201ab Quantitative methods L.08: Correlation, regression.

Alt-text:
Correlation doesn't imply causation, but it does waggle its
eyebrows suggestively and gesture furtively while mouthing
'look over there'.

Projects!

Questions we might want to ask:

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?
- Are sons taller than their fathers?
- Can we reject the null of mean=zero difference?
- What is the relationship between sons' and fathers' heights?

Questions we might want to ask:

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?
- Are sons taller than their fathers?
- Can we reject the null of mean=zero difference?
- What is the relationship between sons and fathers heights?
- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?

$>2 \star \operatorname{pt}(-\operatorname{abs}($ stat $), \mathrm{df}=\mathrm{n}-1)$
$[1] 3.457638 \mathrm{e}-50$
$>2 \star \operatorname{pnorm}(-\mathrm{abs}($ stat $))$
$[1] 1.462962 \mathrm{e}-55$

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?

```
> f = fs$Father
> h0mean = 69
> (m = mean(f))
[1] 67.68683
> (n = length(f))
[1] 1078
> (s = sd(f))
[1] 2.745827
> (se_m = s/sqrt(n))
[1] 0.08363033
> (stat = (m-h0mean)/se_m)
[1] -15.70211
```


- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?

```
> f = fs$Father
> h0mean = 69
> (m = mean(f))
[1] 67.68683
> (n = length(f))
[1] 1078
> (s = sd(f))
[1] 2.745827
> (se_m = s/sqrt(n))
[1] 0.08363033
> (stat = (m-h0mean)/se_m)
[1] -15.70211
```


Linear model formulation

$$
\begin{gathered}
y_{i}=(1) \cdot \beta_{0}+\epsilon_{i} \\
\epsilon_{i} \sim \mathbf{N}\left(0, \sigma_{\epsilon}\right)
\end{gathered}
$$

$$
\operatorname{lm}(f \sim 1)
$$

Least squares fit.

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?


```
> (s_new = sqrt(s^^2 + se_m^2))
[1] 2.7471
> m + c(-1,1)*crit*s_new
[1] 62.29655 73.07710
```


Evaluating a mean

- Fitting a mean, on the assumption of gaussian variability...
- Requires that we use a t-distribution to respect the uncertainty of our standard deviation estimate.
- Is the simplest/smallest "linear model":
(just an intercept term)

Questions we might want to ask:

- How do fathers' heights compare to the current UK male mean?
- Can we reject the null of the current UK mean?
- What is our confidence interval on the mean of fathers' heights?
- What is our prediction interval on the height of a new father?
- Are sons taller than their fathers?
- Can we reject the null of mean=zero difference?
- What is the relationship between sons and fathers heights?

Relationship between two variables

X and Y can be...

- Independent.
- Dependent, but not linearly (tricky to measure in general)
- Linearly dependent (this is what we are going to measure)

Anscombe's quartet

Property	Value
Mean of x in each case	9 (exact)
Sample variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Sample variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	$y=3.00+0.500 x$ (to 2 and 3 decimal places, respectively)

You can always fit a line; doesn't mean it's a good idea.

Measures of linear relationship

- Covariance: shared variance between x and y
- Correlation: standardized covariance
- Coefficient of determination: how much variance is captured by linear relationship.
- Regression slope of $y \sim x$: predict y for given x (minimizing squared deviation of y from prediction)
- Regression slope of $x \sim y$. predict x for given y (minimizing squared deviation of x from prediction)
- Principle component line:
(minimize squared deviation of (x, y) from line.)

Covariance: varying together.

When X deviates from the mean, does Y deviate from its mean. What is the size and direction of these shared deviations?

Covariance and correlation

Covariance: magnitude of shared variance.
Covariance will change with unit rescaling (heights in cm vs in) Correlation: Covariance scaled by the (marginal) variances of x and y

Correlation will not change with rescaling.

Correlation

Covariance scaled to the overall variances.

Between -1 and 1.
Measures direction, strength of linear relationship

| 0.8 | 0.4 | -0.4 | -0.8 | Closer to 0 when
 variables are more
 independent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Only sign of slope | | | | |
| matters. | | | | |

Calculation correlation, covariance

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

Calculation correlation, covariance

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))
$\mathrm{f}=\mathrm{fs} \$$ Father ; $s=\mathrm{fs} \$$ Son

$\operatorname{cor}(f, s)$	
$\operatorname{cov}(f, s) /(s d(f) * s d(s))$	
	0.5011627

$$
\begin{aligned}
& r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}=\frac{S P[x, y]}{\sqrt{S S[x] * S T} \text { s.ample }}=\frac{S y}{} \\
& \text { correlation }
\end{aligned}
$$

The covariance matrix

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))
$\mathrm{f}=\mathrm{fs} \$$ Father; $\mathrm{s}=\mathrm{fs} \$$ Son

$\operatorname{lov}(\mathrm{fs})$		
	Father	Son
Father	7.539566	3.875382
Son	3.875382	7.930949

Linear transformations

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Original variables

```
f = fs$Father
s = fs$Son
```

$\operatorname{mean}(f)$	67.68683
$\operatorname{mean}(s)$	68.68423
$\operatorname{sd}(f)$	2.745827
$\operatorname{sd}(s)$	2.816194
$\operatorname{cov}(f, s)$	3.875382
$\operatorname{cor}(f, s)$	0.5011627

Shifted variables

```
f = fs$Father + 2
s = fs$Son + 3
```

mean(f)	69.68683
mean(s)	71.68423
$\operatorname{sd}(\mathrm{f})$	2.745827
$\mathrm{sd}(\mathrm{s})$	2.816194
$\operatorname{cov}(\mathrm{f}, \mathrm{s})$	3.875382
$\operatorname{cor}(\mathrm{f}, \mathrm{s})$	0.5011627

Scaled variables

```
f = fs$Father * 2
s = fs$Son * 3
```

$\operatorname{mean}(f)$
$\operatorname{mean}(s)$
$s d(f)$
$s d(s)$
$\operatorname{cov}(f, s)$
$\operatorname{cor}(f, s)$
135.3737
206.0527
5.491654
8.448582
23.25229
0.5011627

Shifting influences the mean, nothing else. Scaling changes mean, variance, sd, covariance, but not the correlation:

The correlation normalizes the covariance to the sd of x, y, so is constant.

What line would you draw?

Different regressions, lines

They all go through [mean(x), mean(y)]

They differ in their definition of error to be minimized.

OLS regression model.

Y is is a line (w.r.t. X) plus "error"

Error assumed to be independent, identically distributed, Gaussian noise.

$$
\varepsilon_{i} \sim N\left(0, \sigma_{\varepsilon}\right)
$$

$Y=B_{0}+\left(0^{*} X\right)$

$\mathbf{Y}=0+\left(\mathrm{B}_{1}{ }^{*} \boldsymbol{X}\right)$

$\mathrm{Y}=\mathrm{B}_{0}+\left(\mathrm{B}_{1}{ }^{*} \mathrm{X}\right)$

OLS regression model.

Y is is a line (w.r.t. X) plus "error"

Inference goal is to estimate Bo, B1, error.
This is harder when there is more error.

Minimize squared error in y

$$
\begin{aligned}
& S S[\text { error }]=\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& \hat{\varepsilon}_{i}=\left(y_{i}-\hat{y}_{i}\right) \\
& \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Sum of squared error $=3837$

Minimize squared error in \boldsymbol{y}

$S S[$ error $]=\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$
$\hat{\varepsilon}_{i}=\left(y_{i}-\hat{y}_{i}\right)$
$\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$
Sum of squared error $=3174$

If we don't get to vary slope from 0 , our squared error minimizing line is the horizontal that passes through the mean of y.

Minimize squared error in \boldsymbol{y}

Minimize squared error in y

Minimize squared error in y

$$
\begin{aligned}
& S S[\text { error }]=\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& \hat{\varepsilon}_{i}=\left(y_{i}-\hat{y}_{i}\right) \\
& \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Sum of squared error $=93$

Regression in \mathbf{R} via $\mathbf{l m}()$

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))
$\mathrm{f}=\mathrm{fs} \$$ Father; $\mathrm{s}=\mathrm{fs} \$$ Son

Formula syntax:
response ~ explanatory variables

Regression in R via $\mathbf{l m}()$

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

```
\begin{tabular}{l} 
fs = read.csv(url('http://vulstats.ucsd. \\
\begin{tabular}{l}
\(\operatorname{lm}(\) data \(=\mathrm{fs}\), Son~Father) \\
(Intercept) \\
33.893
\end{tabular}\(\quad\) Coefficients: \\
Father \\
\hline
\end{tabular}
```

ggplot(fs, aes $(x=$ Father, $y=$ Son $))+$
geom_point ()$+$
geom_abline(intercept $=33.893$,
slope $=0.514$,
color="red",
size=1.5)+
theme_minimal ()

Regression in \mathbf{R}

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

summary (lm(data $=$ fs, Son~Father $)$)				
Call:				
lm(formula $=$ Son \sim Father, data $=$ fs)				
Residuals:				
Min	1 Q Median	3Q	Max	
-8.8910-1.	5361-0.0092	1.6359	8.9894	
Coefficients:				
	Estimate Std	. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	33.89280	1.83289	18.49	<2e-16
Father	0.51401	0.02706	19.00	<2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

```
anova(lm(data = fs, Son~Father))
Analysis of Variance Table
Response: Son
    Df Sum Sq Mean Sq F value Pr(>F)
Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94
```

Where do all these numbers come from? What do they mean?

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

```
anova(lm(data = fs, Son~Father))
Analysis of Variance Table
Response: Son
    Df Sum Sq Mean Sq F value Pr(>F)
Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94
```

Where do all these numbers come from? What do they mean?

OLS regression: estimate of slope

Least squares estimates
Line that minimizes sum of squared errors
This is the line that gives us $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]$

$$
\hat{\beta}_{1}=r_{x y} \frac{S_{y}}{S_{x}}
$$

There are equivalent formulae using covariance, etc.

A few consequences of $E[Y \mid X]$ (slope)

$$
\hat{\beta}_{1}=r_{x y} \frac{S_{y}}{S_{x}}
$$

- Correlation is the slope of the z-scores.
- Regression to the mean.
- Asymmetry between $\mathrm{y} \sim \mathrm{x}$ and $\mathrm{x} \sim \mathrm{y}$.

Correlation is the slope of \mathbf{z}-scores.

The correlation coefficient is the slope of the z-scores: how many standard deviations in y do you go up for every 1

$$
\hat{\beta}_{1}=r_{x y} \frac{S_{y}}{S_{x}}
$$ s.d. increase in x ?

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{i}^{(x)} z_{i}^{(y)}
$$

Regression to the mean

The correlation coefficient is the slope of the z-scores...

This means that (unless the correlation is perfect) the y value will not be as extreme as the x value.
E.g., test-retest reliability is never perfect. So people who do really well/badly (very big positive/negative zscore) on one test, will tend to be closer to the average on the retest
E.g., very tall/short parents will tend to have children closer to average.
E.g., very good performance by stock
brokers in one quarter is likely to be followed by average performance.

Y~bo+b1(X)+e $\neq X \sim b o+b 1(Y)+e$

Regression of Y as $f x$. of X gives different line than X as $f x$. of Y.
Why?

$$
\begin{aligned}
& \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \\
& \left(\hat{y}_{i}-\hat{\beta}_{0}\right) / \hat{\beta}_{1}=x \\
& a=1 / \hat{\beta}_{1} \\
& b=-\hat{\beta}_{0} / \hat{\beta}_{1} \\
& \hat{x}=a \cdot y+b
\end{aligned}
$$

$\mathrm{b} 0=33.89$
$\mathrm{~b} 1=0.514$
$\mathrm{a}=1 / \mathrm{b} 1$
$\mathrm{~b}=\mathrm{b} 0 / \mathrm{b} 1$
a [1] 1.94
b [1] 65.93

```
summary(lm(sons~ fathers))
Coefficients:
        Estimate
(Intercept) 33.88660
fathers 0.51409
```

So, since
son.height ~ father.height*0.5 + 34 we might expect
father.height ~ son.height*2 + $\mathbf{6 6}$
And we would be very wrong!
These coefficients are

summary (1m(fathersnsons))	very different from what
Coefficients:	we get by using the
Estimate	same line and just
(Intercept) 34.10745	algebraically shuffling to
sons 0.48890	$\text { get } x \sim y$
	Why?

Y~bo+b1(X)+e $\neq \mathbf{X \sim b o + b 1 (Y) + e ~}$

Y~bo+b1(X)+e $\neq \mathbf{X \sim b o + b 1 (Y) + e ~}$

Why is regression of Y as $f x$. of X different than X as $f x$. of Y ?
Regression of y as a function of Regression of x as a function of x minimizes squared errors in y y minimizes squared errors in x

OLS regression assumes predictor is not uncertain...

Regression: conditional means

Regression estimates conditional means. E.g., $y \sim x$ estimates mean($y \mid x)$
Consequently we get a few weird phenomena: slope of $y \sim x$ differs from inverse of $x \sim y$. Regression to the mean:
mean(x) for extreme y is less extreme, mean(y) for extreme x is less extreme.
sons \sim fathers

fathers ~ sons

fathers

Y~bo+b1(X)+e $\neq \mathbf{X \sim b o + b 1 (Y) + e ~}$

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

```
summary(lm(data = fs, Son~Father))
Call:
lm(formula = Son ~ Father, data = fs)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-8.8910 & -1.5361 & -0.0092 & 1.6359 & 8.9894
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate Std. Error & \(t\) value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 33.89280 & 1.83289 & 18.49 & \(\langle 2 \mathrm{e}-16\) \\
Father & \(\mathbf{0 . 5 1 4 0 1}\) & 0.02706 & 19.00 & \(<2 \mathrm{e}-16\)
\end{tabular}
Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16
```

```
anova(lm(data = fs, Son~Father))
Analysis of Variance Table
Response: Son
    Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
Father \(\quad 12145.42145 .35 \quad 360.9<2.2 e-16\)
Residuals \(10766396.3 \quad 5.94\)
```

Where do all these numbers come from? What do they mean?

OLS regression: estimate of intercept

Least squares estimates
Line that minimizes sum of squared errors
This is the line that gives us $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]$

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

This comes from the constraint that the line must go through [mean(x), mean(y)].

OLS regression: estimate of intercept

Least squares estimates

Line that minimizes sum of squared errors
This is the line that gives us $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}]$

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

Interpretation of intercept is rather challenging. It is the predicted y value at $x=0$. e.g., the height of a son whose father is o inches tall.

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Where do all these numbers come from? What do they mean?

OLS regression: estimate of residuals

Least squares estimates

$$
\hat{\beta}_{1}=r_{x y} \frac{s_{y}}{s_{x}} \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

Predicted y values

where the estimated line passes at each x value

$$
\hat{y}_{i}=\beta_{0}+\beta_{1} x_{i}
$$

Residuals (estimated error)
Deviation of real y value from line prediction

$$
\hat{\varepsilon}_{i}=\left(y_{i}-\hat{y}_{i}\right)
$$

Standard deviation of residuals

$$
\hat{\sigma}_{\varepsilon}=s_{r}=\sqrt{\frac{1}{n-2}\left(\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}\right.}
$$

The sum of squared errors: SS[e] $\mathrm{df}=\mathrm{n}-2$, we fit two parameters (Bo,B1)

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

```
anova(lm(data = fs, Son~Father))
Analysis of Variance Table
Response: Son
    Df Sum Sq Mean Sq F value Pr(>F)
Father 1 2145.4 2145.35 360.9< 2.2e-16
Residuals 1076 6396.3 5.94
```

Where do all these numbers come from? What do they mean?

Standard Error of the Slope

Estimated slope b1 = r.fs*sy/sx

$$
\hat{\beta}_{1}=r_{x y} \frac{s_{y}}{s_{x}}
$$

Sampling s.d. of estimated slope (std. err. of slope)
sr $=\operatorname{sqrt}(\operatorname{sum}(($ sons-fathers*b1-b0)^2)/(n-2))
Std. dev. of residuals

$$
s_{r}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}
$$

Standard error of the slope
Standard deviation of the residuals

$$
S S[x]=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

What makes our slope estimate better?

$$
s\left\{\hat{\beta}_{1}\right\}=\frac{S_{t}}{s_{x}} / \sqrt{n-1}
$$

Standard error of the slope is lower (and so slope estimate is better) when:

- Error around the line is smaller (lower sd of residuals)

What makes our slope estimate better?

$$
s\left\{\hat{\beta}_{1}\right\}=\frac{S_{1}}{s_{x}} / \sqrt{n-1}
$$

Standard error of the slope is lower (and so slope estimate is better) when:

- Error around the line is smaller (lower sd of residuals)
- We have more data.

What makes our slope estimate better?

Standard error of the slope is lower (and so slope estimate is better) when:

- Error around the line is smaller (lower sd of residuals)
- We have more data.
- X is more spread out (higher sd of x)

Why? SD of x determines the range of x, and the amount of variation in y due to variation in x. Thus, signal (var y due to x) to noise (var y due to error) ratio goes up.

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

summary(lm(data = fs, Son~Father)				
Call:				
lm (formula $=$ Son \sim Father, data $=$ fs)				
Residuals:				
Min	1 Q Median	3Q	Max	
-8.8910-1.	5361-0.0092	1.6359	8.9894	
Coefficients:				
	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	33.89280	183289	18.49	<2e-16
Father	0.51401	0.02706	9.00	<2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

```
anova(lm(data = fs, Son~Father))
Analysis of Variance Table
Response: Son
    Df Sum Sq Mean Sq F value Pr(>F)
Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94
```

Where do all these numbers come from? What do they mean?

Standard error of the intercept

Estimated intercept

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

This comes from the constraint that the line must go through [mean(x), mean(y)].

Sampling s.d. of estimated intercept (std. err. of intercept)

Standard error of the intaragpt deviation of the residuals

Error in estimating the mean of Error from extrapolating slope to $x^{\underline{V}} \mathbf{c}$ The familiar std. error of the slope!

Standard error of the intercept

Estimated intercept
$\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$

Sampling s.d. of estimated intercept (std. err. of intercept)

This comes from the constraint that the line must go through [mean (x), mean (y)].
So we have to extrapolate line to $\mathbf{x}=\mathbf{o}$ to find intercept.
$s\left\{\hat{\beta}_{0}\right\}=\sqrt{\frac{s_{r}^{2}}{n}+\left(\bar{x}\left(\frac{s_{r}}{s_{x} \sqrt{n-1}}\right)\right)^{2}}$

Correlation of estimation errors.

Marginal std. error of intercept

Standard error of intercept is the *marginal* standard errors. So this very large correlation will look like a very large error in estimating intercept.

Centering x is generally a very good idea:
$x^{\prime}=x$-mean (x)
Im($\left.\mathbf{y \sim} \sim x^{\prime}\right)$
Gets rid of huge errors in intercept, and also makes intercept interpretable as mean(y)
at mean (x) (rather than
mean(y) at $x=0$)

Regression in R

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

Where do all these numbers come from? What do they mean?

Standard Errors of coefficients

Standard error of the slope decreases with:
Smaller s.d. of residuals Larger sample size Larger spread of x values

$$
s\left\{\hat{\beta}_{1}\right\}=\frac{s_{r}}{s_{x}} / \sqrt{n-1}
$$

Standard error of the intercept decreases with:
Smaller s.d. of residuals Larger sample size
Smaller std. distance between o and mean(x)

$$
s\left\{\hat{\beta}_{0}\right\}=s_{r} \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

We do the usual t-test procedures to test null hypotheses and obtain confidence intervals With $\mathrm{df}=\mathrm{n}-2$: degrees of freedom in estimating the s.d. of residuals.

$$
t_{b 1}=\frac{\hat{\beta}_{1}-h 0}{s\left\{\hat{\beta}_{1}\right\}} \quad \hat{\beta}_{1} \pm t_{\alpha / 2} s\left\{\hat{\beta}_{1}\right\}
$$

summary (1 m (sons~fathers))

```
Coefficients:
    Estimate Std. Error t valu Pr(>|t|)
(Intercept) 33.88660 1.83235 18.4> <2e-16 ***
fathers
    0.51409
    0.02705
    19.0 <2e-16 ***
Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, / Adjusted R-squared 0.2506
F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e 16
se S.D. of residuals
    SSE = se^2*df
```

These t-statistics and p values are calculated just like all other t statistics:
$t=($ estimate - null.value)/se\{estimate $\}$
Default null.value=0
So t tests are asking if those parameter estimates differ from zero.
df: df for estimating sample variance (residual std. deviation/error)

Can define confidence intervals the usual way as well:
estimate +/- t.crit * se\{estimate\}
e.g., 95% C.I. on slope: $0.514+/-(\sim) 2 * 0.027 \Rightarrow(0.46,0.57)$

Regression in \mathbf{R}

Karl Pearson's data on fathers' and (grown) sons' heights (England, c. 1900)

fs $=$ read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

summary (lm(data = fs, Son~Father)				
Call:				
lm (formula $=$ Son \sim Father, data $=$ fs)				
Residuals:				
Min	1 Q Median	3Q	Max	
-8.8910-1.	5361-0.0092	1.6359	8.9894	
Coefficients:				
	Estimate Std	. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	33.89280	1.83289	18.49	$<2 \mathrm{e}-16$
Father	0.51401	0.02706	19.00	<2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: 0.2512, Adjusted R-squared: 0.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < $2.2 \mathrm{e}-16$

Where do all these numbers come from? What do they mean?
158.1928 157.0185 153.2481 156.1513 154.1769 155.1849 155.4694 155.9177 153.8620 158.7263 156.3841 156.9075 156.9597 155.8952 160.1060 159.2632 157.8709 156.5646 158.1436 154.6955 159.4184 159.5932 158.9586 156.9553 155.9073 156.1151 157.5840 155.2092 156.7197 156.1086 155.4311 154.4730 154.2109 157.4233 155.7556 157.1322 155.8327 156.0758

Variation and randomness

- Measure weight 168 times
153.2481
153.8620
154.1769
154.2109
154.2850
154.4140
154.4730
154.6955
154.7180
154.8091
154.9224
154.9990
154.9997
155.0386
155.1849
155.2092
155.3161
155.4191
155.4311
155.4667

Variation and randomness

- Measure weight 168 times - Sort measurements:

Variation and randomness

153.2481
153.8620
154.1769
154.2109
154.2850
154.4140
154.4730
154.6955
154.7180
154.8091
154.9224
154.9990
154.9997
155.0386
155.1849
155.2092
155.3161
155.4191
155.4311
155.4667

- Measure weight 168 times - Bin the measurements

Variation and randomness

153.2481
153.8620 154.1769 154.2109 154.2850 154.4140 154.4730
154.6955
154.7180
154.8091
154.9224
154.9990
154.9997
155.0386
155.1849
155.2092
155.3161
155.4191
155.4311
155.4667

- Measure weight 168 times - Make a histogram

Psych 201ab: Quantitative methods > Variation and randomness

Variation and randomness

- Measure weight 168 times
- What is my weight?
- Different each time I measure it.
- Mean is 157.9
- Variation around the mean (157.9) is "random", as far as I know.

Variation and randomness

- Oh yeah:
- 168 measurements are hourly for 7 consecutive days

Variation and randomness

- Taking trend into account reduces the apparent randomness

Variation and randomness

- Taking cyclical (hourly, daily) patterns further reduces error

Variation and randomness

- What is my weight?
- It was ~155 lbs a week ago
- I am gaining ~0.015 lbs/hr
- Weight systematically fluctuates over a range of 5 lbs in a 24 hr cycle.
- After taking all that into account, there is still some unexplained variation of $+/-2$ lbs

(perhaps random error? More likely systematic deviations from regular trends in daily cycle, or systematic variation in how the scale operates)

Variation and randomness

- Unaccounted-for variation is considered "random"
- This can be called:
- "noise"
_ "random error"
- "sampling variability"
- Someone's "noise" may be another's "signal", depending on what you know about the data and what analytical tools you have at your disposal.

