
201ab Quantitative methods
L.07: common tests

t-test, chi^2, binomial



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.06

This is the one-tailed 
p-value.

mean(x) = 66.44

Our data 
(sample of 9 female heights, in inches)

A statistic 
(arithmetic mean)



H0 false H0 true
Reject H0 Woohoo!

Fail to reject H0 rror Ok.

Errors in NHST

Re
je

ct
. Reject.

Type I error (Pr = α)

Correct failure to 
reject null (Pr = 1-α)

Type II error (Pr = β)

Correct rejection of null 
(Pr = 1-β ‘power’)



Power  P(significant | not null)
• The conditional probability of rejecting the null 

hypothesis when the data actually came from the 
‘alternate’ hypothesis distribution.

• To calculate this, we need to know what the ‘true effect’ 
distribution is. Usually, we just need the ‘effect size’

This area 
under the 
curve is 
“Power”.



Z-test power functions
• Get the power given d, n, and alpha.  (2-tailed!)

• Get the necessary n to reach power, given d, and alpha.

pwr::pwr.norm.test(d=d, n=n, sig.level=alpha)

pwr::pwr.norm.test(d=d, sig.level=alpha, power=power)



q=(1-α)% confidence interval on mean

x ± zα /2σ 0 / n

Estimate
Estimate minus 
z.crit * sem

Estimate plus
z.crit * sem

z.crit * sem z.crit * sem

Confidence interval 

Lower bound of 
confidence interval Upper bound of 

confidence interval



Confidence intervals
- If a 90% confidence interval on the mean 

excludes the null hypothesis mean, we can 
reject that null hypothesis with 2-tailed 
alpha = 0.1, and vice versa.

- We expected 90 out of 100 90% confidence 
intervals to include the true mean.  
“90%” refers to a long-run property of the procedure used 
to define the confidence interval, not to the specific 
confidence interval you have.



Probabilities in classical statistics refer to sampling 
frequencies under some statistical model.
– p-value: what proportion of hypothetical samples from the 

null hypothesis model, would have a statistic at least as 
extreme as ours? 

– Alpha: probability of rejecting the null hypothesis for data 
sampled from the null hypothesis model.

– Power: probability of rejecting the null hypothesis for data 
sampled from some alternative model.

– Sampling distribution: the probability distribution of a 
statistic given that it is sampled from some model.

– Confidence interval probability: probability that a 
confidence interval computed in this manner using samples 
from some model will contain the model parameter value.



Probabilities in null hypothesis significance testing refer 
to peculiar conditional probabilities:
– p-value:

P(X > x.sample | null is true) P(X > x.sample | X~null)

– Alpha: 
P(significant | null is true)

– Power: 
P(significant | null is false)

• Really important:
– These do not give us the probability that the null is false:

P(null is false | significant)  !!



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?



Normal variable stats.
• NHST: Z-test.
– Get (2-tailed) p-value via 

• Confidence intervals on mean
– Equivalence to NHSTs!

• Effect size
– Scale and sample size neutral.

• Alpha, Beta, Power.
– Effect size and n matter.

• Critically: Known standard deviation?  
What if our H0 just specifies the mean

2*pnorm(-abs(z),0,1)

zx =
x −µ0
σ X

n

x ± zα /2σ 0 / n
za = qnorm(a/2,0,1)

d = µT −µ0
σ X

pow =   1 - pnorm(  abs(qnorm(a/2)) - d*sqrt(n)  )

n.needed   =  ( ( qnorm(a/2) - qnorm(pow) ) / d )^2

pwr::pwr.norm.test



s^2 (sample variance) has sampling variation
var(rnorm(16,0,1)) [1] 0.748

var(rnorm(16,0,1)) [1] 0.966

var(rnorm(16,0,1)) [1] 0.830

var(rnorm(16,0,1)) [1] 1.292

replicate(10000,var(rnorm(16,0,1)))

s2 (σ2=1)

Sample standard deviation varies



Null distribution of Z and T statistic

Heavier tails in t statistic due to sampling variability of sample s.d.
Consequently, we use t-distribution. (pt, qt, rt, dt)

zx =
x −µ0
σ x
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Z vs T statistic (one sample mean)

σ x =σ 0 / n sx = sx / n

zx =
x −µ0
σ x
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2*pnorm(-abs(a))

qnorm(alpha/2)

2*pt(-abs(t),df)

df = n−1

qt(alpha/2,df)

Degrees of freedom

pt and qt instead of 
pnorm and qnorm

(1-alpha)% 
confidence interval

Use sample sd. instead 
of null population sd. 

to define standard error

Normal dist. equal to 
t dist. with df=infinity



Testing / confidence intervals using sample std. devs.
- Is the mean math GRE score of 

psych students different from 700?
- Is the avg. math GRE score for 

psych students different from cog 
sci students?

- Is the avg. improvement in math 
GRE scores from taking a Kaplan 
course different from 0?

- Is the avg. improvement from 
taking a Kaplan course different 
from the avg. improvement from 
just taking a bunch of practice 
GREs?

Varieties of t-tests

“One-sample” t-test

“Two-sample” t-test
(perhaps equal variance.)

“Paired sample” t-test
(one-sample t-test on 

difference)

“Two-sample” t-test
(after calc. deltas, 
perhaps unequal 

variance?) 



One sample t-test

Is the mean math GRE score of psych students different from 700?

We have a sample from population with unknown variance, and we want 
to know if the mean of that population is different from some H0 mean.

x = c(618,606,735,627,679,622,712,772,728,550,594,681,578,689,672)

Lower tail 
p-val
(0.0112: 
1-tail p-val)

The other tail 
(0.0112)
for 2-tail test.

t.test(x, mu=700)

One Sample t-test

data:  x 
t = -2.5645, df = 14, p-value = 0.02248
alternative hypothesis: true mean is not equal 
to 700 
95 percent confidence interval:
622.0167 693.0500 
sample estimates:
mean of x 
657.5333 



Two sample t-test (assumed equal variance)

Is the avg. math GRE score for psych students 
different from cog sci students?

We have samples from two population with unknown variance (but 
equal variance), and we want to know if their population means are 
different from each other.

x1 = c(618,606,735,627,679,622,712,772,728,550,594,681,578,689,672)

x2 = c(571,569,613,693,714,521,530,736,677,626,722)

t.test(x1,x2,var.equal=TRUE)

Two Sample t-test

data:  x1 and x2 
t = 0.8458, df = 24, p-value = 0.406
alternative hypothesis: true difference in means is 
not equal to 0 
95 percent confidence interval:
-34.15577  81.58608 
sample estimates:
mean of x mean of y 
657.5333  633.8182 



Paired sample t-test (one-sample on differences)

xb = c(586,589,571,705,550,632,674,664,578,563,619,607,591,622)

Is the avg. improvement in math GRE scores from taking a 
Kaplan course different from 0?
Before: 
After: xa = c(611,600,587,718,583,653,700,695,592,585,650,617,617,648)

We’re measuring the same people twice!

before

af
te

r

before after

And individuals seem to be improving…

t.test(xb, xa, var.equal=TRUE)

Two Sample t-test

data:  xb and xa
t = -1.2691, df = 26, p-value = 0.2157
alternative hypothesis: true difference in 
means is not equal to 0 
95 percent confidence interval:
-57.07210  13.50068 
sample estimates:
mean of x mean of y 
610.7857  632.5714 



Paired sample t-test (one-sample on differences)
We have two measurements of the same ‘subjects’ from the 
population, and we want to know if there was a change.

xb = c(586,589,571,705,550,632,674,664,578,563,619,607,591,622)

Is the avg. improvement in math GRE scores from taking a 
Kaplan course different from 0?
Before: 
After: xa = c(611,600,587,718,583,653,700,695,592,585,650,617,617,648)

Strategy: factor out the across-person variation by looking at the change within person.

D = xa-xb changes[1] 25 11 16 13 33 21 26 31 14 22 31 10 26 26

t.test(D)

One Sample t-test

data:  D 
t = 10.4809, df = 13, p-value = 1.041e-07
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval:
17.29514 26.27629 
sample estimates:
mean of x 
21.78571 

Paired sample t-test is just a one-sample t-
test with a sample of the differences!

This allows us to factor our across-person 
variation, which makes such repeated 
measures designs/tests very powerful!



Two sample t-test (unequal variance)
We have samples from two population with unknown (but potentially 
unequal) variance, and we want to know if their population means are 
different from each other.

Is the avg. improvement from taking a Kaplan course different from 
the avg. improvement from just taking a bunch of practice GREs?

xD = c(25,11,16,13,33,21,26,31,14,22,31,10,26,26)

yD = c(-9,-19,16,18,46,8,30,45,25,33,11,5,23,22,38,32,-2)

Kaplan improvement
Regular improvement

t.test(xD, yD)

Welch Two Sample t-test

data:  xD and yD
t = 0.5797, df = 22.443, p-value = 0.5679
alternative hypothesis: true difference in means is 
not equal to 0 
95 percent confidence interval:
-7.319357 13.008433 
sample estimates:
mean of x mean of y 
21.78571  18.94118 



Our confidence intervals are of this form:
Estimate

θ̂ ± tα /2 ⋅ s{θ̂}
Critical 

standard 
score

Standard error of 
the estimate

Estimate
Estimate minus 
t.crit * se{estimate}

Estimate plus
t.crit * se{estimate}

t.crit * se{estimate} t.crit * se{estimate}

Confidence interval 

Confidence intervals.

Lower bound of 
confidence interval Upper bound of 

confidence interval



Confidence intervals.
Estimate:

sample mean (1-sample test)
difference between sample means (2-sample test)
sample mean of differences   (paired test)

Critical score:
q = percent of interval (e.g., 0.9); alpha = 1-q
t.crit = abs( qt( (1-q)/2 , df ) )

Standard error of estimate:
matched to estimate, derived from expectation…

estimate + c(-1,1) * t.crit * se.estimate 



Z-test
We know pop. 
var. Want to test 
if mean differs 
from H0 mean.

zx =
x −µ0
σ X

"

#
$

%

&
' n

d̂ = x −µ0
σ X

"

#
$

%

&
'

2*pnorm(-abs(z))

x ± zα /2σ X / n
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df = n−1

We do not know 
pop. var. Want to 
test if mean 
differs from H0 
mean.
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x ± tα /2sX / n

Paired 
t-test

tD =
D
sD
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df = n−1

We have 2 
measures of the 
same thing, do they 
differ in means?

D± tα /2sD / n

2-sample
eq. var. t-test

d̂ = (x − y )−µ0
sP
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df = n1 + n2 − 2

We want to know if 
two samples 
(assumed to have 
equal var) have 
different means

(x − y )± tα /2sP * 1/ n1 +1/ n2

tx−y =
x − y
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1
nx
+
1
ny

"

#
$$

%

&
''

2-sample uneq
var t-test
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2*pt(-abs(t),df)

We want to know if two 
samples (not assumed 
to have equal var) have 
different means

(x − y )± tα /2
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Effect size here 
breaks the mold 
because of the 
diff. variances.

Standard errors of the mean / difference



T-test power

library(pwr)

pwr.t.test(n = 30, d = 0.5, sig.level=0.05, type="two.sample")

pwr.t.test(d = 0.5, sig.level=0.05, power=0.8, type="two.sample”)



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?



Counts vs Categories
• ‘Count data’:

You count the number of 
occurrences, and you do 
not keep track of the 
non-occurrences. 
– Number of cars in parking lot.
– Number of people entering a 

store
– Number of spikes in a post-

stimulus interval
– Number of babies in an expt
– Number of voters at a given 

polling place

• ‘Categorical data’:
Each observation is 
categorized into one of 
several mutually exclusive 
labels.  Every observation 
goes into exactly one bin.
– Makes of cars in parking lot.
– Race of people entering a store.
– Types of cells the spikes came 

from.
– ASD categorization of participating 

babies
– Who those people voted for



Describing categorical data…

• Categorize and count

• Estimate mode: ‘Asian’

• Dispersion as… not-peakiness (entropy)?
(not a standard measure, but may be useful)

table(x)

z = table(x)
names(z)[which.max(z)]



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?



Binomial test
• Having seen k “successes” out of n attempts, can we 

reject the null of binomial draws with probability p. 
– Boys/total born in hospital, correct/total problems, etc.

• Binomial test: compare k to binomial with n, p
binom.test(x=8, n=10, p=0.5)

Exact binomial test

data:  8 and 10

number of successes = 8, 
number of trials = 10, 
p-value = 0.1094

alternative hypothesis: 
true probability of success 
is not equal to 0.5

95 percent confidence interval:
0.4439045 0.9747893
sample estimates:

probability of success 
0.8 



Sign test (Binomial test for quantile)
• We have numerical data and want to test a null median.
– Why? Because data have weird distribution (skew, kurtosis, 

outliers), so a t-test for mean is weak given large s.d.
– Most often: difference before-after scores to test for median 

difference of zero.
– Logic: if median is M, then P(x>M)=0.5.

• Same logic applies to other quantiles, not often used.

x
t.test(x,mu=0)$p.value

binom.test(x = sum(x>0), n=sum(x>0 | x<0), p=0.5)

1.04  0.82  0.79  1.08  0.71 -1.39 -2.61  1.24 10.84 -2.94  0.87  0.80  0.48  2.82  1.75

0.197

data:  sum(x > 0) and sum(x > 0 | x < 0)

number of successes = 12, 
number of trials = 15, 
p-value = 0.03516

Note: 
we do not count x values 

exactly equal to the median!



Normal approximation of Binomial p.
• p.hat = k/n 

(proportion of successes out of number of attempts)
if n is big enough sampling distribution of p.hat will…
…be normally distributed (Central limit theorem)
…have a mean of p (an unbiased estimate)
…have s.d.:  sqrt(p*(1-p) / n) <- “standard error!”

• Consequently, p.hat ~ Normal(p, sqrt(p*(1-p)/N))
and we can use the logic of Z confidence intervals.

• Confidence interval on Binomial p:

p̂± zα /2 p̂(1− p̂) / n
p.hat = k/n
se.p.hat = sqrt(p.hat*(1-p.hat)/n)
p.hat + c(1,-1)*qnorm((1-q)/2)*se.p.hat



Binomial tests, proportions
• Hospital gets 30 boys out of 50 births.  
– Can we reject null hypothesis of 50% girls?
– What is the 95% confidence interval on the proportion of 

boys born in that hospital?



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?



Chi-squared goodness of fit.
• Categorical data in c > 2 categories.
• Distilled into counts k1,k2,…,kc.
• Test null category probabilities: p1,p2,…pc

Consider SPSP membership ethnicities: 
spsp = read.csv(

url('http://vulstats.ucsd.edu/data/spsp.demographics.tsv'), 
sep='\t’)

spsp$ethnicity = as.character(spsp$ethnicity)
spsp$ethnicity[spsp$ethnicity==""] = "No Report”
str(spsp)

'data.frame': 5694 obs. of  3 variables:
$ stage    : Factor w/ 5 levels "Early Career",..: 5 5 5 5 5 5 ...
$ gender   : Factor w/ 4 levels "","Female","Male",..: 2 2 2 2 ...
$ ethnicity: chr "Black" "Black" "Black" "Black" ...



Chi-squared goodness of fit.
Categorical data in 
c > 2 categories.

Arab              23
Asian            657
Black            156
Latino           151
Native American   36
No Report        146
Other           1308
White           3217

null.p = c("Latino"=0.164, 
"White"=0.637, 
"Asian"=0.047, 
"Black"=0.122, 
"Native American"=0.007, 
"Other"=0.019+0.002+0.002)

unique(spsp$ethnicity)

"Black"          
"Native American"
"Asian"          
"White"          
"Latino"         
"Arab"           
"Other"          
"No Report" 

table(spsp$ethnicity)

Distilled into counts 
k1,k2,…,kc.

Test null category probabilities: p1,p2,…pc

Wait… what is the null hypothesis?  (uh.. let’s say US 
dist.)

Complication: 
We need to make data 

categories match these 
categories…



Cleaning up data for chi.squared fx.
Categorical data in c > 2 categories.
Distilled into counts k1,k2,…,kc.
Test null category probabilities: p1,p2,…pc

Make categories in data match categories in null.

Make sure order of null.p and K.t matches.

null.p

unique(spsp$ethnicity)

K=table(spsp$ethnicity)

K.t = c("Latino"=K[['Latino']], 
"White"=K[['White']], 
"Asian"=K[['Asian']], 
"Black"=K[['Black']], 
"Native American"=K[['Native American']],
"Other"=K[['Arab']]+K[['Other']])

c.order = sort(names(null.p))
null.p = null.p[c.order]
K.t = K.t[c.order]



Chi-squared goodness of fit.
Categorical data in c > 2 categories.
Distilled into counts k1,k2,…,kc.
Test null category probabilities: p1,p2,…pc

Test for significant deviation of counts from null probs.

null.p

K.t

chisq.test(x=K.t, p=null.p)

Chi-squared test for given probabilities

data:  K.t
X-squared = 13013, df = 5, p-value < 2.2e-16



What is a chi-squared statistic?
sum((observed – expected)2/expected) χ 2 =

(Oi −Ei )
2

Eii
∑

Asian Black Latino Nat. Am Other White TOTAL

Observed 657 156 151 36 1331 3217 5548

Null.p 0.047 0.122 0.164 0.007 0.023 0.637

Expected 260.8 676.9 909.9 38.8 127.6 3534.1

obs-exp 396.2 -520.9 -758.9 -2.8 1203.4 -317.1

(o-e)^2 157009.3 271291.0 575886.7 8.0 1448161.9 100537.2

(o-e)^2/e 602.1 400.8 632.9 0.2 11348.9 28.4 13013.4

df = c-1   
(number of categories – 1.  relationship to degrees of freedom in t dist.)

p.value = 1-pchisq(13013,df) 0



Chi-squared distribution

To reject the null, we do a one-tailed test: since only 
positive values constitute a large deviation from the null.

Small deviations indicate data too consistent with the null
p.value = 1-pchisq(X2,df) 0



Chi-squared distribution

df=5
df=10
df=15

df=20

X2

P(
X2

| 
df

)



Chi-squared test for null category ps
Categorical data in c > 2 categories.
Distilled into counts k1,k2,…,kc.
Test null category probabilities: p1,p2,…pc

Test for significant deviation of counts from null probs.

null.p

K.t

chisq.test(x=K.t, p=null.p)

Chi-squared test for given probabilities

data:  K.t
X-squared = 13013, df = 5, p-value < 2.2e-16



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?



Contingency table independence tests
Categorize data into two orthogonal categorical variables
Result: a C x R “contingency” table of counts.

Null: category variables are independent, meaning 
P(col,row)=P(col)*P(row)

observed = table(spsp$stage, spsp$ethnicity)

Arab Asian Black Latino Native American No Report Other White
Early Career      4    57    14      7               4        20   108   273
Grad             13   328    68     63              20        58   515  1098
Regular Member    4   227    54     55               9        55   549  1557
Retired           0     1     1      0               1         7    28    86
Undergrad         2    44    19     26               2         6   108   203

chisq.test(observed)

Pearson's Chi-squared test
data:  observed
X-squared = 156.86, 
df = 28, 
p-value < 2.2e-16

Warning message:
In chisq.test(observed) : Chi-squared approximation may be incorrect

What’s this warning?  
More on this later



Chi-squared independence calculation
observed = table(spsp$stage, spsp$ethnicity)

n = sum(observed) 5694

p.row = rowSums(observed)/n

p.col = colSums(observed)/n

Early Career    Grad Regular Member  Retired  Undergrad 
0.086   0.380          0.441    0.022      0.072 

Arab Asian Black Latino Native American  No Report  Other  White 
0.004 0.115 0.027  0.027           0.006      0.026  0.230  0.565 

p.indep = outer(p.row,p.col,function(pc,pr)(pr*pc))

Arab Asian Black Latino Native American No Report Other White
Early Career   0.000 0.010 0.002  0.002           0.001     0.002 0.020 0.048
Grad           0.002 0.044 0.010  0.010           0.002     0.010 0.087 0.215
Regular Member 0.002 0.051 0.012  0.012           0.003     0.011 0.101 0.249
Retired        0.000 0.003 0.001  0.001           0.000     0.001 0.005 0.012
Undergrad      0.000 0.008 0.002  0.002           0.000     0.002 0.017 0.041



Chi-squared independence calculation
observed = table(spsp$stage, spsp$ethnicity)

n = sum(observed) 5694

expected = p.indep*n

Arab  Asian Black Latino Native American No Report  Other   White
Early Career    1.97  56.19 13.34  12.91            3.08     12.49 111.87  275.15
Grad            8.74 249.58 59.26  57.36           13.68     55.46 496.87 1222.05
Regular Member 10.14 289.62 68.77  66.56           15.87     64.36 576.59 1418.10
Retired         0.50  14.31  3.40   3.29            0.78      3.18  28.48   70.06
Undergrad       1.66  47.31 11.23  10.87            2.59     10.51  94.18  231.64

(observed-expected)^2/expected

Arab Asian Black Latino Native American No Report Other White
Early Career    2.10  0.01  0.03   2.71            0.28      4.52  0.13  0.02
Grad            2.08 24.64  1.29   0.55            2.92      0.12  0.66 12.59
Regular Member  3.72 13.54  3.17   2.01            2.97      1.36  1.32 13.60
Retired         0.50 12.38  1.69   3.29            0.06      4.59  0.01  3.63
Undergrad       0.07  0.23  5.37  21.05            0.14      1.94  2.03  3.54

X2 = sum((observed-expected)^2/expected ) 156.86

df = (nrow(observed)-1)*(ncol(observed)-1) 28

p.value = 1-pchisq(X2,df) 0



Degrees of freedom?

• Number of unconstrained elements that went into sum
• Number of elements minus the number of parameters.
– n.row*ncol – (n.row-1) – (n.col-1) – 1

# cells p.row p.col n
5*8 – 4 – 7 – 1 = 28

– Shortcut:
(n.row-1)*(n.col-1) = 28

χ 2 =
(Oi −Ei )

2

Eii
∑



Contingency table independence tests
Categorize data into two orthogonal categorical variables
Result: a C x R “contingency” table of counts.

Null: category variables are independent, meaning 
P(col,row)=P(col)*P(row)

observed = table(spsp$stage, spsp$ethnicity)

Arab Asian Black Latino Native American No Report Other White
Early Career      4    57    14      7               4        20   108   273
Grad             13   328    68     63              20        58   515  1098
Regular Member    4   227    54     55               9        55   549  1557
Retired           0     1     1      0               1         7    28    86
Undergrad         2    44    19     26               2         6   108   203

chisq.test(observed)

Pearson's Chi-squared test
data:  observed
X-squared = 156.86, 
df = 28, 
p-value < 2.2e-16

Warning message:
In chisq.test(observed) : Chi-squared approximation may be incorrect

What’s this warning?  
More on this later



Theoretical vs. practical sampling dist.
• The X2 statistic may not follow the X2 distribution!

– Only does so when the cell counts are sufficiently large for the 
Normal approximation to the binomial that underlies the statistic 
to hold.chisq.test(x = c(10, 5, 3, 1), p = c(0.5, 0.25, 0.1, 0.15), 

simulate.p.value = F)

Chi-squared test for given probabilities

data:  c(10, 5, 3, 1)
X-squared = 1.8772, df = 3, p-value = 0.5983

Warning message:
In chisq.test(c(10, 5, 3, 1), p = c(0.5, 0.25, 0.1, 0.15), simulate.p.value = F) 
:
Chi-squared approximation may be incorrect

chisq.test(x = c(10, 5, 3, 1), p = c(0.5, 0.25, 0.1, 0.15), 
simulate.p.value = T)

Chi-squared test for given probabilities with simulated p-value (based on 2000 
replicates)

data:  c(10, 5, 3, 1)
X-squared = 1.8772, df = NA, p-value = 0.5892



Use the SPSP data…

• Test for 50/50 male/female distribution among Grads, 
among Regular Members.

• Test for independence between male/female and Grad, 
Regular, and Undergrad.

• What is the 90% confidence interval on the proportion 
of White folks in the data set?

• Plot, somehow (in ggplot), the distribution of ethnicities 
as a function of “stage”

spsp = read.csv(
url('http://vulstats.ucsd.edu/data/spsp.demographics.cleaned.csv’))



Today
• T-tests: why, how, varieties.

• Categorical data
– Binomial proportions
– Chi^2 goodness of fit
– Chi^2 independence (for contingency tables)

• Optional (may not get to/cover)
– QQ plots.
– T-test formulas: working from summary statistics.
– Standard errors: deriving.
– What’s up with df for unequal variance test?
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Q-Q plots

Theoretical quantile
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Incorrect mean introduces a constant offset in QQ plot



Q-Q plots
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Incorrect variance introduces a linear slope in QQ plot



Q-Q plots
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Incorrect skew adds a ‘quadratic’ deviation in QQ plot



Q-Q plots
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Incorrect kurtosis adds a ‘cubic’ deviation in QQ plot



Q-Q plots

From John Wixted
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QQ plots of t-statistics for samples with different ns compared to std. normal distribution
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QQ plots of t-statistics for samples with different ns compared to std. normal distribution



Degrees of freedom again?

df for the t-distribution: how many data points were free 
to vary when estimating the variance?
(if we estimated one mean, one data point was not free to vary, so df = n-1)

Normal(0,1) = t with df>>10
t with df=15
t with df=7
t with df=3
t with df=2
t with df=1

σ̂ = s = 1
n−1

xi − x( )2
i=1

n

∑ tx = n x −µ0
s

"

#
$

%

&
'



Z-test
We know pop. 
var. Want to test 
if mean differs 
from H0 mean.

zx =
x −µ0
σ X

"

#
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' n

d̂ = x −µ0
σ X
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2*pnorm(-abs(z))

x ± zα /2σ X / n
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z* = qnorm(a/2)

One-sample 
t-test

tx =
x −µ0
sX
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df = n−1

We do not know 
pop. var. Want to 
test if mean 
differs from H0 
mean.
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x ± tα /2sX / n

Paired 
t-test

tD =
D
sD
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d̂ = D
sD

!

"
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df = n−1

We have 2 
measures of the 
same thing, do they 
differ in means?

D± tα /2sD / n

2-sample
eq. var. t-test

d̂ = (x − y )−µ0
sP
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df = n1 + n2 − 2

We want to know if 
two samples 
(assumed to have 
equal var) have 
different means

(x − y )± tα /2sP * 1/ n1 +1/ n2

tx−y =
x − y
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2-sample uneq
var t-test
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2*pt(-abs(t),df)

We want to know if two 
samples (not assumed 
to have equal var) have 
different means

(x − y )± tα /2
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+
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ny
t* = qt(a/2,df)
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2

nx
+
sY
2

ny

"

#
$$

%

&
''

Effect size here 
breaks the mold 
because of the 
diff. variances.

Standard errors of the mean / difference



Working from summary stats.
• Reported t-test:  t(17)=2.5 t(df) = t.statistic
– What’s the two-tailed p-value?

• This is a paired-sample test
– what’s the sample size?
– What’s the (estimated) effect size?

• The mean of the difference was 5
– What’s the standard error of the difference?
– What’s the standard deviation?
– What’s a 95% confidence interval on the mean difference?



Working from summary stats.
• Reported t-test:  t(28)=2.5 t(df) = t.statistic
– What’s the two-tailed p-value?

• This is an equal-variance, two-sample test, with 
matched sample sizes.
– what’s the sample size in each group?
– What’s the (estimated) effect size?

• The pooled sd was 10
– What’s the difference between means?
– What’s a 95% confidence interval on the difference in 

means?



T distribution
What is our confidence interval on….
- the mean math GRE score of psych 

students?
- the avg. improvement in math GRE 

scores from taking a Kaplan 
course?

- The difference in mean math GRE 
scores between psych and cog sci
students?

- the difference in avg. improvement 
from taking a Kaplan course 
different vs doing some practice 
tests?

x ± tα /2sX / n

D± tα /2sD / n

(x − y )± tα /2sP * 1/ n1 +1/ n2

(x − y )± tα /2
sX
2

nx
+
sY
2

ny

Because it’s a one sample t-
test, CI on the mean

CI on the mean difference –
effectively 1-sample t-test.

CI on difference between two 
means with eq var. so std. err. 
is different

CI on difference between two 
means with unequal var. so 
std. err. is different



D.F. for two sample unequal variance t-test

“Welch’s t-test”

Intuition:  
1) When one standard error is way bigger than the other (either due to high variance, or low 

n), it’s like doing a 1 sample t-test, because only the variance of that 1 sample will matter.  
So we want to have d.f. = n1-1

2) When the two standard errors are the same (or similar), it’s like doing a 2-sample t-test, 
because both variances contribute equally.  So we want d.f. = n1+n2-2

This formula does that.  t.test in r does this by default.


