
201ab Quantitative methods
L.08: Correlation, regression.

Alt-text: 
Correlation doesn't imply causation, but it does waggle its 
eyebrows suggestively and gesture furtively while mouthing 
'look over there'.



Projects!





Questions we might want to ask:
• How do fathers’ heights compare to the current UK male 

mean?
– Can we reject the null of the current UK mean?
– What is our confidence interval on the mean of fathers’ 

heights?
– What is our prediction interval on the height of a new 

father?

• Are sons taller than their fathers?
– Can we reject the null of mean=zero difference? 

• What is the relationship between sons’ and fathers’ 
heights?
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• How do fathers’ heights compare to the current UK male 
mean?
– Can we reject the null of the current UK mean?
– What is our confidence interval on the mean of fathers’ heights?
– What is our prediction interval on the height of a new father?



Linear model formulation



Least squares fit.
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• How do fathers’ heights compare to the current UK male 
mean?
– Can we reject the null of the current UK mean?
– What is our confidence interval on the mean of fathers’ heights?
– What is our prediction interval on the height of a new father?



Evaluating a mean
• Fitting a mean, on the assumption of gaussian 

variability…
– Requires that we use a t-distribution to respect the 

uncertainty of our standard deviation estimate.
– Is the simplest/smallest ”linear model”: 

(just an intercept term)



Questions we might want to ask:
• How do fathers’ heights compare to the current UK male 

mean?
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• Are sons taller than their fathers?
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Relationship between two variables

X and Y can be…
– Independent.
– Dependent, but not linearly (tricky to measure in general)
– Linearly dependent (this is what we are going to measure)



Anscombe’s quartet

You can always fit a line; doesn’t mean it’s a good idea.



Measures of linear relationship
• Covariance: shared variance between x and y
• Correlation: standardized covariance
• Coefficient of determination: how much variance is 

captured by linear relationship.

• Regression slope of y~x: predict y for given x
(minimizing squared deviation of y from prediction)

• Regression slope of x~y: predict x for given y
(minimizing squared deviation of x from prediction)

• Principle component line:
(minimize squared deviation of (x,y) from line.)



When X deviates from the mean, does Y deviate from its 
mean.  What is the size and direction of these shared 
deviations?

positive zero negative

Covariance: varying together.



Covariance and correlation
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Covariance: magnitude of shared variance.
Covariance will change with unit rescaling (heights in cm vs in)

Correlation: Covariance scaled by the (marginal) variances of x and y
Correlation will not change with rescaling.



Covariance scaled to the overall variances.

Between -1 and 1.  
Measures direction, strength of linear relationship

Closer to 0 when 
variables are more 

independent.

Only sign of slope 
matters.

Non-linear 
relationships don’t 

count.

Correlation



Calculation correlation, covariance
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

cov(f,s)

cov(f,f)

var(f)

cor(f,s)

cov(f,s)/(sd(f)*sd(s))

3.8733

7.539566

0.5011627

0.5011627

7.539566

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son



Calculation correlation, covariance
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

cov(f,s)

cov(f,f)

var(f)

cor(f,s)

cov(f,s)/(sd(f)*sd(s))

3.8733

7.539566

0.5011627

0.5011627

7.539566

sxy =
1
n−1

SP[x, y]= 1
n−1

(xi − x )(yi − y )[ ]
i=1

n

∑
“sum of products”Sample 

covariance

sx
2 =

1
n−1

SS[x]= 1
n−1

(xi − x )(xi − x )[ ]
i=1

n

∑
“sum of squares”

Sample 
variance

rxy =
sxy
sxsy

=
SP[x, y]

SS[x]*SS[y]Sample 
correlation



The covariance matrix
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

cov(fs)

var(f)

var(s)

Father      Son
Father 7.539566 3.875382
Son    3.875382 7.930949

7.930949

7.539566

cov(f,s)

3.875382

cov(f,s)

3.875382



Linear transformations

Original variables

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)
fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Shifted variables Scaled variables
f = fs$Father
s = fs$Son

f = fs$Father + 2
s = fs$Son + 3

f = fs$Father * 2
s = fs$Son * 3

mean(f)
mean(s)
sd(f)
sd(s)
cov(f,s)
cor(f,s)

67.68683
68.68423
2.745827
2.816194
3.875382
0.5011627

mean(f)
mean(s)
sd(f)
sd(s)
cov(f,s)
cor(f,s)

69.68683
71.68423
2.745827
2.816194
3.875382
0.5011627

mean(f)
mean(s)
sd(f)
sd(s)
cov(f,s)
cor(f,s)

135.3737
206.0527
5.491654
8.448582
23.25229
0.5011627

Shifting influences the mean, nothing else.
Scaling changes mean, variance, sd, covariance, but not the correlation:

The correlation normalizes the covariance to the sd of x,y, so is constant.



What line would you draw?



Different regressions, lines
Predict X from Y
X ~ a+b*Y

Predict Y from X
Y ~ a+b*X

Principle component line
1st principle component

They all go through 
[mean(x), mean(y)]

They differ in their definition 
of error to be minimized.



Y is is a line (w.r.t. X) plus “error”

Error assumed to be independent, identically distributed, 
Gaussian noise.

Score on Y
for the ith
individual

ErrorY 
Intercept

Yi = β0 + β1Xi + ε i
Score on X

for the ith
individual

Slope
(Effect)

εi ~ N(0,σε )

OLS regression model.



Y=B0+(0*X) Y=0+(B1*X)

B0=-1

B0=0

B0=2

B1=2

B1=1

B1=0

B1=-0.5

x x



Y=B0+(B1*X)
B0=5; B1=-3 

x

B0=2; B1=2

B0=0; B1=1
B0=-1; B1=-1



Y=B0+(B1*X)

x

B0=2; B1=3



Y=B0+(B1*X)+e

x

B0=2; B1=3



Y=B0+(B1*X)+e

x

y
e







Y is is a line (w.r.t. X) plus “error”

Inference goal is to estimate B0, B1, error.  

This is harder when there is more error.

Score on Y
for the ith
individual

ErrorY 
Intercept

Yi = β0 + β1Xi + ε i
Score on X

for the ith
individual

Slope
(Effect)

OLS regression model.



Sum of squared error = 3837

SS[error]= ε̂i
2

i=1

n

∑ = yi − ŷi( )2
i=1

n

∑

ε̂i = yi − ŷi( )
ŷi = β̂0 + β̂1xi

Minimize squared error in y



Sum of squared error = 3174

SS[error]= ε̂i
2

i=1

n

∑ = yi − ŷi( )2
i=1

n

∑

ε̂i = yi − ŷi( )
ŷi = β̂0 + β̂1xi

If we don’t get to vary slope 
from 0, our squared error 
minimizing line is the 
horizontal that passes 
through the mean of y.

Minimize squared error in y



Sum of squared error = 7050

SS[error]= ε̂i
2

i=1

n

∑ = yi − ŷi( )2
i=1

n

∑

ε̂i = yi − ŷi( )
ŷi = β̂0 + β̂1xi

Minimize squared error in y



Sum of squared error = 855

SS[error]= ε̂i
2

i=1

n

∑ = yi − ŷi( )2
i=1

n

∑

ε̂i = yi − ŷi( )
ŷi = β̂0 + β̂1xi

Minimize squared error in y



Sum of squared error = 93

SS[error]= ε̂i
2

i=1

n

∑ = yi − ŷi( )2
i=1

n

∑

ε̂i = yi − ŷi( )
ŷi = β̂0 + β̂1xi

Minimize squared error in y



Regression in R via lm( )
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

lm(data = fs, Son~Father)

Coefficients:
(Intercept)       Father  

33.893        0.514 

Formula syntax:
response ~ explanatory variables



Regression in R via lm( )
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

lm(data = fs, Son~Father)

Coefficients:
(Intercept)       Father  

33.893        0.514 

ggplot(fs, aes(x=Father, y=Son))+
geom_point()+
geom_abline(intercept = 33.893, 

slope = 0.514, 
color="red", 
size=1.5)+

theme_minimal()



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

lm(data = fs, Son~Father)

Coefficients:
(Intercept)       Father  

33.893        0.514 

ggplot(fs, aes(x=Father, y=Son))+
geom_point()+
geom_smooth(method = "lm")+
theme_minimal()



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401    0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



OLS regression: estimate of slope

There are equivalent formulae using 
covariance, etc.

β̂1 = rxy
sy
sx

Least squares estimates 
Line that minimizes sum of squared errors

This is the line that gives us E[Y|X]



A few consequences of E[Y|X] (slope)

• Correlation is the slope of the z-scores.

• Regression to the mean.

• Asymmetry between y~x and x~y.

β̂1 = rxy
sy
sx



Correlation is the slope of z-scores.

β̂1 = rxy
sy
sx

rxy =
1
n−1

zi
(x )zi

(y)

i=1

n

∑

The correlation coefficient is the slope of 
the z-scores: how many standard 
deviations in y do you go up for every 1 
s.d. increase in x?



Regression to the mean

This means that (unless the 
correlation is perfect) the y value will 
not be as extreme as the x value.  
E.g., test-retest reliability is never 
perfect.  So people who do really 
well/badly (very big positive/negative z-
score) on one test, will tend to be closer 
to the average on the retest
E.g., very tall/short parents will tend to 
have children closer to average.
E.g., very good performance by stock 
brokers in one quarter is likely to be 
followed by average performance.

r=0.76
So z-score slope is 0.76

The correlation coefficient is the slope of the z-scores…



Y~b0+b1(X)+e  ≠  X~b0+b1(Y)+e

51

Regression of Y as fx. of X gives different line than X as fx. of Y.
Why?

ŷi = β̂0 + β̂1xi
(ŷi − β̂0 ) / β̂1 = x

a =1/ β̂1
b = −β̂0 / β̂1
x̂ = a ⋅ y+ b

summary(lm(sons~fathers))

Coefficients:
Estimate

(Intercept) 33.88660
fathers      0.51409

b0=33.89
b1=0.514
a = 1/b1
b = b0/b1

a [1] 1.94
b [1] 65.93

So, since 
son.height ~ father.height*0.5 + 34
we might expect
father.height ~ son.height*2 + 66
And we would be very wrong!

summary(lm(fathers~sons))

Coefficients:
Estimate

(Intercept) 34.10745
sons         0.48890

These coefficients are 
very different from what 
we get by using the 
same line and just 
algebraically shuffling to 
get x~y
Why?



Y~b0+b1(X)+e  ≠  X~b0+b1(Y)+e

Regression of x as a 
function of y

Regression of y as a 
function of x



Y~b0+b1(X)+e  ≠  X~b0+b1(Y)+e

53

Why is regression of Y as fx. of X different than X as fx. of Y?
Regression of x as a function of 
y minimizes squared errors in x

Regression of y as a function of 
x minimizes squared errors in y

OLS regression assumes predictor is not uncertain… 



Regression: conditional means
Regression estimates conditional means.  E.g., y~x estimates mean(y | x)

sons ~ fathers fathers ~ sons

Consequently we get a few weird phenomena: 
slope of y~x differs from inverse of x~y. 
Regression to the mean: 

mean(x) for extreme y is less extreme, mean(y) for extreme x is less extreme.



Y~b0+b1(X)+e  ≠  X~b0+b1(Y)+e

Regression of x as a 
function of y

Regression of y as a 
function of x

Principle component 
line (not something 
we estimate here)



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



OLS regression: estimate of intercept
Least squares estimates 
Line that minimizes sum of squared errors

This is the line that gives us E[Y|X]

β̂0 = y − β̂1x

This comes from the constraint that the line 
must go through [mean(x), mean(y)].



OLS regression: estimate of intercept
Least squares estimates 
Line that minimizes sum of squared errors

This is the line that gives us E[Y|X]

β̂0 = y − β̂1x

Interpretation of intercept is rather 
challenging.  It is the predicted y value at 
x=0.  e.g., the height of a son whose father 
is 0 inches tall.  



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



OLS regression: estimate of residuals

60

β̂1 = rxy
sy
sx

β̂0 = y − β̂1x

Least squares estimates

Predicted y values 
where the estimated line passes at each x value

ŷi = β̂0 + β̂1xi

ε̂i = yi − ŷi( )

Residuals (estimated error)
Deviation of real y value from line prediction

The sum of squared errors: SS[e]

Standard deviation of residuals

σ̂ ε = sr =
1

n− 2
yi − ŷi( )2

i=1

n

∑

df=n-2, we fit two parameters (B0,B1)



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



β̂1 = rxy
sy
sx

Estimated slope

s{β̂1} = sr
1

(xi − x )
2

i=1

n

∑
= sr

1
sx
2 (n−1)

=
sr
sx
/ n−1

Sampling s.d. of 
estimated slope 
(std. err. of slope)

Standard Error of the Slope
b1 = r.fs*sy/sx [1] 0.5141

Standard deviation 
of the residuals

Sum of squares of X

SS[x]= (xi − x )
2

i=1

n

∑

Standard error of the slope

SD / variance of x

sr = sqrt(sum((sons-fathers*b1-b0)^2)/(n-2))

[1] 2.436556Std. dev. of residuals
sr =

1
n− 2

yi − ŷi( )2
i=1

n

∑



What makes our slope estimate better?

s{β̂1} =
sr
sx
/ n−1

Standard error of the slope 
is lower (and so slope 
estimate is better) when:
- Error around the line is 

smaller (lower sd of 
residuals)



What makes our slope estimate better?

s{β̂1} =
sr
sx
/ n−1

Standard error of the slope 
is lower (and so slope 
estimate is better) when:
- Error around the line is 

smaller (lower sd of 
residuals)

- We have more data.



What makes our slope estimate better?

s{β̂1} =
sr
sx
/ n−1

Standard error of the slope 
is lower (and so slope 
estimate is better) when:
- Error around the line is 

smaller (lower sd of 
residuals)

- We have more data.
- X is more spread out 

(higher sd of x)

Why? SD of x determines the range of x, and the amount of variation in y due to variation in x.  
Thus, signal (var y due to x) to noise (var y due to error) ratio goes up.



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



Standard error of the intercept

67

Estimated intercept

β̂0 = y − β̂1x

s{β̂0} = sr
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intercept Error from extrapolating slope to x=0.

The familiar std. error of the slope!

This comes from the constraint that the line 
must go through [mean(x), mean(y)].



Standard error of the intercept
Estimated intercept

β̂0 = y − β̂1x

s{β̂0} =
s2r
n
+ x sr

sx n−1
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Sampling s.d. of 
estimated intercept 
(std. err. of intercept)

Error in estimating mean(y)

Error from extrapolating slope

This comes from the constraint that the line 
must go through [mean(x), mean(y)].
So we have to extrapolate line to x=0 to find intercept.



Correlation of estimation errors.
Error from 
extrapolating slope 
means:
Errors of slope and 
intercept will be very 
correlated (if we get the 
slope wrong, we will get 
the intercept wrong).  
How bad this correlation 
is depends on how far 
we have to extrapolate:
Mean(x)-0
The sign of this 
correlation depends on 
sign of mean(x).



Marginal std. error of intercept
Standard error of 
intercept is the 
*marginal* standard 
errors.  So this very 
large correlation will look 
like a very large error in 
estimating intercept.

Centering x is generally 
a very good idea:
x’ = x-mean(x)
lm(y~x’)
Gets rid of huge errors 
in intercept, and also
makes intercept 
interpretable as mean(y) 
at mean(x) (rather than 
mean(y) at x=0)



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



s{β̂1} =
sr
sx
/ n−1

Standard Errors of coefficients
Standard error of the slope decreases with:

Smaller s.d. of residuals
Larger sample size
Larger spread of x values

s{β̂0} = sr
1
n
+

x 2

(xi − x )
2

i=1

n

∑

Standard error of the intercept decreases with:
Smaller s.d. of residuals
Larger sample size
Smaller std. distance between 0 and mean(x)

β̂1 ± tα /2s{β̂1}

We do the usual t-test procedures to test null hypotheses and obtain 
confidence intervals 
With df=n-2: degrees of freedom in estimating the s.d. of residuals.

tb1 =
β̂1 − h0
s{β̂1}



summary(lm(sons~fathers))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.88660    1.83235   18.49   <2e-16 ***
fathers      0.51409    0.02705   19.01   <2e-16 ***

Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506 
F-statistic: 361.2 on 1 and 1076 DF,  p-value: < 2.2e-16 

These t-statistics and p values are calculated just like all other t statistics:
t = (estimate – null.value)/se{estimate}
Default null.value=0
So t tests are asking if those parameter estimates differ from zero.
df: df for estimating sample variance (residual std. deviation/error)

Can define confidence intervals the usual way as well:
estimate +/- t.crit * se{estimate}
e.g., 95% C.I. on slope:  0.514  +/- (~)2 * 0.027     =>  (0.46, 0.57)

se S.D. of residuals
SSE = se^2*df

d.f. of residuals



summary(lm(sons~fathers))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.88660    1.83235   18.49   <2e-16 ***
fathers      0.51409    0.02705   19.01   <2e-16 ***

Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506 
F-statistic: 361.2 on 1 and 1076 DF,  p-value: < 2.2e-16 

B̂0 Estimate of intercept

s{B̂0}

Std. err. of intercept
t(n−2) =

B̂0 − 0
s{B̂0}

T-test of intercept

t(n−2) =
B̂1 − 0
s{B̂1}

T-test of 
slopes{B̂1} Std. err. 

of slope

B̂1
Estimate 
of slope



Regression in R
Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father;  s = fs$Son

summary(lm(data = fs, Son~Father))

Call:
lm(formula = Son ~ Father, data = fs)

Residuals:
Min      1Q  Median      3Q     Max 

-8.8910 -1.5361 -0.0092  1.6359  8.9894 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 33.89280    1.83289   18.49   <2e-16
Father       0.51401 0.02706   19.00   <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared:  0.2512, Adjusted R-squared:  0.2505 
F-statistic: 360.9 on 1 and 1076 DF,  p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son
Df Sum Sq Mean Sq F value    Pr(>F)    

Father       1 2145.4 2145.35   360.9 < 2.2e-16
Residuals 1076 6396.3    5.94                      

Where do all these numbers come from? What do they mean?



• Measure weight 168 times

Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness



• Measure weight 168 times
• Sort measurements:

…
…
…
…
…
…

Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness



• Measure weight 168 times
• Bin the measurements

…
…

…
…

…
…

152-154 154-156 156-158 158-160 160-162 160-162

Variation and randomness



• Measure weight 168 times
• Make a histogram

…
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…
…

…
…
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• Measure weight 168 times
• What is my weight?
• Different each time I measure it.
• Mean is 157.9
• Variation around the mean 

(157.9) is “random”, as far as I 
know.
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Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness



• Oh yeah:
• 168 measurements are hourly for 

7 consecutive days
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Variation and randomness



• Taking trend into account reduces the 
apparent randomness
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• Taking cyclical (hourly, daily) patterns 
further reduces error
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• What is my weight?
– It was ~155 lbs a week ago
– I am gaining ~0.015 lbs/hr
– Weight systematically fluctuates 

over a range of 5 lbs in a 24 hr
cycle.

– After taking all that into account, 
there is still some unexplained 
variation of +/- 2 lbs
(perhaps random error? More likely systematic 
deviations from regular trends in daily cycle, or 
systematic variation in how the scale operates)

Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness



• Unaccounted-for variation is 
considered “random”

• This can be called:
– “noise”
– “random error”
– “sampling variability”

• Someone’s “noise” may be 
another’s “signal”, depending 
on what you know about the 
data and what analytical tools 
you have at your disposal.

Variation and randomness

Psych 201ab: Quantitative methods > Variation and randomness


