f. & S.S. error

d.f. & S.S. regression

MS[*] = SS[*] / df[*]

summary(lm(lm(data = fs, Son~Father))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16 ***
Father       0.51401    0.02706   19.00   <2e-16 ***

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16



Summary(lm(data = fs, Son~Father))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16 ***
Father       0.51401    0.02706   19.00   <2e-16 ***

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94 

SSR/(SSR+SSE)

Sd/var Of residuals



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?

F = MSR / MSE



F statistic for OLS regression

F = MSR
MSE

=
SS[R]

SS[E] / (n− 2)
=

R2

(1− R2 )
(n− 2)

The F-statistic
Under H0: the ratio of two (identical) 
sample variances estimated with 
different degrees of freedom.

So, given random variation, even 
under H0, we expect the regression to 
take up *some* variance, and our 
question is: does it account for more 
variance than expected by chance?

So, F-test is, like Chi-squared, one 
tailed (positive tail). 



F statistic for OLS regression

F = MSR
MSE

=
SS[R] /1

SS[E] / (n− 2)
=

R2

(1− R2 )
(n− 2)

Two degrees of freedom:
Those used to estimate the 
numerator, and the 
denominator



Equivalent tests for bivariate linear relation

tb1 =
β̂1

s{β̂1}
tr =

r
1− r̂ 2

n− 2

T-test for slope T-test for correlation F-test for regression

F = MSR
MSE

Exercise for the algebraically ambitious:
Convince yourself that t{b1}=t{r} and t{r}^2=F



Predicting mean(y)@x vs new y@x

s{ŷp} = sr
1
n
+
(xp − x )

2

(xi − x )
2

i=1

n

∑

Predicted y values 
where the estimated line 
passes at each x value

ŷi = β̂0 + β̂1xi
Standard error of 
predicted y mean

s{ŷp} = sr 1+ 1
n
+
(xp − x )

2

(xi − x )
2

i=1

n

∑

Standard error of 
predicted new y 
data point

99.7% confidence interval on line at x
99.7% confidence interval on new point at x



Predicting mean(y)@x vs new y@x
Predicted y values 
where the estimated line 
passes at each x value

ŷi = β̂0 + β̂1xi
Confidence interval 
on mean(y) at a 
given x (the line)

Confidence 
interval on a new y 
at a given x

99.7% confidence interval on line at x
99.7% confidence interval on new point at x

predict.lm(
model, 
newdata, 
interval=‘confidence’)

predict.lm(
model, 
newdata, 
interval=‘prediction’)



Regression safety tips.
Assumptions:
(1) Validity: Make sure your measures make sense, and map 

onto the substantive research questions you have.
(2) Additivity and linearity: The relationship between x and y 

may not be neatly linear, check scatterplots, residuals!  
Noise (and, later, other factors) should be additive.

(3) Errors should have equal variance and be normally 
distributed (could give whacky results if there are some 
outliers in both x and y – check robustness)

(4) Independence of errors: errors should not be correlated 
with each other, y, x, etc.

(5) Most error in y, not in x. (parameter estimates biased!)
Safety tips:
(1) Don’t trust extrapolation.
(2) Check for structure in the residuals.
(3) Be careful with causal interpretations.



Look at the scatterplot!



Regression safety tips.
Assumptions:
(1) Validity: Make sure your measures make sense, and map 

onto the substantive research questions you have.
(2) Additivity and linearity: The relationship between x and y 

may not be neatly linear, check scatterplots, residuals!  
Noise (and, later, other factors) should be additive.

(3) Errors should have equal variance and be normally 
distributed (could give whacky results if there are some 
outliers in both x and y – check robustness)

(4) Independence of errors: errors should not be correlated 
with each other, y, x, etc.

(5) Most error in y, not in x. (parameter estimates biased!)
Safety tips:
(1) Don’t trust extrapolation.
(2) Check for structure in the residuals.
(3) Be careful with causal interpretations.



(1) The further from the mean of x you extrapolate, the 
bigger your error!

(2) Relationship might be linear in a small range, but may 
not be linear forever… (indeed, it might be impossible)

Pr
op

or
tio

n 
of

 w
om

en
.

Year

Perils of extrapolation.



Why not?  
Possibility of common or correlated causes, etc.  
Correlation / Covariance / Regression line just measure 
statistical relation.

Intervention needed to ascertain causality 
(ideally with random assignment)

Correlation is not causation



Regression safety tips.
Assumptions:
(1) Validity: Make sure your measures make sense, and map 

onto the substantive research questions you have.
(2) Additivity and linearity: The relationship between x and y 

may not be neatly linear, check scatterplots, residuals!  
Noise (and, later, other factors) should be additive.

(3) Errors should have equal variance and be normally 
distributed (could give whacky results if there are some 
outliers in both x and y – check robustness)

(4) Independence of errors: errors should not be correlated 
with each other, y, x, etc.

(5) Most error in y, not in x. (parameter estimates biased!)
Safety tips:
(1) Don’t trust extrapolation.
(2) Check for structure in the residuals.
(3) Be careful with causal interpretations.

What should you care about / do?
Validity!
Linearity, outliers – look at scatterplots!
Consider alternate model formulations (more in 201b)



load(url('http://vulstats.ucsd.edu/data/cal1020.cleaned.Rdata'))
glimpse(cal1020)
Observations: 3,252
Variables: 13
$ bib        (int) 1205, 9, 13, 15, 1303, 1213, 3, 1055, 12, 1351, 1054, 1216, 1352, 1218, 6, 1220, ...
$ name.first (fctr) Jordan, Macdonard, Sergio, Jamesom, Darren, Okwaro, Steven, Edwin, Lindsey, Dere...
$ name.last (fctr) Chipangama, Ondara, Reyes, Mora, Brown, Raura, Underwood, Figueroa, Scherf, Brad...
$ City       (fctr) Flagstaff, Grand Prairie, Palmdale, Arroyo Grande, Solana Beach, Oceanside, Enci...
$ State      (fctr) AZ, TX, CA, CA, CA, CA, CA, CA, NY, CA, CA, CA, CA, CA, CA, CA, AZ, ?, CA, CA, C...
$ Division   (fctr) 10 Mile Overall, 10 Mile Overall, 10 Mile Overall, 10 Mile Overall, 10 Mile Over...
$ Age        (dbl) 25, 29, 32, 30, 28, 39, 26, 42, 27, 33, 60, 34, 33, 39, 26, 32, 41, 24, 42, 48, 5...
$ Zip        (fctr) 86004, 75054, 93551, 93420, 92075, 92057, 92024, 90040, 12440, 92024, 91016, 920...
$ time.sec (dbl) 2880, 2885, 2970, 3062, 3083, 3206, 3222, 3241, 3289, 3318, 3320, 3363, 3388, 341...
$ corral     (fctr) 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0,...
$ wheelchair (lgl) FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS...
$ pace.sec (dbl) 288.0, 288.5, 297.0, 306.2, 308.3, 320.6, 322.2, 324.1, 328.9, 331.8, 332.0, 336....
$ speed.mph (dbl) 12.500000, 12.478336, 12.121212, 11.757022, 11.676938, 11.228946, 11.173184, 11.1...

- What is the correlation, covariance, regression slope of 
speed ~ Age, speed ~ corral (as numeric).  Significant?

- Find 95% confidence interval on the mean speed of 60 yo.s
… on the speed of a single 60 yo

- Is anything worrisome about the speed ~ age regression?
- What happens if you do speed ~ sex ?  

How does it relate to a t-test comparing male/female speed?
- Make a plot of the speed-age relationship for difft corrals.

Use facet_wrap and geom_smooth(method=‘lm’).



Why transform predictors?
earnings = -61000 + 51 · height (in millimeters) + error 

earnings = -61000 + 81000000 · height (in miles) + error

• A few things here:
– -$61000 is meaningless: income of person of height zero



Why transform predictors?
earnings = -61000 + 51 · height (in millimeters) + error 
earnings = -61000 + 81000000 · height (in miles) + error

• A few things here:
– -$61000 is meaningless: income of person of height zero

Center the predictor:
height.c = (height – mean(height)) (in mm or miles)
we get:

earnings = $27128+ $51 · height.c (in millimeters) + error 
earnings = $27128+ $81000000 · height.c (in miles) + error

The intercept, $27128, now means: 
earnings of a person of average 

height.



Why transform predictors?
earnings = $27128 + $51·height.c (in millimeters) + error 

earnings = $27128 + $81000000·height.c (in miles) + error

• A few things here:
– Slope of $51/height seems trivial, $81,000,000 huge.

(but really they are the same: $51/mm = $81M/mile:
1 mile = 1609344mm, $51 * 1609344 = 81000000)

We can ascertain the relative importance of predictors by 
multiplying the slope by the standard deviation of the 
predictor, to see how much influence they have:

sd(height) = 3.8 inches = 97 mm = 0.000061 miles.
51 $/mm * 97 mm = 81000000 $/mile * 0.000061 miles = $4950

4950 $ / sd(height)  <- this is more useful! 



Why transform predictors?
earnings = $27128 + $51·height.c (in millimeters) + error 

earnings = $27128 + $81000000·height.c (in miles) + error

• A few things here:
– Slope of $51/height seems trivial, $81,000,000 huge.

4950 $ / sd(height)  <- this is more useful! 

We can get this from the start by using z-score of height
z.height = ( height – mean(height) ) / sd(height)

earnings = $27128 + $4950 * z.height + error

But $/sd(height) is not a particularly intuitive measure of 
slope – we think of height in particular units



Why transform predictors?
earnings = $27128 + $51·height.c (in millimeters) + error 

earnings = $27128 + $81000000·height.c (in miles) + error

• A few things here:
– Slope of $51/height seems trivial, $81,000,000 huge.

Slopes: $51/mm, $510/cm, $1300/inch, $15600/ft, $51000/mile
Variation in heights on the order of inches (~4), or centimeters 
(~10), so those are better denominator units.  

earnings = $27128 + $1300 height (inches) + error

earnings = $27128 + $510 height (cm) + error



Why transform predictors?
earnings = -61000 + 51 · height (in millimeters) + error 

earnings = $27128 + $510 height (cm) + error

• A few things here:
– -$61000 is meaningless: income of person of height zero
– Slope of $51/height seems trivial, $81,000,000 huge.

We transform variables to get the coefficients and 
intercepts to be more interpretable: results don’t change, 
but some units are more sensible than others.



Transforming response variables…
…To make coefficients more interpretable

earnings ($1) = $27128 + $1300 height (inches) + error

Earnings ($1000) = $27 + $1.3 height (inches) + error

If we predict (earnings/$1000), then our slope and intercept 
are of a more manageable magnitude.

This seems like the best setup for this regression, but other 
candidates are also reasonable.  



Linearly transforming variables.
• When linearly transforming variables: 

X’ = aX + b
– the regression does not change:

the same fit, 
the same correlation, 
etc.  

– But, it is gives us more interpretable coefficients

• We could always transform the coefficients ourselves 
after the fact, but it is easier to just set up the 
regression intuitively ahead of time.



Linearly transforming variables: w’ = a*w + b
• Centering: X’ = X-mean(X)

makes the intercept mean: Y value at average X



Linearly transforming variables: w’ = a*w + b
• Centering: X’ = X-mean(X)

makes the intercept mean: Y value at average X
• Z scoring (“standardizing”): X’ = (X-mean(X))/sd(X)

also makes the slope mean: change in Y/sd change in X
this is gives a clearer sense of the importance of X
useful for arbitrary scales of X (like personality score)
less useful for real, physical quantities (e.g., height)



Linearly transforming variables: w’ = a*w + b
• Centering: X’ = X-mean(X)

makes the intercept mean: Y value at average X
• Z scoring: X’ = (X-mean(X))/sd(X)

also makes the slope mean: change in X/sd change in Y
• Picking units of X (mm, cm, m, inches, feet, miles): 

use real units when you have a “real” measurement, 
but pick unit magnitude so units are of the same order 
of magnitude as the sd of X. 
You then get the best of both worlds: slope in terms of 
real units, and slope that gives a good sense of the 
importance of the predictor.



Linearly transforming variables: w’ = a*w + b
• Centering: X’ = X-mean(X)

makes the intercept mean: Y value at average X
• Z scoring: X’ = (X-mean(X))/sd(X)

also makes the slope mean: change in X/sd change in Y
• Pick real units of X that are of the same order of 

magnitude as the sd of X. 
• Scale dependent variable (Y’ = Y*k)

to make the numerical values of slope and intercept be 
of a more manageable magnitude

There will be some tradeoffs, and there isn’t one ‘right’ 
answer (depends on question!) but a bit of scale/unit 
optimization will help a lot.



Making new variables
• Often it is useful to make new variables out of other 

variables, because we expect these derived quantities to 
behave more lawfully.
– From city population and area, we can get population density.
– From # of murders and population, we can get murder rate.
– From hit rate and false alarm rate, we can calculate

d’ = qnorm(hit.proportion) – qnorm(miss.proportion)
– From errors and RTs we can estimate ‘evidence accumulation 

rate’ and ‘decision criterion’.
– If we have mother’s height and father’s height, we can get 

average parents’ height, and father-mother height difference

• The goal here is to find variables that behave nicely:
are predictable, less susceptible to extraneous influence, 
are uncorrelated with each other, etc.



Linear transformation practice.
1) We find that B0 = 0; B1 = 0.1 in:

z.extraversion ~ (height.in – mean(height))*B1 + B0
How do we expect extraversion to differ between a 5’9” 
and a 6’0” person?

2) We are trying to predict newborn weight based on the 
weights of the mother and the father.  
How would you set up this regression?

3) We find: gre.percentile ~ (income.percentile)*0.5-0.4
What is wrong with extrapolation of this regression line?

4) We find: z.rt ~ –0.4*(z.iq).
Mean(rt) = 400, sd(rt) = 150; mean(iq)=102; sd(iq)=14
What is the predicted RT of someone with an IQ of 106?

5) We find: fat.percentage = 17 + 3800*(weight.lb / 
height.in^3)
(weight.lb / height.in^3): mean = 0.0005.  sd=0.0005
What’s a better way to have set up this regression?


