201ab Quantitative methods
L.0o8: Correlation, regression.

T USED T0 THINK, THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION MPUED STATISTICS CLASS. Cmss HELPED.
CAUSATION. Now I (DONT WELL, MAYBE
Alt-text:

Correlation doesn't imply causation, but it does waggle its
eyebrows suggestively and gesture furtively while mouthing
'look over there'.



Projects!
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Questions we might want to ask:

 How do fathers’ heights compare to the current UK male
mean?
— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’
heights?
— What is our prediction interval on the height of a new
father?

* Are sons taller than their fathers?
— Can we reject the null of mean=zero difference?

 Whatis the relationship between sons’ and fathers’
heights?



Questions we might want to ask:

 How do fathers’ heights compare to the current UK male
mean?
— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’
heights?
— What is our prediction interval on the height of a new
father?

* Are sons taller than their fathers?
— Can we reject the null of mean=zero difference?

« Whatis the relationship between sons and fathers
heights?



* How do fathers’ heights compare to the current UK male
mean?

— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’ heights?
— What is our prediction interval on the height of a new father?

> f = fs$Father

> hOmean = 69

> (m = mean(f))
[1] 67.68683

> (n = length(f))
[1] 1078

2B S E=gsd(f))

P1s 2. 745827

> (se_m = s/sqrt(n))

[1] 0.08363033

> (stat = (m—-hOmean) /se_m)
FNIS =157 702 11
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* How do fathers’ heights compare to the current UK male
mean?

— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’ heights?

— What is our prediction interval on the height of a new father?
> 2xpt(-abs(stat), df = n-1)
e [1] 3.457638e-50
> hOmean = 69 > 2*pnorm(-abs(stat))

> (m = mean(f))

[1] 67.68683 [l] 1.462962e-55

> (n = length(f))
[1] 1078

> (s =ssd(f))

[ 2.745827

> (se_m = s/sqrt(n))

[1] 0.08363033

> (stat = (m—hOmean) /se_m)
[1] -15.70211
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* How do fathers’ heights compare to the current UK male
mean?

— Can we reject the null of the current UK mean?

— What is our confidence interval on the mean of fathers’
heights?

— What is our prediction interval on the height of a new father?

>(criti=Nabs (gt ((1-0:95)/2 Ndf ==n=1)))
[1] 1.962169

> abs(gnorm((1-0.95)/2))

[1] 1.959964

> Mt (C R ke it ks e i

[BN6i7 522 738671 85092

> f = fs$Father

> hOmean = 69

> (m = mean(f))
[1] 67.68683

> (n = length(f))
[1] 1078

> (s = sd(f))

[1] 2.745827

> (se_m = s/sqrt(n))

[1] 0.08363033

> (stat = (m—hOmean) /se_m)
[1] -15.70211

Father



* How do fathers’ heights compare to the current UK male
mean?

— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’ heights?
— What is our prediction interval on the height of a new father?

> f = fs$Father > (s_new = sqrt(s”"2 + se_m"2))
> hOmean = 69 [1i]02. 7471

> (m = mean(f)) >m + c(-1,1)*crit*s_new

[1] 67.68683 [1] 62.29655 73.07710

> (n = length(f))

[1] 1078

> (s = sd(f))

[1] 2.745827

> (se_m = s/sqrt(n))

[1] ©0.08363033

> (stat = (m—hOmean) /se_m)
[1] -15.70211
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Linear model formulation

yi = (1) - Bo + €
e; ~ N(0,0¢)




Least squares fit.

tibble(n= n,
SS= sum((f-b0)"2))

mutate (MSE SS/n,
RMSE sqrt(MSE) )

Father

é%i&éﬁ;&;. n SS MSE RMSE A tibble: 1 x 4

b By <int> <dbl> <dbl> <dbl> n SS MSE RMSE
7°,r‘§‘ . %@ 1 1078 71816. 66.6 8.16 <int> <dbl> <dbl> <dbl>

LA 1078 8629. 8.00 2.83

A tibble: 1 x 4

n SS MSE RMSE c
SN R <an > <dbl ><cbil>
1078 13888. 12.9 3.59

n SS MSE RMSE

<int> <dbl> <dbl> <dbl>

Father
LA

65

LT

1 1078 81206. 7.53 2.74
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* How do fathers’ heights compare to the current UK male

mean?

— Can we reject the null of the current UK mean?

— What is our confidence interval on the mean of fathers’ heights?
— What is our prediction interval on the height of a new father?

> Im(f~1) %>% summary ()

Call:
Im(formula = f ~ 1)

Residuals:
Min 1Q Median 3Q
-8.6868 -1.8868 0.1132 1.9132

Coefficients:
Estimate Std. Error devwatae rr(>|t]|)
(Intercept) 67.68683 0.08363 809.4 <2e-16 **%*

> f = fs$Father

> hOmean = 69

> (m = mean(f))

[1] 67.68683

> (n = length(f))
[1] 1078

> (s = sd(f))

[1] 2.745827

> (se_m = s/sqrt(n))
[1] 0.08363033

> (stat = (m—hOmean) /se_m)
[1] -15.70211

Signif. codes: 0 ‘x*x%x’ 0.001 ‘xx’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢’ >R 2%t (Eabs (s Eat ) Pad ER=Rn=11s)
[1] 3.457638e-50

Residual standard error: 2.746 on 1077 degrees of freedom




* How do fathers’ heights compare to the current UK male
mean?

— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’ heights?
— What is our prediction interval on the height of a new father?

Im(f~1) %>%
predict. lm(newdata= data.frame(x=1),

> (s_new = sqrt(s”"2 + se_m"2))
interval = 'prediction', (1] 2.7471

level = 0.95) >m + c(-1,1)*critxs_new
ik lwr upr [1] 62.29655 73.07710
67.68683 62.29655 73.0771




Evaluating a mean

 Fitting a mean, on the assumption of gaussian
variability...
— Requires that we use a t-distribution to respect the
uncertainty of our standard deviation estimate.

— Is the simplest/smallest ”linear model”:
(just an intercept term)



Questions we might want to ask:

 How do fathers’ heights compare to the current UK male
mean?
— Can we reject the null of the current UK mean?
— What is our confidence interval on the mean of fathers’
heights?
— What is our prediction interval on the height of a new
father?

* Are sons taller than their fathers?
— Can we reject the null of mean=zero difference?

 What is the relationship between sons and fathers
heights?



Relationship between two variables
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XandY can be...
— Independent.
— Dependent, but not linearly (tricky to measure in general)
— Linearly dependent (this is what we are going to measure)



Anscombe’s quartet

124

Property

Mean of xin each case
Sample variance of x in each case
Mean of yin each case
Sample variance of y in each case

Correlation between x and y in each
case

Linear regression line in each case

Value
9 (exact)
11 (exact)
7.50 (to 2 decimal places)

4.122 or 4.127 (to 3 decimal places)
0.816 (to 3 decimal places)

¥ =3.00 + 0.500x (to 2 and 3 decimal places,

respectively)

O©D

@

10 15

You can always fit a line; doesn’t mean it’s a good idea.



Measures of linear relationship

Covariance: shared variance between xandy
Correlation: standardized covariance

Coefficient of determination: how much variance is
captured by linear relationship.

Regression slope of y~x: predicty for given x
(minimizing squared deviation of y from prediction)

Regression slope of x~y: predict x for given y
(minimizing squared deviation of x from prediction)

Principle component line:
(minimize squared deviation of (x,y) from line.)



Covariance: varying together.

When X deviates from the mean, does Y deviate from its
mean. What is the size and direction of these shared
deviations?

positive
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Covariance (s,y) 1

Covariance and correlation
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Correlation (r) 0.5 0.5 0.5

Covariance: magnitude of shared variance.

Covariance will change with unit rescaling (heights in cm vs in)

25

Correlation: Covariance scaled by the (marginal) variances of x and y

Correlation will not change with rescaling.

50



Correlation

Covariance scaled to the overall variances.

Between -1 and 1.
Measures direction, strength of linear relationship

Closer to O when
variables are more

&L 0.8
/ I gﬁ fﬂé * x \ independent.

0.4 0 -0.4 -0.8 -1

1 1 1 1 1 1 _
Only sign of slope
> - = ; = s -~ .
P S i -— N . e matters.
0 0 0 0 0 0 0
£ P LN T =i
4 F oS5y I Ny g & Non-linear
Yy e ¢ VGG o &%, & e relationships don’t
. 2t YA & N e W

count.



Calculation correlation, covariance

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son

cov(f,s)

3.8733 r

cov(f,f)

°
7.539566 il I

: :
7.539566

0.5011627

cov(f,s)/(sd(f)xsd(s)) )

0.5011627 - " Father



Calculation correlation, covariance

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son

Xy
3.8733 n—1

_ | - L S -0, -7
(f,s) S _—SP[X,y]—mE[(xi_x)(yi_y)]
T =l

Sample

113 1)
covariance sum of products

7.539566 2 1 1 N — —
s =—989[x]=—— X, —xX)(x, —X
E— 50 2L D0 0]

'1.539566

Sample
variance

“sum of squares”

S SPx,y]

Xy
0.5011627 I’x =

sampe 555, A/SSLXT* SS[y]

©.5011627 correlation




The covariance matrix

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son

Father Son
Father 7.539566 3.875382
Son 3.875382 T7.930949

'1.539566 3.875382

3.875382 7.930949



Linear transformations

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv'))

Original variables Shifted variables Scaled variables
f = fs$Father f = fs$Father + 2 f = fs$Father x 2
s = fs$Son s = fs$Son + 3 s = fs$Son * 3
67.68683 69.68683 135.3737
68.68423 71.68423 206.0527
2.745827 2.745827 5.491654
2.816194 2.816194 8.448582
3.875382 3.875382 23.25229
0.5011627 0.5011627 0.5011627

Shifting influences the mean, nothing else.
Scaling changes mean, variance, sd, covariance, but not the correlation:

The correlation normalizes the covariance to the sd of x,y, so is constant.



What line would you draw?




Different regressions, lines

Predict X from Y Principle component line
X~ a+b*Y 15t principle component

Predict Y from X
Y ~ a+b*X

They all go through
[mean(x), mean(y)]

They differ in their definition
of error to be minimized.




OLS regression model.
Yisis aline (w.r.t. X) plus “error”

Y. =\, |+|P)X | +l€

~ ™)
ScoreonY Y% Slo Score on X
| — pe - Error
e | = | intercept [ F[| gy | K| forhemn [
\. ~

Error assumed to be independent, identically distributed,
Gaussian noise.

e ~N(@O,0,)



Y=B,+(0*X)




10

Y=B,+(B;*X)

B0=5; B1='3
B,=2; B;=2
B,=0; B,=1
B,=-1; B,=-1
[ [ | | | |
3 2 -1 0 1 2 3




10

Y=B,+(B,*X)

B,=2; B,=3




B,+(B,*X)+e

Y=
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OLS regression model.
Yisis aline (w.r.t. X) plus “error”

Y ::BO+IB1X°+‘9

- ™
ScoreonY Y Slo Score on X
. — pe . E
for the ith — for the ith rror
or et intercept | F || teecy %] forhemn

\. ~

Inference goal is to estimate Bo, B1, error.

This is harder when there is more error.
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Minimize squared error in y

@

SS[error] = Eéf = E(yl. - )Azl.)z
i=1

i=1
éi = ()’i _)A;i)
Y, = /3’0 + /3)1xi

Sum of squared error = 3837



Minimize squared error in y

15

10
l

-10

@

SSlerror] = Eéf = E(yl. -9,
i=1

i=1
éi = ()’i _)A;i)
Y = /3)0 + /3)1xi

Sum of squared error = 3174

If we don’t get to vary slope
from O, our squared error
minimizing line is the
horizontal that passes
through the mean of y.

)2
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Minimize squared error in y

@

SSlerror] = Eéf = E(yl. -9,
i=1

i=1
éi = ()’i _)A;i)
Y, = /3’0 + /3)1xi

Sum of squared error = 7050

)2



15

10

-10

Minimize squared error in y

[ | SS[error] = Eéf = E(yi _
i=1

i=1
éi = ()’i _)A;i)
5’1‘ = /3)0 +/3)1xi

Sum of squared error = 855

A

Vi

)2
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10

Minimize squared error in y
SS[error]=i§f=i(yi— .

i=1
éi = ()’i _)A;i)
Y, = /3)0 + /S)lxi

Sum of squared error = 93




Regression in R via lm()

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son

Im(data = fs, Son~Father)

Coefficients:

(Intercept) Father

33.893 0.514
Formula syntax:

response ~ explanatory variables



Regression in R via lm()

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son

Im(data = fs, Son~Father)

Coefficients:
(Intercept) Father
33.893 0.514

Son

ggplot(fs, aes(x=Father, y=Son))+
geom_point()+
geom_abline(

color="red",
size=1.5)+ & S
theme_minimal() N - Father




RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s = fs$Son
Im(data = fs, Son~Father)
Coefficients:
(Intercept) Father
33.893 0.514
* o
L ] L ] Ll

Son

ggplot(fs, aes(x=Father, y=Son))+
geom_point()+

geom_smooth( )+
theme_minimal() o . .

Father



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 33.89280 1.83289 18.49 <2e-16
Father 0.51401 0.02706 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) _33.89280 1.83280 18.49 <2e-16
Father 0.51401 0.02706 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



OLS regression: estimate of slope

Least squares estimates

Y — + X +|E. Line that minimizes sum of squared errors
l 0 1

l l
| This is the line that gives us E[Y|X]
Bl | = | itereent +[?‘s'f?e‘23 x| o ]"‘ S
A \)
: P =r. —
1 Xy
X

There are equivalent formulae using
covariance, etc.




A few consequences of E[Y|X] (slope)

* Correlation is the slope of the z-scores.
* Regression to the mean.

* Asymmetry between y~x and x~y.



Correlation is the slope of z-scores.

The correlation coefficient is the slope of A g
the z-scores: how many standard B, =r -~
deviations in y do you go up for every 1 Y S
s.d. increase in x?

n

Z,-x)Zi(y)

=1

r—l
Yon—1



Regression to the mean

The correlation coefficient is the slope of the z-scores...

This means that (unless the
correlation is perfect) the y value will

not be as extreme as the x value.
E.g., test-retest reliability is never
perfect. So people who do really
well/badly (very big positive/negative z-
score) on one test, will tend to be closer
to the average on the retest
E.g., very tall/short parents will tend to
have children closer to average.
& 47 ° o z-score slope is 0.76 E.g., very good performanFe by stock

I I | | —I brokers in one quarter is likely to be

-2 1 0 1 o followed by average performance.

zy

ZX



Y~bo+bi(X)+e # X~bo+bi(Y)+e

Regression of Y as fx. of X gives different line than X as fx. of Y.

Why?
R A A b@=33.89 summary(1m(sons~fathers))
y,- = [))0 + ﬁlxi b1=0.514 Coefficients:
A A 2 i éé%i Estimate
A - (Intercept) 33.88660
(yi - /3)0)//31 =X 5 1] 1.04 fathers 0.51400
R b [1] 65.93
a=1/ ﬁl So, since
A A son.height ~ father.height*o.5 + 34
b= —/30 //31 we might expect
R b father.height ~ son.height*2 + 66
X=ay+ !
Y And we would be very wrongt These coefficients are
summary(1m( fathers~sons)) very different from what
Coefficients: we get by using the
: ) Estimate same line and just
Intercept) 34.10745 . .
cone 0. 48890 algebraically shuffling to
get x~y

Why?

g1



Y~bo+bi(X)+e # X~bo+bi(Y)+e

Regression of y as a
function of x

wn
P~

Regression of x as a
function of y

70

sons

65

60

fathers

75




Y~bo+bi(X)+e # X~bo+bi(Y)+e

Why is regression of Y as fx. of X different than X as fx. of Y?

Regression of y as a function of Regression of x as a function of
X minimizes squared errors iny y minimizes squared errors in x

L ] .H
S
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62 64 66 68 70 72 62 64 66 68 70 72

OLS regression assumes predictor is not uncertain...

2



Regression: conditional means

Regression estimates conditional means. E.g., y~x estimates mean(y | x)

Consequently we get a few weird phenomena:
slope of y~x differs from inverse of x~y.
Regression to the mean:
mean(x) for extreme vy is less extreme, mean(y) for extreme x is less extreme.

sons ~ fathers fathers ~ sons

sons

fathers fathers




Y~bo+bi(X)+e # X~bo+bi(Y)+e

Regression of y as a * .
function of x

n

P~

Regression of x as a
function of y

70
l

sons

Principle componenwt _
line (not something
we estimate here) _

«w » -

9 .

60 65 70 75

fathers



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Fstimate Std. Error t value Pr(>|t]|)
(Intercept]) 33.89280 1.832890 18.49 <2e-16
Father . U.91401 0.02706 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



OLS regression: estimate of intercept

Least squares estimates

Yi — ﬁO + ,le +|E. Line that minimizes sum of squared errors

l l
| This is the line that gives us E[Y|X]
S‘%ggﬁ;{;}, g - Inte:(cept + [ (SEIﬁoeate) A S(:fg::.t?‘.goipl} - ]'l' Error

This comes from the constraint that the line
must go through [mean(x), mean(y)].




OLS regression: estimate of intercept

| Least squares estimates
Y — ﬁO + ,le +|E. Line that minimizes sum of squared errors

l l l
This is the line that gives us E[Y|X]

individual

ScoreonY Y Slo Score on X
for the ith = | Intercept + (Effect) | *° mmgﬁ =+ | Error

Interpretation of intercept is rather
challenging. Itis the predicted y value at
Xx=0. e.g., the height of a son whose father

is o inches tall.

40
Father



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 33.89280 1.83289 18.49 <2e-16
Father 0.51401 0.02706 19.00 <2e-16

Residual standard erroﬂ: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2517, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



OLS regression: estimate of residuals
»Y. — ﬁo + ﬁ\l}X +le. Least squares estimates

l

VaN S VaN VaN
: py=Y-px
ScoreonY Scoreon X — — = —_—
for the ith - v + [ slope fse] ~orthe th J+ Error /))1 rxy 0 y 1'x

individual Intercept (Effect) individual Ry

X
Predicted y values
where the estimated line passes at each x value

[j}i = Py + b ]

Residuals (estimated error)
Deviation of real y value from line prediction

[éi = ()’i _)A’i) J
Standard deviation of residuals

The sum of squared errors: SS[e]

| | l | | df=n-2, we fit two parameters (Bo,B1)
0 1 2 3 4 5 AN

1.0 0.0 1.0
N |
Lo
—eo
Lo
(0]

)
o0 EL",
e—ej_e

—O
o o
o
—g




RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 33.89280 1.83289 8.49 <2e-16
Father 0.51401 U 02700 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



Standard Error of the Slope
Estimated slope [T RS [1] ©.5141

A S
/3)1 = I"xy—y sr = sqrt(sum((sons-fathersxb1-b@)"2)/(n-2))
§ [1] 2.436556

X

Sampling s.d. of E( .—)A;l.)z
estimated slope :
(std. err. of slope)

- ( —
Lg{ﬁlﬂ = . i e / \/m
\ =1 J) SD / variance of x

J

Standard error of the slope Sum of squares of X

Standard deviation d .
of the residuals S3[x]= E(X,- - X)
i=1



What makes our slope estimate better?
s{B} A
Sx

Standard error of the slope
is lower (and so slope o ———— ¥ ‘ k
estimate is better) when: e - & ¢ & & & % 4 9% ' ¢ 2
- Error around the line is
smaller (lower sd of g
residuals)




What makes our slope estimate better?

S{/g)l}=/ ’
Sx

Standard error of the slope 5

is lower (and so slope @ "

estimate is better) when: s 2 4 o0 1 2 3 3 2 4 o0 1 2 3

- Error around the line is
smaller (lower sd of -
residuals)

- We have more data.




What makes our slope estimate better?

S{/;)l}=/ F

Standard error of the slope

is lower (and so slope

estimate is better) when: -

- Error around the line is
smaller (lower sd of
residuals)

- We have more data. -

- Xis more spread out

(higher sd of x) a2 4 0 1 2z 3 s 5 4. v,
Why? SD of x determines the range of x, and the amount of variation in y due to variation in x.
Thus, signal (var y due to x) to noise (var y due to error) ratio goes up.



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 33.89280 183220 _48.49 <2e-16
Father 0.51401 0.02706 9.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



Standard error of the intercept

Estimated intercept

A — S — This comes from the constraint that the line
ﬁo =Y - /3)1)6 must go through [mean(x), mean(y)].

Sampling s.d. of
estimated intercept
(std. err. of intercept)

[S{/g)o}]

—

1
n

Standard error of the Error in estimating the mean of

KBLeraaPd deviation Error from extrapolating slope to x¥c

of the residuals The familiar std. error of the slope!

R7



Standard error of the intercept

Estimated intercept This comes from the constraint that the line
A oA must go through [mean(x), mean(y)].
/3)0 =Yy - /3)1)6 So we have to extrapolate line to x=0 to find intercept.

o
0

Sampling s.d. of
estimated intercept
(std. err. of intercept)

60
|

40

A\

sons

20

Error in estimating mean(y)

Error from extrapolating slope

| [
0 20 40 60

fathers



70

60

intercept

W
o

40

Correlation of estimation errors.

0.1

0.0

0.1

0.2
slope

0.3

0.5

Error from
extrapolating slope

means:

Errors of slope and
intercept will be very
correlated (if we get the
slope wrong, we will get
the intercept wrong).
How bad this correlation
is depends on how far
we have to extrapolate:
Mean(x)-o

The sign of this
correlation depends on
sign of mean(x).



intercept

Marginal std. error of intercept

intercept

0.0

slope

04

Standard error of
intercept is the
*marginal* standard
errors. So this very
large correlation will look
like a very large error in
estimating intercept.

Centering x is generally
a very good idea:

x’ = x-mean(x)

Im(y~x’)

Gets rid of huge errors
In intercept, and also
makes intercept
interpretable as mean(y)
at mean(x) (rather than
mean(y) at x=0)



RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Errorpt—veroe=—Rrtr{t{
(Intercept) 33.89280 1.83289 18.49 <2e-16
Father 0.51401 0.02706 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table
Response: Son
Df Sum Sq Mean Sq F value Pr(>F)

Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



Standard Errors of coefficients

Standard error of the slope decreases with:

Smaller s.d. of rgsiduals S{ﬁl} _ /

Larger sample size
Larger spread of x values

Standard error of the intercept decreases with: ) 1 72
Smaller s.d. of residuals s{Ppyt=s |—+—
Larger sample size n E(X' _%)
Smaller std. distance between o and mean(x) V ~ ’

We do the usual t-test procedures to test null hypotheses and obtain
confidence intervals
With df=n-2: degrees of freedom in estimating the s.d. of residuals.

p, —hO 2 2
[y =—= 1 2 LS UPy
) p s{p,}




summary(1m(sons~fathers))

Coefficients:

Estimate Std. Error t valug Pr(>|t])
(Intercept) 33.88660 1.83235 18.4 <2e-16 *xx
fathers 0.51409 0.02705 19.0 <2e-16 *xxxk

Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, Adjusted R-square®\0.2506
F-statistic: 361.2 on 1 ang¥/ 1076 DF, p-value: < 2.2 8

s, S.D. of residuals
SSE = sen2*df

d.f. of residuals

These t-statistics and p values are calculated just like all other t statistics:
t = (estimate — null.value)/se{estimate}
Default null.value=0
So t tests are asking if those parameter estimates differ from zero.
df: df for estimating sample variance (residual std. deviation/error)

Can define confidence intervals the usual way as well:
estimate +/- t.crit * se{estimate}
e.g., 95% C.l. on slope: 0.514 +/- (~)2 * 0.027 => (0.46, 0.57)



éo Estimate of intercept

s{B,}
Std. err. of intercept B,-0
" s{By)

T-test of intercept

summary(1m(sons~fathers))

Coefficients:
Estimatg Std. Error t¥alue Pr(>|tl|)
(Intercept) 33.88660 1.83235 18.49 <2e-16 #x*x*

fathers 0.51409 0.02705 19.01 <2e-10 xxkxx
Residual standard erior: 2.437 on A\QT76 degrees of edom
Multiple R-squared: q.2513, Adjusted R-squared: 0.235Q0
F-statistic: 361.2 onl1 and 1076 DF,\ p-value: < 2.2e-16
C B 0 )
-2~ " H
s{B,}
T-test of
S{BI} Std. err. . slope )
of slope

él Estimate
of slope




RegressioninR

Karl Pearson’s data on fathers’ and (grown) sons’ heights (England, c. 1900)

fs = read.csv(url('http://vulstats.ucsd.edu/data/Pearson.csv')) f = fs$Father; s

summary(1lm(data = fs, Son~Father))

Call:
Im(formula = Son ~ Father, data = fs)

Residuals:
Min 1Q Median 30 Max
-8.8910 -1.5361 -0.0092 1.6359 8.9894

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 33.89280 1.83289 18.49 <2e-16
Father 0.51401 0.02706 19.00 <2e-16

Residual standard error: 2.438 on 1076 degrees of freedom
Multiple R-squared: ©.2512, Adjusted R-squared: @.2505
F-statistic: 360.9 on 1 and 1076 DF, p-value: < 2.2e-16

anova(lm(data = fs, Son~Father))

Analysis of Variance Table

Response: Son

Df Sum Sq Mean Sq F value Pr(>F)
Father 1 2145.4 2145.35 360.9 < 2.2e-16
Residuals 1076 6396.3 5.94

Where do all these numbers come from? What do they mean?



158.1928

s ariation and randomness

156.1513
154.1769

122.1e54 * Measure weight 168 times ((/

155.9177
153.8620 s
158.7263
156.3841
156.9075
156.9597
155.8952
160.1060
159.2632
157.8709
156.5646
158.1436
154.6955
159.4184
159.5932
158.9586
156.9553
155.9073
156.1151
157.5840
155.2092
156.7197
156.1086
155.4311
154.4730
154.2109
157.4233
155.7556
157.1322

155.8327 o o
156.0758 Psych 201ab: Quantitative methods » Variation and randomness



153
153

154.
.2109
.2850
.4140
.4730
154.
154.
.8091
.9224
.9990
.9997
155.
.1849
.2092

154
154
154
154

154
154
154
154

155
155

155.
.4191

155
155
155

161.
161.
162.
162.
162.
162.
163.

.2481
.8620

1769

6955
7180

0386

3161

.4311
.4667

S5 S
5896
0160
0885
0995
1995
1148

Variation and randomness

* Measure weight 168 times
* Sort measurements:

Psych 201ab: Quantitative methods » Variation and randomness
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153.2481

153.8620 o

154.1769
154.2109

154.2850 o

154.4140
154.4730
154.6955
154.7180
154.8091
154.9224
154.9990
154.9997
155.0386
155.1849
155.2092
155.3161
155.4191
155.4311
155.4667

161.5555
161.5896
162.0160
162.0885
162.0995
162.1995
163.1148

Variation and rand

Measure weight 168 times

Bin the measurements

153.2481
153.8620

152-154

155.9073
155.9177
155.9982

154-156

157.9991

156-158

158.0551
158.0623
158.0717
158.1436
158.1813
158.1928
158.2152
158.2264
158.2900
158.3271
158.3519
158.3566
158.3953
158.4081
158.4175
158.4654
158.4779
158.4850
158.6486
158.6562
158.6797
158.7263
158.7267
158.7663
158.7801
158.7813
158.7818
158.8892
158.9586
159.0148
159.0371
159.0489
159.0561
159.0561
159.0801
159.1355
159.1790
159.2632
159.3555
159.3869
159.4184
159.5593
159.5843
159.5880
159.5932
159.6446
159.6699
159.7500
159.7729
159.8272
159.8597
159.9212
159.9562
159.9878

158-160

omness

160.6937
161.0825
161.1887
161.2539
161.3951
161.5555
161.5896

160-162

162.0160
162.0885
162.0995
162.1995
163.1148

160-162



~ -

el el el el el
LUy
ULy

161.
161.
162.
162.
162.
162.
163.

.2481
.8620
.1769
.2109
.2850
.4140
.4730
.6955
.7180
.8091
.9224
.9990
.9997
.0386
.1849
.2092
.3161
.4191
.4311
.4667

rree

S5 S
5896
0160
0885
0995
1995
1148

Variation and randomness

* Measure weight 168 times

* Make a histogram

Number of
measurements

-------

153155157159161163
Weight (lbs)

Psych 201ab: Quantitative methods » Variation and randomness



Variation and randomness

Measure weight 168 times p A
What is my weight? ./
Different each time | measure |it.

Mean is 157.9

Variation around the mean
(157.9) is “random”, as far as |
know.

Number of
measurements

153155157159161 163
Weight (lbs)

Psych 201ab: Quantitative methods » Variation and randomness



Variation and randomness

_./’,——-
. a : ". S ‘; ~
e o~ & o r
- ~ »
L] [ s ’,/)‘
s

* 168 measurements are hourly for &/
/ consecutive days

Weight (Ibs)
o

0 24 T 4eg
Measurement (hour)



Variation and randomness

» Taking trend into account reduces the Y A
apparent randomness €/

0 24 | | | | 1168

() c 0 - -
© £ 00 I - - -
%80)(0/-\ :. .c. d -4
L;(D'Ogo_.- - = - |
GJ-n—-CD'D— B - - = = -
— ~ -
= 0O o C : ~ =
QeQ@® :
-5
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Difference

Variation and randomness

Taking cyclical (hourly, daily) patterns (””‘
further reduces error ( /.

RN
o
N

RN
o
o

rHI

Weight (Ibs)
o
oo

w

between
regression
and data
(Ibs)
o

N

Psych 201ab: Quantitative methods » Variation and randomness



Variation and randomness

* What is my weight?
— It was ~155 Ibs a week ago
— | am gaining ~0.015 lbs/hr
— Weight systematically fluctuates

163155157159161163

overarangeof 5lbsina24 hr '@
Z160 .
Cyde' g158'.:..1'.'.
— After taking all that into account, = "2
there is still some unexplained e
0 24 168

Var|at|0n Of +/' 2 IbS Measurement (hour)
(perhaps random error? More likely systematic
deviations from regular trends in daily cycle, or 162} .
systematic variation in how the scale operates) @ 1eo .| .) Mt -H
£ 158" M} --f
K Mo
< 156(j
154

0 24 168
Psych 201ab: Quantitative methods » Variation and randomness Measurement (hour)



Variation and randomness

 Unaccounted-for variation is
considered “random”

163155157159161163

 This can be called:

(14 . 11 162
— 'noise T .
— “random error” e
| o £ oo
— "sampling variability 154 - -.
« Someone’s “noise” may be o 2 e
another’s “signal”, depending N -
on what you know about the z1e .| . ol
data and what analytical tools &' , NN ;
. < 156 . '
you have at your disposal. sa§ [+
0 24 ' =

Psych 201ab: Quantitative methods » Variation and randomness Measurement (hour)



