201ab Quantitative methods
L.06: Classical statistics
(with normal -- Z-tests)



Outline

There is only one test.

Central limit theorem and normal distribution
/-test

Confidence intervals

Null hypothesis significance testing

Power



Our data
(sample of 9 female heights, in inches)

62.5

65.0

67.5

70.0

72.5

A statistic
(arithmetic mean)

— mean(x) = 66.44

Inferences we might want to make:

Null Hypothesis Testing: Is this sample
likely to have come from a particular
known population (HO)?

Estimation: What’s the mean of the
population from which this sample
came? What are plausible pop. means?



Theoretical population
Statistical model
Null hypothesis
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. . ] i I| — mean(x) =65.3
Theoretical population

Statistical model
Null hypothesis — mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Samples Sample statistics

from the of these samples
model (arithmetic means)

(same size as
our actual sample)



i i I. — mean(x) =65.3
Theoretical population

[l — mean(x) = 65.5

mean(x) = 65.4

Statistical model
Null hypothesis

65.0 67.5

mean(x) = 64.4

\E///

mean(x) = 65.5
Sampling distribution

of our statistic for
samples of this size
(here, 10k sample means)

mean(x) = 66.8

Samples Sample statistics

from the of these samples
model (arithmetic means)

(same size as
our actual sample)



Theoretical population
Statistical model
Null hypothesis

S
A
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our dta T IT .

(sample of 9 female heights, in inches)

625 650 675 70.0

72.5

A statistic
(arithmetic mean)

— mean(x) = 66.44

mean(x) = 65.3

mean(x) = 65.5 \

mean(x) = 65.4 ~.

mean(x) = 64.4 - 63 65 67 69

mean(x) = 65.5
Null Hypothesis testing:

What is the probability
that a random sample
from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0.06

This is the one-tailed
p-value.

mean(x) = 66.8



Theoretical population
Statistical model
Null hypothesis

I’ —
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Our data —.—‘—I—I—._»

(sample of 9 female heights, in inches)

625 650 675 700 72

A statistic

—_— Sd(X) =2.44

5

(standard deviation)

sd(x) = 3.34
sd(x) = 2.72 \
sd(x)=2.66  ~_ m
sd(x) = 1.85 // 2 : 6
sd(x) = 2.10

Null Hypothesis testing:

What is the probability

sd(x) = 3.43 that a random sample

from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0. 731

This is the one-tailed
p-value.



Theoretical population
Statistical model
Null hypothesis

A/

—
Our data
(sample of 9 female heights, in inches)
A statistic
(skewness)
— skew(x) =0.128
625 650 675 700 725

skew(x) =-0.76

skew(x) = -1.64 \

skew(x) = 0.07 ~.

-2 -1 0 1 2
014 —

skew(x) =
skew(x) =-0.38
Null Hypothesis testing:
What is the probability
skew(x) = 2.44 that a random sample

from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0.406

This is the one-tailed
p-value.



Theoretical population
Statistical model
Null hypothesis

Theoretical

population

parameter
(mean)

mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4 ~. HH

63 65 67

mean(x) = 64.4 ~

mean(x) = 65.5
Mean of all the

sample statistics
(here, the average of 10k
sample means)

mean(x) = 66.8

If the average sample statistic has the same
value as the population parameter, it is an
unbiased estimator for that parameter.



Theoretical population
Statistical model
Null hypothesis

Theoretical

population

parameter
(mean)

mean(x) = 65.3

mean(x) = 65.5 \

mean(x) = 65.4 ~.

mean(x) = 64.4 ~

mean(x) = 65.5

Standard deviation of all
the sample statistics
This is the
standard error

of the statistic.
(here, the std. dev. of 10k
sample means)

mean(x) = 66.8

We can calculate a z-score for a given sample statistic by figuring out
how many standard errors away it is from the average sample statistic.



Theoretical population
Statistical model
Null hypothesis

A/

Our data
(sample of 9 female heights, in inches)

625 650 675 70.0

72.5

A statistic

— z.stat(x) =1.54

(z.stat: sample mean z-scored to the
theoretical distribution of sample means)

z.stat(x) = 0.26

z.stat(x) = 0.54 \

z.stat(x) = -0.58\

0.52 " -4 2 0 2 4

z.stat(x) =
z.stat(x) = 0.06
Null Hypothesis testing:
What is the probability
2.stat(x) = 1.83 that a random sample

from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0.06

This is the one-tailed
p-value.



There is only one test.

* There are many significance tests you may have heard
of:

— [-test, t-test, F-test, X2-test, etc.
— These are all named after the statistic they use

* They all follow the same logic:
— Compare the sample statistic you have to the distribution of
sample statistics expected from the null hypothesis.

— These specific tests are popular because

we can analytically derive the sampling distribution of their
statistic, and

many questions can be posed such that the answer boils
down to that statistic.

* The key things to worry about are:
— what does the statistic measure?
— what is the null hypothesis?




Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals

Null hypothesis significance testing
Power



How a generalized statistic is born (z-score)
There is some underlying distribution/population of our
data
e Xx~P(X) mean(X)=py, sd(X)=oy
Central limit theorem and limit of n -> inf.

* mean(x) ~ Normal(...)

Derive from rules of expectation...

* mean(x) ~ Normal(uy, o, /sqrt(n))

A bit more algebra yields...

* (mean(x) — uy)/(oy/sqrt(n)) ~ Normal(o,1)

e Z(mean(x)) ~ Normal(o,1)



Distribution of the sum of niid RVs

n= n=2 n=4 n=64

n=128

x~beta(0.01, 0.01)
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Central limit theorem

 The sum of ni.i.d. random
variables is Normally distributed
if nis big enough*

n=128

* Many real-world variables can be thought of
as the sum of lots of independent and roughly
identically distributed, contributing factors,
so we often treat our measures as having a
Normal distribution, but this should be
verified.




Normal Distribution

1.0

0.8

It has two parameters: .t
“location” (mean; mu)
“scale” (sd orvar)

O, L
St 04

0.2

0.0 |——

In R for a Normal distribution with mean M and sd S

Probability density at x = dnorm(x, M, S)
Cumulative probability at x = pnorm(x, M, S)
Quantile function for p = qnorm(p, M, S)

n Random samples = rnorm(n, M, S)



Sampling dist. of a data point

Random samples of CA female heights (Normal, mean=65”, sd=3")
round(rnorm(1,65,3)) > [1] 67
round(rnorm(1,65,3)) > [1] 63

x = round(rnorm(100000,65,3))

[100000] 61 64 62 64 64 64 70 62 63 59 68 7O 66 68 65 64 63 64 65 65 ..

100000 samples of CA female heights (Normal, mean=65", sd=3")

Histogram of x

1000

Frequency
600

0 200

95 60 65 70 75



Sampling dist. of the sample mean

x = round(rnorm(25,65,3))
[25] 61 64 62 64 64 64 70 62 63 59 68 70 66 68 65 64 63 64 65 65 63 72 64 63 62

25 samples of CA female heights (Normal, mean=65", sd=3")

mean(x) > [1] 64.6
Mean of those 25 samples. One possible sample mean.

mean(round(rnorm(25,65,3))) [1] 65.6
mean(round(rnorm(25,65,3))) > [1] 65.6
mean(round(rnorm(25,65,3))) > [1] 65.08
mean(round(rnorm(25,65,3))) > [1] 65.4
More sample means of 25 CA female heights.

replicate(2, mean(round(rnorm(25,65,3)))) [2] 65.04 65.80

replicate(10000, mean(round(rnorm(25,65,3))))
[10000] 64.40 64.44 65.20 65.36 65.44 64.56 64.68 ...

We generate many sample means at the same time with replicate.



Frequency

Frequency

Sampling dist. of sample mean
Histogram of x

O | |
55 60 65 70 75
Sampling distribution of sample mean has smaller sd by 1/sqrt(n)
Histogram of x_bars
= : X_bars = replicate(10000,
- | mean(round(rnorm(25,65,3))))

63

X _bars 530



Sampling dist. of the sample mean

Histogram of x_bars

1200
|

Frequency
800
|

400
|

I I I I
63 64 65 66 67

X_bars

Histogram of many sample means of n=25 samples of female heights
Normal(mean=65, sd=3).
Follows a Normal(mean=65, sd=3/sqrt(25))

This is the sampling distribution of this sample mean.



Sampling dist. of the sample mean

{xi,...,xn}i:lP(X) Mean| X|=u, Variance[X]= 0)2(

We take n samples from some The population mean
population represented by a is mu_Xx
probability distribution P(X)

The population variance
is sigma_x"2

samples divided by their count.

1 n

EY) _ E : The sample mean is the sum of those
n-
i=1

Mean[x, |= uy

: — 2
Variance|x,,]=0y /'n

Altogether, the sample mean will be normally
distributed (if n is large enough — CLT), around the

— population mean, with a standard deviation that
Xy ~ Normal(uX,OX /\/n)

decreases with sqrt(n).



Sampling dist. of sample mean

x = round(rnorm(100000, 6% ,3)
[100000] 61 64 62 64 64 64 70 62 63 59 68 70 66 68 65 64 63 64 65 65 ..

o oo

Oh good. Our samples have the SD we told them to have.

X_bars = replicate(10000, mean(round(rnorm(25,65,3))))
[10000] 64.40 64.44 65.20 65.36 65.44 64.56 64.68 ...

sd(x_bars) [1] ©.6007

And our sample means have the sd they should have according to
math.
Oy 3

O_ = =
Y Jn 25

=3/5=0.6




Frequency

Samp. dist. of error of sample mean

Histogram of x_bars - 65

1000 1400
I |

600
|

0 200
I




Z_x_bar = (x_bar- pop mean)/sem

n=25
sdX 3
muX 65

sem = sdX/sqrt(n)
X_bars = replicate(10000, mean(rnorm(n,muX,sdX)))

Z_x_bars = (x_bars — muX)/sem
mean(Z_x_bars) [1] -0.004
sd(Z_x_bars) [1] 1.005

27



The Z (standard normal) distribution

Probability density

0.4

0.3

0.2

0.1

0.0

| 1 T T T !
-3 -2 -1 0 1 2 3
Z score (‘standardized score’)
Distance from the mean in units of standard deviation
Right now: distance between sample mean and population mean in

units of standard error of the mean.
7



Z scores

« Whatis the probability that our sample mean will have
a Z-score»1.96 0r<-1.967

(i.e. will be more than 1.96 standard errors away from the population mean?)

pnorm(-1.96) + (1-pnorm(1.96)) [1] ©0.05

2xpnorm(-1.96)

Equivalent because distribution is symmetric around o.
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Z scores

* Whatis the ‘critical’ absolute Z value such that the Z-
score of our sample mean will have an absolute value
less than that with probability 68.27%?7

1] o.15005

That’s how much probability should be ‘left over’ in either tail.

gnorm(@.15865) [1] -1
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Z score distribution - fun facts

0.4

03

Probability density
01 0.2

0.0

-3 -2 -1 0 1 2
Z score (‘standardized score’)
Distance from the mean in units of standard deviation
Right now: distance between sample mean and population mean in
units of standard error of the mean.

0.0 01 0.2 03 04

3

z X=(x-mu)/sd [***]
relative to distribution of x!
e.g., (x_bar—mu_x)/sem
Distance from the mean in
standard deviations.

P(@bs(z) <1) = 0.68
i.e. 68% of values are less than
1 s.d. away from mean.

P(abs(z)»1.96) = 0.05
i.e. 5% of values are more than
1.96 s.d.s away from mean.

P(abs(z)»1.64) = 0.1
i.e. 10% of values are more than
1.64 s.d.s away from mean.



Theoretical distributions

Population i 120
.
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n=2 yz =100
05 =10.6

n=4 Uz =100
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0;=3.7
n=64 Uz =100
g, =19
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Sampling distribution of the sample mean

X, :ZP(X)
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Sampling distribution of a Z-score

x;, ~ Normal(u,,o,)
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Null hypothesis significance testing.

We have a sample
— E.g. 16 1Q scores from psych 201

We have some ‘null’ hypothesis (statistical model)

— E.g., 201 students are no different from the rest of the
population. They are random samples from the overall IQ
distribution with mean=100, and sd=15

We see if the sample is sufficiently different from what
we expect of samples from the null population, to

‘reject the null’



Null hypothesis significance testing

A (fictional) sample of 16 1Q scores of 201 students.

We think these folks might have a different mean (but
same sd) as the normal population.

Sample mean of X
compared to null
hypothesis
distribution

of x values

60 80 100 120 140
|Q score

Is this “sufficiently different” to reject the null?



“Sufficiently different”

* How likely is an outcome at least this extreme to arise

if the null hypothesis is true?
(i.e., in samples from the null model)

« We are going to choose a criterion of 5% ( “alpha”):
If an outcome at least as extreme as this one has more than a 5%
chance of arising under the null hypothesis, we deem it not
sufficiently surprising and we do noftreject the null model.
Otherwise we will.

 Why 5%?
Because Fisher thought it would be ok, then everyone in social science started using it.

Physics has much more stringent criteria: 0.000000002 for a “discovery” and
0.0000006 for a cautious announcement. As we will see in the homework, when

testing surprising (low base-rate) effects, we can only achieve a reasonable positive
predictive value, by adopting a more stringent alpha criterion.



Random sampling for NHST

n =16
X.bar = 108

sample.mean.h@® = function(n){mean(rnorm(n, 100, 15))}
h@.means = replicate(100000, sample.mean.h@(n))

(cur.p.val = 2xmean(h@.means > x.bar)

[1] ©.03312

count

h0.mean



Why don’t we always just do this?

t’s unconventional.

t requires some programming and a bit of thought to
nick a good statistic to sample in more complex tests.

With modern computers we can. (randomization: 201b)

Back in the day: no (machine) computers.

Strategy: define a simple mathematical transformation that
yields one invariant sampling distribution for a family of null
models. Then the Aard CDF calculations need to be done only
once, and can apply for everyone.

Thus many null hypothesis tests reduce to one of a few common
test-statistics: z, t, F, X2, etc..



Null hypothesis significance testing

* Use the Zscore of the sample mean, relative to the null
hypothesis sampling distribution of the sample mean.

[16] 120 113 129 113 ..

‘ N

[1]108

z = (mean(x) - 100)/(15/sqrt(length(x))) [1] 2.133

 How big does z have to be to exceed a 5% criterion?

Z_crit = gnorm(0.05/2) [1] -1.96
* Absolute value » 1.96.
* Hereitis bigger, so we reject the null at alpha=5%




Standard normal (Z) dist. for NHST

z = (mean(x) - 100)/15xsqrt(16) [1] 2.133
Z_crit = gnorm(©.05/2) [1] -1.96

-2 0
Z Score



Standard normal (Z) dist. for NHST

z = (mean(x) - 100)/15*xsqrt(length(x)) [1] 2.133

(cur.p.val = 2x(1-pnorm(z)) [1] @.@329|

Notes:

we are calculating a ‘two-tailed’
p-value by multiplying the
probability of one tail by two.

Sampling variability means

some slight imprecision here.
The more sampled hO means
we take, the less imprecision.

-2 0 2
Z Score



NHST Z tests

* Calculate z-score of sample mean relative to null
hypothesis sampling distribution of the sample mean

—= 0 —= 0 —= 0
_ XUy XMy | Xk

Jn
» Classic approach: z score past significance threshold?

— Compare z score to critical z score for alpha level.
— Reject or retain (fail to reject) null hypothesis

* Modern approach (p-value below alpha?)

— Calculate p-value: probability of a z-score at least as
extreme as this one under the null hypothesis.

— Compare to alpha value.




Two approaches to NHST
(1) 2.133

Classic approach: compare test statistic to critical statistic value?
z.crit = abs(gnorm(©.05/2)) [1] 1.96

Modern approach: compare p-value of test statistic to alpha?

p.val=2x(pnorm(-abs(z.score))) [1] ©.033
p.val < .05 [1] FALSE

P-value is more informative, but a confidence interval is better yet



Back in the day: Probability tables

* Very hard to evaluate p-value for arbitrary Z scores.

z 2 1o 1 5 2n+
d(z) = L/‘ et /?dt ®(z) = 0.5+ ° °

V2 Jco 27

3 1
—z2 /2
e / $+_+_+...+ -+--..
[ 3 ' 3.5 (2n + 1)t ]

* [nstead, find the ‘critical’ ztvalue

25 2’T 15 ] 75 5 1 15 T’z 25

=-1.96 Z s = +1.96

Zcritical -



Back in the day: Probability tables.

@ 4 X2 /2 Ve 4
ly “ W o
k k k
Hyp=k Hyip =k Hy:p =k
H.:p<k H,:p#FKkK H.:p>k

a |zcritical a | zcritical a | zcritical
0.10] -1.28 0.10| *1.65 0.10 1.28
0.05| -1.65 0.05| *1.96 0.05 1.65
0.01| -2.33 0.01| *2.58 0.01 2.33




Back in the day: Probability tables.
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Where did the tables come from?

Lady computers. |

==g= = F



Now: pnorm

Entry is arca A under the standard normal curve from —% to 2(A)

2A)

pnorm(z,0,1) pnorm(z,0,1)- 0.5




Now: pnorm

* Obtain exact p-values for your actual z-score!

2xpnorm(-abs(z),0,1)

Negative z scores. Positive z scores.

pnorm(z,0,1) 1-pnorm(z,0,1)

25 2? 15 ] °5 5 1 15 T’z . 25



NHST Z tests

* Calculate z-score of sample mean relative to null
hypothesis sampling distribution of the sample mean

— 0 — 0 — 0
= 0o 0o 0 n
Oy Oy Oy

Jn

* Modern approach (p-value below alpha?)

— Calculate p-value: probability of a z-score at least as
extreme as this one under the null hypothesis.

— Compare to alpha value.

p.val = 2xpnorm(-abs(z.score))



Sample 16 male heights. mean=64".

Ho: Sample from South Korean male population:
mean=68.5" sd=4”
Can we reject Ho?

Z-score of x.bar K(Z=ERIVLTE Ia1E1:) [1] -4.5 Yes, we can reject, given

that our alpha level is not
(2-tail) p-value 1) 6.8e-06 below ~10°

So... this sample would be very surprising if it came from the South Korean male population.



Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals and NHST analogue

Null hypothesis significance testing
Power



Null hypothesis significance testing

* What structure are you testing?
— Mean of sample population differs from known.
* Define a ‘null’ hypothesis lacking structure.
— Sample drawn from known distribution.
Define a ‘test statistic’ measuring structure
— Z score of sample mean relative to null mean, sem
* Obtain null test stat. ‘sampling distribution’
— Standard normal distribution.
« Compare sample statistic to H, distribution

— Obtain p-value, compare to a
— Reject or fail to reject the null hypothesis.



Theoretical population
Statistical model
Null hypothesis

A/

Our data
(sample of 9 female heights, in inches)

625 650 675 70.0

72.5

A statistic

— z.stat(x) =1.54

(z.stat: sample mean z-scored to the
theoretical distribution of sample means)

z.stat(x) = 0.26

z.stat(x) = 0.54 \

z.stat(x) = -0.58\

0.52 " -4 2 0 2 4

z.stat(x) =
z.stat(x) = 0.06
Null Hypothesis testing:
What is the probability
2.stat(x) = 1.83 that a random sample

from the null model will
have a statistic at least as
extreme as the one from
our data?

Here: 0.06

This is the one-tailed
p-value.



Some jargon.
Null hypothesis (H,)

a model of the data that lacks structure we want to test for — the
“boring” alternative.

Test statistic
a sample statistic that measures the structure we wish to test for.

Sampling distribution of test statistic under H,

the probability distribution over test statistics we expect to see in
samples from the null hypothesis.

P-value
the probability of observing a test-statistic at least as extreme as
ours under the H, distribution. (~surprise)

a-level
How often are we willing to falsely reject the null hypothesis?
(our chosen prob. of Type | error)



NHST terms & concepts

Null hypothesis
‘Alternative hypothesis’
Type | error

Type Il error

Alpha

P-value

Effect size

Power

EA



H, (null hypothesis) testing errors

Realit
« RejectHg Woohoo! Type | error
o (false alarm)
2
@ Fail to reject Hy Type Il error Ok.
(@) (miss)

Frankly: | always had a hard time remembering which one is Type | and which one is Type II.
More important to remember the conceptual difference than the arbitrary naming convention.



Alpha (x)

* The probability of “Type | error”:
The conditional probability of

falsely rejecting the null when it
is actually true, that we are
willing to tolerate.

-« Typically we use a “two-tailed”

test, which means that this
probability is equally distributed
into the two tails.

, * This determines which values we

are willing to reject the null for.




Alpha (x)

 Intheory, we decide on alpha. In practice, we just
follow the 5% (0.05, 1/20) convention
for better or worse*:

*/ endorse recent push to lower convention. Be wary of 0.01 < p < 0.05.

0.4

X=0.05

0.3
l

0.2

0.1

0.025 in each tail

0.0




P-value

The lowest alpha value at which our data would reject the
null hypothesis.

The probability of seeing an outcome at least as extreme as
the one that we saw when sampling from null.

Typically this is two-tailed.

b
—

k.
o

0.2

0.1

\




P-value

o = The z score
we got.

- y T T T T |
-3 K, 1 0 1 2 3
This is the second tail: This area under the curve
the probability of seeing a corresponds to the
z-score at least this probability of seeing a z-
extreme in the *other* score at least this extreme in
direction. *this* direction.

These two tails together give us the p-value.
(due to symmetry, we can just multiply one tail by 2)



P-value

z = (mean(x) - 100)/15xsqrt(16) [1] 2.133
Z_crit = gnorm(©.05/2) [1] -1.96

« Whatis the p-value of the null hypothesis that 201 1Qs
are samples from the overall 1Q distribution?

We want the area
in these two tails

-2 0 2
Z SCore



P-value

z = (mean(x) - 100)/15xsqrt(16) [1] 2.133
Z_crit = gnorm(©.05/2) [1] -1.96

« Whatis the p-value of the null hypothesis that 201 1Qs
are samples from the overall 1Q distribution?

P_upper = 1-pnorm(2.133) [1] 0.01646

P_lower = pnorm(-2.133) [1] 0.01646

p.value = P_upper + P_lower [1] ©0.03292

p.value = 2xpnorm(-abs(z)) [1] ©0.03293



P-value

z = (mean(x) - 100)/15xsqrt(16) [1] 2.133
Z_crit = gnorm(©.05/2) [1] -1.96

« Whatis the p-value of the null hypothesis that 201 1Qs
are samples from the overall 1Q distribution?

p.value = 2xpnorm(-abs(z)) [1] ©0.03292

* This means:

we could reject this null hypothesis at alpha=0.03292
and

the probability of seeing an outcome at least as
extreme as ours under the null hypothesis is 0.03293



Alternative hypothesis

* This might be just “the null hypothesis is false”
Meaning: whatever structure we tested for *is* there.

* E.g.:the mean IQ *is* different for 201 students
compared to the overall population

* However, if you want to assess the powerof your test
(which, is very important), the alternate hypothesis
needs to be specified as an actual distribution.



0.4

0.3

0.2

0.1

0.0

—e

Alternative hypothesis

Distribution of
test statistic
under the null
hypothesis

Alt. distribution
of test statistic
(effect present)

|
-2

|
0

|
2

|
4

“Effect size”: difference between the alternative and null

distributions.

(often: difference in means, in units of standard deviation)

Typically when considering effect size the

altarnativino win rAancidaric tha “+riia? Aictrihhiitinn

AR



Effect size.

 How big is this difference from the null
that we are measuring?
— (True mean - Null mean)?
Hard to compare across measures

— Z score based on sampling dist of sample
mean? Will depend on sample size, which
we don’t want.

— Cohen’s d (mean difference scaled by
standard deviation)
(usually we use absolute values)

« Sample mean often used to estimate
effect size.




Effect size.

There are three practical uses of effect size:

(1) You knowthe properties of true population,
and you want to know how big that difference is

(perhaps to use to calculate future power analyses for unknown samples
— the prototypical quality assurance scenario for NHSTSs)

d = Ur — Wy
(2) You have an idea what difference would be Ox
scientifically/practically meaningful, so you
postulate a minimum relevant effect size.
(3) You ran an experiment, and want to know
what to expect in a future replication. Then you
use the sample mean from the pilot to estimate [j_|*~H

the effect size.



Sample 16 male heights. mean=64".

Ho: Sample from South Korean male population:
mean=68.5" sd=4”

What’s our estimate of the effect size?

‘=1.125
4

_‘64—68.5

Estimated effect size.
“Estimated” because we
are using the sample
mean to estimate the
population mean of the
true effect distribution




0.4

0.3

0.2

0.1

0.0

More on Type | and Type Il

—

Distribution of
test statistic

under the null
hypothesis

Real
distribution of
test statistic
effect present)

N



More on Type | and Type Il

0.4

0.2 0.3

0.1

e
o

| l I |

2 0 2 4
We will reject the null hypothesis if the test statistic we get from
our data is past these ‘critical’ values
(here z_crit =-1.96 and 1.96, corresponding to alpha=o0.05)

71



More on Type | and Type Il

0.4

0.3
1

0.2

0.1

I l I I

2 0 2 4
Shaded red area is the probability of Type | error:
The probability that we will reject the null hypothesis for a test
statistic that actually came from the null hypothesis.
This is alpha. This is how the critical values were defined.

79



More on Type | and Type Il

0.4

0.2 0.3

0.1

<
o

| l | |
2 0 2 4

Shaded blue area is the probability of correctly rejecting the null
hypothesis: rejecting the null hypothesis when the test statistic
actually came from the alternative hypothesis distribution
(this is “Power”)

7



More on Type | and Type Il

0.4

0.3
1

0.2
1

0.1

&)
o

l | [ |
2 0 2 4

Shaded light red area: probability of correctly not rejecting the
null hypothesis: not rejecting the null hypothesis when it is true.
= 1-alpha

71



More on Type | and Type Il

0.4

0.3
1

0.2

0.1

0.0

1 l | !
2 0 2 -

Shaded light blue area: probability of Type Il error:
Failing to reject the null hypothesis when it is actually false
(when the test statistic actually came from the alternate
distribution!)

This is usually called Beta

7R



More on Type | and Type Il

Correct rejection of null
(Pr=1-B; ‘power’)

Type | error (Pr = &)




Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals and NHST analogue

Null hypothesis significance testing
Power



Power P(significant | not null)

* The conditional probability of rejecting the null
hypothesis when the data actually came from the
‘alternate’ hypothesis distribution.

 To calculate this, we need to know what the ‘true effect’
distribution is. Usually, we just need the ‘effect size’

o .
= This area
under the
curve is

“Power”.

0.3

0.1

0.0




How to get more power?

Bigger difference between means.
Less population variance.
Bigger sample size

Higher (closer to 1) alpha.
— Directional tests

Effect Size



Sample 16 male heights from North Korea
mean=65"  sd=4”
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”
What is the effect size?

Note: here Ho is drawn in blue, and H1 in red.

0.04 006 0.08 0.10
| | | |

0.02
|

0.00
|

I I | I | I 1 |

50 55 60 65 70 75 80 85
Distribution of male heights in North Korea and South Korea.




Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”

Wh at|ls Ehﬁ ffECt size? Distance between Distance between

d = |-~ Ol=0.875 means: -3.5 means in units of
0} ’_A_‘ s.d.: -3.5/4 = -0.875

o X

o | Real effect size:

- Real because we are

[ JE— .

o | using the actual

o | Population mean, not an

S 7 estimate of it.

3

S _

o

g

o

| | | | I | I

50 55 60 65 70 75 80
Distribution of male heights in North Korea and South Korea.

85




Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”

=

hatrisdherpewer of ourt il alpha = 0.05)
- heights from North Korea

and South Korea.

04 000 002 004 006 0.08

| Distribution of the mean of
16 male heights from North
Korea and South Korea.

0.3
1

0.2

0.1

0.0
|

50 55 60 65 70 75 80

85




Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean= 68.5” sd=4”
agpower of our testd skantaiba e ha sl oc

~1.96 Critical distance from HO mean in inches: 1.96*1
I I
\l

<+ |
o
9 =
N _
o
Sampling distribution Sampling distribution
~ _| of the mean under of the mean under
© | the real distribution the null hypothesis
P(x.bar|HT) / \‘ P(x.bar|HO)
o _

60 65 70 75
Distribution of the mean of 16 male heights from North Korea and South Korea.



Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”
What is the power of our tests skzrtaibalpha=.0.05)

std. errs. of the mean: 1.96
J J
\l

04

Reject HO Reject HO

0.3

0.2
|

Do not reject HO

0.1

| o

0.0

60 65 70 75
Distribution of the mean of 16 male heights from North Korea and South Korea.



Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”
What is the power of our tests skzrtaibalpha=.0.05)

std. errs. of the mean: 1.96

I l
. { \l ]
c ] z.crit chosen so that the
prob. of type | error
| (rejecting the HO for
< samples from HO)
is alpha (here: 0.05)
N
Sampling distribution Sampling distribution
~ _| of the mean under Tvoe | of the mean under
© | the real distribution ype error the null hypothesis
P(x.bar|HT) 0'02‘5 Type | error h P(x.bar|HO)
& o ' 0.025 '
o

| | I

60 75

65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.



Sample 16 male heights from North Korea

mean=65" sd=4"

Test if mean male N.Korean heights are different from mean

male S.Korean heights:
mean=68.5" sd=4"

What is the power of our test? (2-tail alpha = 0.05)

Critical distance from HO mean in
std. errs. of the mean: 1.96

I l
- | \l
S prob. of type Il error
(failing to rejecting HO for
I samples not from HO)
is beta, but it needs to be
calculated via the ‘real’
e effect distribution
Sampling distribution Sampling distribution
~ _| of the mean under of the mean under
© | the real distribution Type Il error the null hypothesis
P(x.bar|HT) P(x.bar|HO)
o
o

, I
60

|

65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.

1
75




Sample 16 male heights from North Korea

mean=65" sd=4"

Test if sample mean is different from male S.Korean
heights:

mean=68.5" sd=4”

What is the power of our tests skzrtaibalpha=.0.05)

std. errs. of the mean: 1.96

04

0.3

0.2

0.1

0.0

J

J

[ i

| of the mean under

Sampling distribution

the real distribution
P(x.bar|HT)

Power (1-beta) is the prob.
of rejecting HO for samples
not from HO.

needs to be calculated via
the ‘real’ effect distribution

Sampling distribution
of the mean under
the null hypothesis

P(x.bar|HO)

T T
60

|

65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.

I
75




Sample 16 male heights from North Korea

mean=65" sd=4"

Test if sample mean is different from male S.Korean
heights:

What is the powereofoaur e stzri{zttai,
J J

=,
o

0.3

0.2

0.1

0.0

mean=68.5" sd=4”

alpha = 0.05)

)

|

\

| of the mean under

Sampling distribution

the real distribution
P(x.bar|HT)

s

Sampling distribution
of the mean under
the null hypothesis

P(x.bar|HO)

_ |
60 65

66.5

|
70

70.5

1
75

Distribution of the mean of 16 male heights from North Korea and South Korea.




Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”
PR o e of eur test?, (2+fail.alpha = 0.05)
(_A_

ks |
o Power = 0.938
=
o o
o
Sampling distribution Sampling distribution
~ _| of the mean under of the mean under
© | the real distribution the null hypothesis
P(x.bar|HT) P(x.bar|HO)
o
e | | | |
60 65 66.5 70 70> 75

Distribution of the mean of 16 male heights from North Korea and South Korea.



Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”

)
Q)
|
O
U1
—

What is the power of our test? i(2-tail alj

We could have done this much faster!

L]
(=)

Option 2: We have the true means, and o |
standard deviations, so we don’t need to mess sampling distribution
. «~ _| of the mean under
with z-scores! S e resl distbution
. . . . P(x.bar|HT)

We also see that the true distribution is below

the HO distribution...

gnorm(0.05/2,68.5,4/sqrt(16)) [1] 66.54 Lower critical x.bar
pnorm(66.54,65,4/sqrt(16)) [1] ©.938 Proportion of true dist. below that

critical x.bar. (power!)

Sampling distribution
of the mean under
the null hypothesis

_/ \ P(x.bar|HO)

75

0.0

60 65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.

Be careful of the signs: Upper or lower tail from null? Upper or lower tail from real?




Sample 16 male heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”

0.0

M [ L bl | | \
What is the power of our test? i(2-tail alpha= 0.05)
We could have done this much faster! .
Option 3: Using slick math, relying on equal g
variance, and symmetry of the Normal Sampling distrbution sampling disruton
H . . priR il b o il of the mean under
distribution, we could use the z-scores and 7 gl iy / ¥the il et

effect sizes without ever translating into x.bar.

60 75

65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.

abs(gnorm(©.05/2,0,1) (1] 1.06 Critical z.score rel. to HO (positive)

Critical z.score rel to HT
(having flipped it around to be

1.96-0.875xsqrt(16) [1] -1.54 blgger than HO')

=t _ 0875
OX

d=

1-pnorm(-1.54,0,1) [1] ©.938
Power!




Sample 16 male heights from North Korea

mean=65" sd=4"

Test if sample mean is different from male S.Korean

heights:
mean=68.5" sd=4”

What is the power of our test?:

Option 1: Obtain critical z-scores relative to HO, _

convert into critical x.bar, convert into z-score
relative to HT, calculate power.

(sort of stupid and slow, but makes the process
explicit)

Option 2: Obtain critical x.bar, calculate power.
(you need to know true/null means and s.d.s —
can’t work with effect sizes)

Option 3: Obtain critical z-score rel to HO, use
power to calculate z-score relative to HT,
calculate power.

(probably the most general/useful formulation)

a1

0.2

0.1

0.0

_| of the mean under

P(x.bar|HT)

Sampling distribution Sampling distribution
of the mean under

the null hypothesis

J & P(x.bar|HO)

75

the real distribution

60 65 70
Distribution of the mean of 16 male heights from North Korea and South Korea.

1-pnorm(abs(gnorm(a/2) )-dxsqrt(n))

General note: Make sure you consider what the distributions look like! (sample from world?)



Sample 16 male heights from North Korea
mean=65" sd=4”
Test if sample mean is different from male S.Korean
heights:
mean=68.5" sd=4”
What is the power of our test? (2-tail alpha = 0.05)

pwr: :pwr.norm.test(d,n)

pwr: :pwr.norm.test(0.875,16)

©.938



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5" sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=1 power=0.139

0.10
|

0.08
|

0.04 0.06
I |

0.02
|

i

0.00
|

1 | | | I i | |
50 55 60 65 70 75 80 85

Distribution of male heights in North Korea and South Korea.



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=2 power=0.235

0.08 0.12
| |

0.04
1

_ -

0.00
1

I | | | | ! | I
50 55 60 65 70 75 80 85

Distribution of male heights in North Korea and South Korea.



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=4 power=0.417

0.20
|

0.15
|

0.05
|

N

0.00
1

1 T | | T ; T 1
50 55 60 65 70 75 80 85

Distribution of male heights in North Korea and South Korea.



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=8 power=0.697

l

|

l

|

0.00 005 0.10 0.15 0.20 0.25

N

I | | | | I | |
50 55 60 65 70 75 80 85
Distribution of male heights in North Korea and South Korea.



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=10 power=0.79

0.00 0.05 0.10 0.15 0.20 0.25 0.30
|

o

I | | | | I | |
50 55 60 65 70 75 80 85
Distribution of male heights in North Korea and South Korea.



Sample nmale heights from North Korea
mean=65" sd=4"
Test if sample mean is different from male S.Korean heights:
mean=68.5"sd=4"
What should 7 be for our power to be 0.8? (2-tail alpha =
0.05)

n=11 power=0.827

0.20 0.30
| |

0.10
|

\

0.00
|

I | | | | I | I

50 55 60 65 70 75 80 85
Distribution of male heights in North Korea and South Korea.



Z-test power functions
« Getthe power given d, n, and alpha. (2-tailed!)

pwr: :pwr.norm.test(d=d, n=n, sig.level=alpha)

* Getthe necessary nto reach power, given d, and alpha.

pwr: :pwr.norm.test(d=d, sig.level=alpha, power=power)




Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals

Null hypothesis significance testing
Power



g=(1-¢)% confidence interval on mean

X*z ,0, /n



Critical z score?

What is the Z_crit such that g% of of all z-scores are
between —Z_crit and +Z_crit? E.g., g=90%

What is the distance between the sample mean and the population mean (in units of
standard errors of the mean) such 90% of the other potentially sampled distances are
less than this one?

[1] 0.9

Q .

S0 90% in the middle of the dist. Therefore 5% in either tail.

_crit = gnorm((1-Q)/2) [1] -1.64

0.3

A

90% of Z-scores are
within 1.64 of o0.0.

90% of sample means are
within 1.64 s.e.m of the
population mean.



A confidence interval

We have: a sample mean, n, population sd, and get s.e.m.

X_bar = mean(x) [1] 108

n = length(x) [1] 16
sdX = 15

sem = sdX/sqrt(n) [1] 3.75
Z_crit = gnorm((1-Q)/2) [1] -1.64

0.4

90% of Z-scores are within
1.64 of o.

0.3

90% of sample means are within
1.64 s.e.m.s of population mean.

0.2

0.1

90% of sample means are within
1.64*3.75=6.15 IQ points of the
population mean

0.0
|

90% interval on population mean
108-6.15 t0 108+6.15
[101.85 to 114.15]



Confidence interval on pop. mean

* Q% confidence interval:
Sample mean +/- z_crit * sem
z_crit defined such P(abs(z) < z_crit) = Q%
1) -1 08

90% z-score interval on deviation of sample mean from
population mean (in standard errors of the mean):
[-1.64 t0 1.64]

90% interval on deviation of sample mean from population mean
(in units of x, here 1Q):

[-1.64*sem to 1.64*sem] = [-6.15 t0 6.15]

90% interval on population mean:
X_bar + [-1.64*sem to 1.64*sem] = [101.85 t0 114.15]



Confidence interval on pop. mean

* Q% confidence interval:
Sample mean +/- z_crit * sem
z_crit defined such P(abs(z) < z_crit) = Q%

Z_crit = gnorm((1-Q)/2) [1] -1.64

X+*z ,0, /n

Mean(x) = 110. n=25. st.dev = 15.
What is the 75% (z-score) confidence interval on the mean?



Let’s calculate a confidence interval.

 What if we think these folks might have different mean
and a different sdthan the overall IQ population...
Can’t we just use the sample sd to define sem?
— Not with the z (normal) distribution.
— We will use the “T” distribution. More later

(This is why Z-score confidence intervals are good for
illustration, but very rarely used in practice)



Confidence intervals are weird.

0.4
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0.0
|

These are
probability
statements about
the distribution of
all possible sample
means

How did we get to
this statement
about the -

—

S—

—

population mean?

S—

90% of Z-scores are within 1.64 of o.

90% of sample means are within 1.64 s.e.m.s of population
mean.

90% of sample means are within 1.64*3.75=6.15 inches of
the population mean

90% interval on population mean
108-6.15 t0 108+6.15 = [101.85 t0 114.15]



Confidence intervals are weird.
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Sample 16 male heights. mean=64".

Ho: Sample from South Korean male population:
mean=68.5" sd=4”

What’s our 95% confidence interval on the mean of this

sample’s population?

Step 1) assume that this sample’s population has the same standard deviation in height as the
population of South Koreans (so we can do a Z-test conf. interval). <-! This should worry you !

Critical alpha 1] .05
Critical Z abs(gnorm(0.05/2,0,1)) [1] 1.96

Cl lower bound 64-1.96%(4/sqrt(16)) [1] 62.04

Cl upper bound 64+1.96%(4/sqrt(16)) [1] 65.96

So our 95% confidence interval on the mean is [62, 66]



Confidence intervals and NHSTs on mean

* We reject the null hypothesis at a certain alpha if...

0.00 0.02 0.04 006 008 0.10

-+ these

he z.score is larger (absolute value) than z.crit (ergo p < &)
he sample mean is further than z.crit*sem from null mean
he (1-o) confidence interval excludes the null mean

Z-crit for
alpha =

4 0.05

reject null
if sample
mean
is past

Hypothesis
mean

&
5% (1-0.05)

around sample m
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Confidence intervals and NHSTs on mean

* We reject the null hypothesis at a certain alpha if...
— The z.score is larger (absolute value) than z.crit (ergo p < &)
— The sample mean is further than z.crit*sem from null mean
— The (1-&) confidence interval excludes the null mean
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Confidence intervals and NHSTs on mean

* We reject the null hypothesis at a certain alpha if...

— The z.score is larger (absolute value) than z.crit (ergo p < &)
— The sample mean is further than z.crit*sem from null mean

I
—

0.00 0.02 0.04 006 0.08 0.10

he (1-o) confidence interval excludes the null mean
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Confidence intervals and NHSTs on mean

* We reject the null hypothesis at a certain alpha if...
— The z.score is larger (absolute value) than z.crit (ergo p < &)
— The sample mean is further than z.crit*sem from null mean
— The (1-&) confidence interval excludes the null mean

0.00 0.02 0.04 0.06 0.08 0.10

90 95 100 105 110
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Confidence intervals and NHSTs on mean

« We reject the null hypothesis at a certain alpha if...

— The z.score is larger (absolute value) than z.crit (ergo p < &)
— The sample mean is further than z.crit*sem from null mean

— The (1-&) confidence interval excludes the null mean

* |fthe sample mean (x.bar) passes the critical rejection
value (null mean = z.crit*sem) then the null mean will
fall outside the (x.bar + z.crit*sem) confidence interval

around the sample mean.

* If we can reject at alpha, then the null mean falls
outside the 1-alpha confidence interval. And vice versa.

1-alpha confidence interval provides same NHST, but is more useful.



Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals and NHST analogue

Null hypothesis significance testing
Power

Wrap up



Normal variable stats.

« NHST: Z-test. T X;MO vn
- Get (2-tailed) p-value via

 Confidence intervals on mean B
X*7 ,0, /In

— Equivalent to null hypotheses!

» Effect size
— Scale and sample size neutral. d =M~
 Alpha, Beta, Power. Ox
— Effect size and n matter.

 Critically: We assert that we know the real
standard deviation. We usually do not



Errors in NHST

Correct rejection of null
(Pr=1-p ‘power’)




Confidence intervals

If 2 90% confidence interval on the mean
excludes the null hypothesis mean, we can
reject that null hypothesis with 2-tailed
alpha = 0.1, and vice versa.

=t | [\\

90 95 100 105 110

We expected 90 out of 100 90% confidence

intervals to include the true mean.

“90%” refers to a long-run property of the procedure used
to define the confidence interval, not to the specific
confidence interval you have.
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Probabilities in classical statistics refer to frequencies
under some statistical model.

— p-value: what proportion of hypothetical samples from the
null hypothesis model, would have a statistic at least as
extreme as ours?

— Alpha: probability of rejecting the null hypothesis for data
sampled from the null hypothesis model.

— Power: probability of rejecting the null hypothesis for data
sampled from some alternative model.

— Sampling distribution: the probability distribution of a
statistic given that it is sampled from some model.

— Confidence interval probability: probability that a
confidence interval computed in this manner using samples
from some mode/will contain the model parameter value.



Probabilities in null hypothesis significance testing refer
to peculiar conditional probabilities:

— p-value:
P(X » x.sample [ null is true)  P(X> x.sample | X~null)

— Alpha:
P(significant [ null is true)

— Power:
P(significant [ null is false)

» Really important:

— These do not give us the probability that the null is false:
P(null is false | significant) !



Outline

There is only one test.

Central limit theorem, normal distribution, and
sampling distribution of the sample mean

/-test
Confidence intervals and NHST analogue

Null hypothesis significance testing
Power

Wrap up



