
201ab Quantitative methods
L.06: Classical statistics 
(with normal -- Z-tests)



Outline
• There is only one test.
• Central limit theorem and normal distribution
• Z-test
• Confidence intervals
• Null hypothesis significance testing
• Power



mean(x) = 66.44

Our data 
(sample of 9 female heights, in inches)

Inferences we might want to make:

Null Hypothesis Testing: Is this sample 
likely to have come from a particular 
known population (H0)?

Estimation: What’s the mean of the 
population from which this sample 
came?  What are plausible pop. means?

A statistic 
(arithmetic mean)



Theoretical population
Statistical model
Null hypothesis



Theoretical population
Statistical model
Null hypothesis

Samples 
from the 

model
(same size as 

our actual sample)



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Samples 
from the 

model
(same size as 

our actual sample)

Sample statistics 
of these samples
(arithmetic means)



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Samples 
from the 

model
(same size as 

our actual sample)

Sample statistics 
of these samples
(arithmetic means)

Sampling distribution 
of our statistic for 

samples of this size
(here, 10k sample means)



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.06

This is the one-tailed 
p-value.

mean(x) = 66.44

Our data 
(sample of 9 female heights, in inches)

A statistic 
(arithmetic mean)



Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0. 731

This is the one-tailed 
p-value.

Our data 
(sample of 9 female heights, in inches)

A statistic 
(standard deviation)

sd(x) = 3.34

sd(x) = 2.72

sd(x) = 2.66

sd(x) = 1.85

sd(x) = 2.10

sd(x) = 3.43

sd(x)  = 2.44



Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.406

This is the one-tailed 
p-value.

Our data 
(sample of 9 female heights, in inches)

A statistic 
(skewness)

skew(x) = -0.76

skew(x) = -1.64

skew(x) = 0.07

skew(x) = 0.14

skew(x) = -0.38

skew(x) = 2.44

skew(x)  = 0.128



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Theoretical 
population 
parameter

(mean)

Mean of all the 
sample statistics

(here, the average of 10k 
sample means)

If the average sample statistic has the same 
value as the population parameter, it is an 

unbiased estimator for that parameter.



mean(x) = 65.3

mean(x) = 65.5

mean(x) = 65.4

mean(x) = 64.4

mean(x) = 65.5

mean(x) = 66.8

Theoretical population
Statistical model
Null hypothesis

Theoretical 
population 
parameter

(mean)

Standard deviation of all 
the sample statistics

This is the 
standard error
of the statistic.

(here, the std. dev. of 10k 
sample means)

We can calculate a z-score for a given sample statistic by figuring out 
how many standard errors away it is from the average sample statistic.



Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.06

This is the one-tailed 
p-value.

Our data 
(sample of 9 female heights, in inches)

A statistic 
(z.stat: sample mean z-scored to the 
theoretical distribution of sample means)

z.stat(x) = 0.26

z.stat(x) = 0.54

z.stat(x) = -0.58

z.stat(x) = 0.52

z.stat(x) = 0.06

z.stat(x) = 1.83

z.stat(x)  = 1.54



There is only one test.
• There are many significance tests you may have heard 

of:
– Z-test, t-test, F-test, X2-test, etc.
– These are all named after the statistic they use

• They all follow the same logic:
– Compare the sample statistic you have to the distribution of 

sample statistics expected from the null hypothesis.
– These specific tests are popular because 

we can analytically derive the sampling distribution of their 
statistic, and 
many questions can be posed such that the answer boils 
down to that statistic.

• The key things to worry about are: 
– what does the statistic measure?
– what is the null hypothesis?



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals
• Null hypothesis significance testing
• Power



How a generalized statistic is born (z-score)
There is some underlying distribution/population of our 
data
• x ~ P(X) mean(X) = μX, sd(X)=σX

Central limit theorem and limit of n -> inf.
• mean(x) ~ Normal(…)
Derive from rules of expectation…
• mean(x) ~ Normal(μX, σX /sqrt(n))
A bit more algebra yields…
• (mean(x) – μX)/(σX /sqrt(n))  ~ Normal(0,1)

• Z(mean(x)) ~ Normal(0,1)



Distribution of the sum of n iid RVs

n=1 n=2 n=4 n=8 n=64 n=128
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Central limit theorem
• The sum of n i.i.d. random 

variables is Normally distributed 
if n is big enough*

• Many real-world variables can be thought of 
as the sum of lots of independent and roughly 
identically distributed, contributing factors, 
so we often treat our measures as having a 
Normal distribution, but this should be 
verified.



Normal Distribution 

It has two parameters:
“location” (mean; mu)
“scale” (sd or var)

In R for a Normal distribution with mean M and sd S
Probability density at x = dnorm(x, M, S)
Cumulative probability at x = pnorm(x, M, S) 
Quantile function for p = qnorm(p, M, S)
n Random samples = rnorm(n, M, S)



Sampling dist. of a data point

round(rnorm(1,65,3)) [1] 67

round(rnorm(1,65,3)) [1] 63

Random samples of CA female heights (Normal, mean=65”, sd=3”)

x = round(rnorm(100000,65,3))

[100000] 61 64 62 64 64 64 70 62 63 59 68 70 66 68 65 64 63 64 65 65 …

100000 samples of CA female heights (Normal, mean=65”, sd=3”)



Sampling dist. of the sample mean
x = round(rnorm(25,65,3))

[25] 61 64 62 64 64 64 70 62 63 59 68 70 66 68 65 64 63 64 65 65 63 72 64 63 62

25 samples of CA female heights (Normal, mean=65”, sd=3”)

mean(x) [1] 64.6

Mean of those 25 samples.  One possible sample mean.
mean(round(rnorm(25,65,3))) [1] 65.6

mean(round(rnorm(25,65,3))) [1] 65.6

mean(round(rnorm(25,65,3))) [1] 65.08

mean(round(rnorm(25,65,3))) [1] 65.4

More sample means of 25 CA female heights.
replicate(2, mean(round(rnorm(25,65,3)))) [2] 65.04 65.80

replicate(10000, mean(round(rnorm(25,65,3))))

[10000] 64.40 64.44 65.20 65.36 65.44 64.56 64.68 ...

We generate many sample means at the same time with replicate.



Sampling dist. of sample mean
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x = round(rnorm(100000,65,3))

x_bars = replicate(10000, 
mean(round(rnorm(25,65,3))))

Sampling distribution of sample mean has smaller sd by 1/sqrt(n)



Sampling dist. of the sample mean

Histogram of many sample means of n=25 samples of female heights 
Normal(mean=65, sd=3).  
Follows a Normal(mean=65, sd=3/sqrt(25))

This is the sampling distribution of this sample mean.



Sampling dist. of the sample mean

{xi,..., xn}~iid P(X) Mean[X]= µX Variance[X]=σ X
2

We take n samples from some 
population represented by a 
probability distribution P(X)

The population variance 
is sigma_x^2

x(n) =
1
n

xi
i=1

n

∑

The population mean 
is mu_x

The sample mean is the sum of those 
samples divided by their count.

Mean[x(n) ]= µX

Variance[x(n) ]=σ X
2 / n

x(n) ~ Normal µX,σ X / n( )
Altogether, the sample mean will be normally 
distributed (if n is large enough – CLT), around the 
population mean, with a standard deviation that 
decreases with sqrt(n).



Sampling dist. of sample mean
x = round(rnorm(100000,65,3))

[100000] 61 64 62 64 64 64 70 62 63 59 68 70 66 68 65 64 63 64 65 65 …

sd(x) [1] 3.024

x_bars = replicate(10000, mean(round(rnorm(25,65,3))))

[10000] 64.40 64.44 65.20 65.36 65.44 64.56 64.68 ...

sd(x_bars) [1] 0.6007

Oh good.  Our samples have the SD we told them to have.

σ x =
σ X

n
=

3
25

= 3 / 5= 0.6

And our sample means have the sd they should have according to 
math.



Samp. dist. of error of sample mean



Z_x_bar = (x_bar– pop mean)/sem
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n=25
sdX = 3
muX = 65
sem = sdX/sqrt(n)
x_bars = replicate(10000, mean(rnorm(n,muX,sdX)))
Z_x_bars = (x_bars - muX)/sem

mean(Z_x_bars)
sd(Z_x_bars)

[1] -0.004
[1]  1.005



The Z (standard normal) distribution
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Z score (‘standardized score’)
Distance from the mean in units of standard deviation

Right now: distance between sample mean and population mean in 
units of standard error of the mean.



Z scores
• What is the probability that our sample mean will have 

a Z-score > 1.96 or < -1.96?  
(i.e. will be more than 1.96 standard errors away from the population mean?)

pnorm(-1.96) + (1-pnorm(1.96)) [1] 0.05

2*pnorm(-1.96)

Equivalent because distribution is symmetric around 0.



Z scores
• What is the ‘critical’ absolute Z value such that the Z-

score of our sample mean will have an absolute value 
less than that with probability 68.27%?

(1-0.6827)/2 [1] 0.15865

That’s how much probability should be ‘left over’ in either tail.
qnorm(0.15865) [1] -1



Z score distribution – fun facts
• z_x = (x-mu)/sd [***]

relative to distribution of x!
e.g., (x_bar – mu_x)/sem
Distance from the mean in 
standard deviations.

• P(abs(z) < 1) = 0.68
i.e. 68% of values are less than 
1 s.d. away from mean.

• P(abs(z)>1.96) = 0.05
i.e. 5% of values are more than 
1.96 s.d.s away from mean.

• P(abs(z)>1.64) = 0.1
i.e. 10% of values are more than 
1.64 s.d.s away from mean.



Theoretical distributions

Sampling distribution of the sample mean Sampling distribution of a Z-score

xi ~iid P(X)

x(n) =
xi

i=1

n

∑
n

x(n) ~ Normal µx = µX,σ x =
σ X

n
"

#
$

%

&
'

xi ~ Normal(µX,σ X )

zi =
xi −µX

σ X

zi ~ Normal(0,1)



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals
• Null hypothesis significance testing
• Power



Null hypothesis significance testing.
• We have a sample
– E.g. 16 IQ scores from psych 201

• We have some ‘null’ hypothesis (statistical model!)
– E.g., 201 students are no different from the rest of the 

population.  They are random samples from the overall IQ 
distribution with mean=100, and sd=15

• We see if the sample is sufficiently different from what 
we expect of samples from the null population, to 
‘reject the null’



Null hypothesis significance testing
A (fictional) sample of 16 IQ scores of 201 students.

We think these folks might have a different mean (but 
same sd) as the normal population.

x [16] 120 113 129 113  …

Sample mean of  x 
compared to null 

hypothesis 
distribution 

of x values

Is this “sufficiently different” to reject the null?



“Sufficiently different”
• How likely is an outcome at least this extreme to arise 

if the null hypothesis is true? 
(i.e., in samples from the null model)

• We are going to choose a criterion of 5% ( “alpha”):
If an outcome at least as extreme as this one has more than a 5% 
chance of arising under the null hypothesis, we deem it not 
sufficiently surprising and we do not reject the null model.  
Otherwise we will.

• Why 5%?  
Because Fisher thought it would be ok, then everyone in social science started using it. 
Physics has much more stringent criteria: 0.000000002 for a “discovery” and 
0.0000006 for a cautious announcement.  As we will see in the homework, when 
testing surprising (low base-rate) effects, we can only achieve a reasonable positive 
predictive value, by adopting a more stringent alpha criterion.



Random sampling for NHST
n = 16
x.bar = 108
sample.mean.h0 = function(n){mean(rnorm(n, 100, 15))}
h0.means = replicate(100000, sample.mean.h0(n))

(cur.p.val = 2*mean(h0.means > x.bar) [1] 0.03312

Notes: 
we are calculating a ‘two-tailed’ 
p-value by multiplying the 
probability of one tail by two.

Sampling variability means 
some slight imprecision here.  
The more sampled h0 means 
we take, the less imprecision.



Why don’t we always just do this?
• It’s unconventional.
• It requires some programming and a bit of thought to 

pick a good statistic to sample in more complex tests.

• With modern computers we can.  (randomization: 201b)

• Back in the day: no (machine) computers.  
Strategy: define a simple mathematical transformation that 
yields one invariant sampling distribution for a family of null 
models.  Then the hard CDF calculations need to be done only 
once, and can apply for everyone.  
Thus many null hypothesis tests reduce to one of a few common 
test-statistics: z, t, F, X2, etc..



Null hypothesis significance testing
• Use the Z score of the sample mean, relative to the null 

hypothesis sampling distribution of the sample mean.

• How big does z have to be to exceed a 5% criterion?

• Absolute value > 1.96.
• Here it is bigger, so we reject the null at alpha=5%

x [16] 120 113 129 113  …

mean(x) [1]108

z = (mean(x) – 100)/(15/sqrt(length(x))) [1] 2.133

Z_crit = qnorm(0.05/2) [1] -1.96



Standard normal (Z) dist. for NHST
z = (mean(x) – 100)/15*sqrt(16) [1] 2.133

Z_crit = qnorm(0.05/2) [1] -1.96



Standard normal (Z) dist. for NHST

(cur.p.val = 2*(1-pnorm(z)) [1] 0.0329

Notes: 
we are calculating a ‘two-tailed’ 
p-value by multiplying the 
probability of one tail by two.

Sampling variability means 
some slight imprecision here.  
The more sampled h0 means 
we take, the less imprecision.

z = (mean(x) – 100)/15*sqrt(length(x)) [1] 2.133



NHST Z tests
• Calculate z-score of sample mean relative to null 

hypothesis sampling distribution of the sample mean

• Classic approach: z score past significance threshold?
– Compare z score to critical z score for alpha level.
– Reject or retain (fail to reject) null hypothesis

• Modern approach (p-value below alpha?)
– Calculate p-value: probability of a z-score at least as 

extreme as this one under the null hypothesis.
– Compare to alpha value.

zx =
x −µ 0X
σ 0

X

=
x −µ 0X
σ X
0

n

=
x −µ 0X
σ X
0

"

#
$

%

&
' n



Two approaches to NHST

z.crit = abs(qnorm(0.05/2)) [1] 1.96

abs(z.score) > abs(z.crit) [1] FALSE

Classic approach: compare test statistic to critical statistic value?

p.val=2*(pnorm(-abs(z.score))) [1] 0.033

p.val < 0.05 [1] FALSE

Modern approach: compare p-value of test statistic to alpha?

P-value is more informative, but a confidence interval is better yet

z = (mean(x) – 100)/15*sqrt(16) [1] 2.133



Back in the day: Probability tables
• Very hard to evaluate p-value for arbitrary Z scores.

• Instead, find the ‘critical’ z-value

.5 1 1.5 2 2.5-.5-1-1.5-2-2.5

0.025 0.025

zcritical = -1.96 zcritical = +1.96 

� 

α = 0.05



Back in the day: Probability tables.



Back in the day: Probability tables.



Where did the tables come from?
Lady computers.



pnorm(z,0,1) pnorm(z,0,1)- 0.5

Now: pnorm



Now: pnorm
• Obtain exact p-values for your actual z-score!

.5 1 1.5 2 2.5-.5-1-1.5-2-2.5

z

2*pnorm(-abs(z),0,1)

pnorm(z,0,1) 1-pnorm(z,0,1)

z

Positive z scores.Negative z scores.



NHST Z tests
• Calculate z-score of sample mean relative to null 

hypothesis sampling distribution of the sample mean

• Classic approach: z score past significance threshold?
– Compare z score to critical z score for alpha level.
– Reject or retain (fail to reject) null hypothesis

• Modern approach (p-value below alpha?)
– Calculate p-value: probability of a z-score at least as 

extreme as this one under the null hypothesis.
– Compare to alpha value.

zx =
x −µ 0X
σ 0

X

=
x −µ 0X
σ X
0

n

=
x −µ 0X
σ X
0

"

#
$

%

&
' n

p.val = 2*pnorm(-abs(z.score))



Sample 16 male heights. mean=64”.  
H0: Sample from South Korean male population:

mean=68.5” sd=4”
Can we reject H0?

(64-68.5)/4*sqrt(16) [1] -4.5Z-score of x.bar

2*pnorm(-4.5,0,1) [1] 6.8e-06(2-tail) p-value

Yes, we can reject, given 
that our alpha level is not 
below ~10-5

So… this sample would be very surprising if it came from the South Korean male population.



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals and NHST analogue
• Null hypothesis significance testing
• Power



Null hypothesis significance testing
• What structure are you testing?
– Mean of sample population differs from known.

• Define a ‘null’ hypothesis lacking structure.
– Sample drawn from known distribution.

• Define a ‘test statistic’ measuring structure
– Z score of sample mean relative to null mean, sem

• Obtain null test stat. ‘sampling distribution’
– Standard normal distribution.

• Compare sample statistic to H0 distribution
– Obtain p-value, compare to α
– Reject or fail to reject the null hypothesis.



Theoretical population
Statistical model
Null hypothesis

Null Hypothesis testing:
What is the probability 
that a random sample 

from the null model will 
have a statistic at least as 
extreme as the one from 

our data?
Here: 0.06

This is the one-tailed 
p-value.

Our data 
(sample of 9 female heights, in inches)

A statistic 
(z.stat: sample mean z-scored to the 
theoretical distribution of sample means)

z.stat(x) = 0.26

z.stat(x) = 0.54

z.stat(x) = -0.58

z.stat(x) = 0.52

z.stat(x) = 0.06

z.stat(x) = 1.83

z.stat(x)  = 1.54



Some jargon.
• Null hypothesis (H0)

a model of the data that lacks structure we want to test for – the 
“boring” alternative.

• Test statistic
a sample statistic that measures the structure we wish to test for.

• Sampling distribution of test statistic under H0
the probability distribution over test statistics we expect to see in 
samples from the null hypothesis.

• P-value
the probability of observing a test-statistic at least as extreme as 
ours under the H0 distribution. (~surprise)

• α-level
How often are we willing to falsely reject the null hypothesis?  
(our chosen prob. of Type I error)



NHST terms & concepts
• Null hypothesis
• ‘Alternative hypothesis’
• Type I error
• Type II error
• Alpha
• P-value
• Effect size
• Power
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H0 (null hypothesis) testing errors

H0 false H0 true

Reject H0 Woohoo! Type I error
(false alarm)

Fail to reject H0 Type II error
(miss)

Ok.

Reality
De

ci
si

on

Frankly: I always had a hard time remembering which one is Type I and which one is Type II.  
More important to remember the conceptual difference than the arbitrary naming convention.



Alpha (α)
• The probability of “Type I error”:

The conditional probability of 
falsely rejecting the null when it 
is actually true, that we are 
willing to tolerate.

• Typically we use a “two-tailed” 
test, which means that this 
probability is equally distributed 
into the two tails.

• This determines which values we 
are willing to reject the null for.

α=0.01

α=0.05

α=0.1

α=0.2



Alpha  (α)
• In theory, we decide on alpha.  In practice, we just 

follow the 5% (0.05, 1/20) convention 
for better or worse*: 
*I endorse recent push to lower convention.  Be wary of 0.01 < p < 0.05.

α=0.05

0.025 in each tail



P-value
• The lowest alpha value at which our data would reject the 

null hypothesis.  
• The probability of seeing an outcome at least as extreme as 

the one that we saw when sampling from null.
• Typically this is two-tailed.
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P-value
The z score 
we got.

This area under the curve 
corresponds to the 
probability of seeing a z-
score at least this extreme in 
*this* direction.

This is the second tail: 
the probability of seeing a 

z-score at least this 
extreme in the *other* 

direction.

These two tails together give us the p-value.
(due to symmetry, we can just multiply one tail by 2)



P-value

• What is the p-value of the null hypothesis that 201 IQs 
are samples from the overall IQ distribution?

z = (mean(x) – 100)/15*sqrt(16) [1] 2.133

Z_crit = qnorm(0.05/2) [1] -1.96

We want the area 
in these two tails



P-value

• What is the p-value of the null hypothesis that 201 IQs 
are samples from the overall IQ distribution?

z = (mean(x) – 100)/15*sqrt(16) [1] 2.133

Z_crit = qnorm(0.05/2) [1] -1.96

P_upper = 1-pnorm(2.133) [1] 0.01646

P_lower = pnorm(-2.133) [1] 0.01646

p.value = P_upper + P_lower [1] 0.03292

p.value = 2*pnorm(-abs(z)) [1] 0.03293



P-value

• What is the p-value of the null hypothesis that 201 IQs 
are samples from the overall IQ distribution?

• This means:
we could reject this null hypothesis at alpha=0.03292
and
the probability of seeing an outcome at least as 
extreme as ours under the null hypothesis is 0.03293

z = (mean(x) – 100)/15*sqrt(16) [1] 2.133

Z_crit = qnorm(0.05/2) [1] -1.96

p.value = 2*pnorm(-abs(z)) [1] 0.03292



Alternative hypothesis
• This might be just “the null hypothesis is false”

Meaning: whatever structure we tested for *is* there.

• E.g.: the mean IQ *is* different for 201 students 
compared to the overall population

• However, if you want to assess the power of your test 
(which, is very important), the alternate hypothesis 
needs to be specified as an actual distribution.



Alternative hypothesis
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Distribution of 
test statistic 
under the null 
hypothesis

Alt. distribution 
of test statistic
(effect present)

“Effect size”: difference between the alternative and null 
distributions.

(often: difference in means, in units of standard deviation)

Typically when considering effect size the 
alternative we consider is the “true” distribution.



Effect size.
• How big is this difference from the null 

that we are measuring?
– (True mean - Null mean)?

Hard to compare across measures
– Z score based on sampling dist of sample 

mean? Will depend on sample size, which 
we don’t want. 

– Cohen’s d (mean difference scaled by 
standard deviation)
(usually we use absolute values)

• Sample mean often used to estimate 
effect size.

zx =
µT −µ0
σ X

n

d = µT −µ0
σ X

Δ = µT −µ0

d̂ = x −µ0
σ X



Effect size.
There are three practical uses of effect size:

(1) You know the properties of true population, 
and you want to know how big that difference is 
(perhaps to use to calculate future power analyses for unknown samples 
– the prototypical quality assurance scenario for NHSTs)

(2) You have an idea what difference would be 
scientifically/practically meaningful, so you 
postulate a minimum relevant effect size.

(3) You ran an experiment, and want to know 
what to expect in a future replication.  Then you 
use the sample mean from the pilot to estimate
the effect size.

d = µT −µ0
σ X

d̂ = x −µ0
σ X



Sample 16 male heights. mean=64”.  
H0: Sample from South Korean male population:

mean=68.5” sd=4”
What’s our estimate of the effect size?

d̂ = x −µ0
σ X

=
64− 68.5

4
=1.125

Estimated effect size.
“Estimated” because we 
are using the sample 
mean to estimate the 
population mean of the 
true effect distribution



More on Type I and Type II
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Distribution of 
test statistic 
under the null 
hypothesis

Real 
distribution of 

test statistic
(effect present)



More on Type I and Type II
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We will reject the null hypothesis if the test statistic we get from 
our data is past these ‘critical’ values 

(here z_crit = -1.96 and 1.96, corresponding to alpha=0.05)

Re
je

ct
. Reject.



More on Type I and Type II
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Shaded red area is the probability of Type I error:
The probability that we will reject the null hypothesis for a test 

statistic that actually came from the null hypothesis.
This is alpha.  This is how the critical values were defined.

Re
je

ct
. Reject.



More on Type I and Type II
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Shaded blue area is the probability of correctly rejecting the null 
hypothesis: rejecting the null hypothesis when the test statistic 

actually came from the alternative hypothesis distribution
(this is “Power”)

Re
je

ct
. Reject.



More on Type I and Type II
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Shaded light red area: probability of correctly not rejecting the 
null hypothesis: not rejecting the null hypothesis when it is true.

= 1-alpha

Re
je

ct
. Reject.



More on Type I and Type II
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Shaded light blue area: probability of Type II error:
Failing to reject the null hypothesis when it is actually false

(when the test statistic actually came from the alternate 
distribution!)

This is usually called Beta

Re
je

ct
. Reject.



H0 false H0 true
Reject H0 Woohoo!

Fail to reject H0 rror Ok.

More on Type I and Type II

Re
je

ct
. Reject.

Type I error (Pr = α)

Correct failure to 
reject null (Pr = 1-α)

Type II error (Pr = β)

Correct rejection of null 
(Pr = 1-β; ‘power’)



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals and NHST analogue
• Null hypothesis significance testing
• Power



Power  P(significant | not null)
• The conditional probability of rejecting the null 

hypothesis when the data actually came from the 
‘alternate’ hypothesis distribution.

• To calculate this, we need to know what the ‘true effect’ 
distribution is. Usually, we just need the ‘effect size’

This area 
under the 
curve is 
“Power”.



How to get more power?
• Bigger difference between means.
• Less population variance.
• Bigger sample size
• Higher (closer to 1) alpha.
– Directional tests

Effect Size



Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the effect size?

Distribution of male heights in North Korea and South Korea.  

Note: here H0 is drawn in blue, and H1 in red.



Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the effect size?

Distribution of male heights in North Korea and South Korea.  

Distance between 
means: -3.5

Distance between 
means in units of 
s.d.: -3.5/4 = -0.875

d = µT −µ0
σ X

= 0.875

Real effect size:
Real because we are 
using the actual 
population mean, not an 
estimate of it.



Distribution of male 
heights from North Korea 
and South Korea.  

Distribution of the mean of 
16 male heights from North 
Korea and South Korea.  

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Critical distance from H0 mean in s.e.m: 1.96
Critical distance from H0 mean in inches: 1.96*1qnorm(0.05/2,0,1) [1] -1.96

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean 
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Critical distance from H0 mean in 
std. errs. of the mean: 1.96

Do not reject H0

Reject H0 Reject H0

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean 
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Critical distance from H0 mean in 
std. errs. of the mean: 1.96

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

Type I error
0.025 Type I error 

0.025

z.crit chosen so that the 
prob. of type I error 
(rejecting the H0 for 
samples from H0) 
is alpha (here: 0.05)

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Sample 16 male heights from North Korea
mean=65” sd=4”

Test if mean male N.Korean heights are different from mean 
male S.Korean heights:

mean=68.5”sd=4”
What is the power of our test?  (2-tail alpha = 0.05)

Distribution of the mean of 16 male heights from North Korea and South Korea.  

Critical distance from H0 mean in 
std. errs. of the mean: 1.96

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

Type II error 

prob. of type II error 
(failing to rejecting H0 for 
samples not from H0) 
is beta, but it needs to be 
calculated via the ‘real’ 
effect distribution



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Critical distance from H0 mean in 
std. errs. of the mean: 1.96

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

“Power” Power (1-beta) is the prob. 
of rejecting H0 for samples 
not from H0.
needs to be calculated via 
the ‘real’ effect distribution

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Z.crit rel. to H0: 1.96

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

66.5 70.5

Z.crit rel. to HT: 1.54

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Distribution of the mean of 16 male heights from North Korea and South Korea.  

Sampling distribution 
of the mean under 
the null hypothesis 

P(x.bar|H0)

Sampling distribution 
of the mean under 
the real distribution
P(x.bar|HT)

66.5 70.5

Z.crit rel. to HT: 1.54pnorm(1.54,0,1) [1] 0.938

Power = 0.938

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



We could have done this much faster!

Option 2: We have the true means, and 
standard deviations, so we don’t need to mess 
with z-scores!
We also see that the true distribution is below 
the H0 distribution…

qnorm(0.05/2,68.5,4/sqrt(16)) [1] 66.54 Lower critical x.bar

pnorm(66.54,65,4/sqrt(16)) [1] 0.938 Proportion of true dist. below that 
critical x.bar.  (power!)

Be careful of the signs: Upper or lower tail from null?  Upper or lower tail from real?

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



We could have done this much faster!

Option 3: Using slick math, relying on equal 
variance, and symmetry of the Normal 
distribution, we could use the z-scores and 
effect sizes without ever translating into x.bar.

abs(qnorm(0.05/2,0,1) [1] 1.96 Critical z.score rel. to H0 (positive)

1.96-d*sqrt(n)

[1] -1.54

Critical z.score rel to HT 
(having flipped it around to be 
bigger than H0!)

d = µT −µ0
σ X

= 0.875
1.96-0.875*sqrt(16)

1-pnorm(-1.54,0,1) [1] 0.938

Power!

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Option 1: Obtain critical z-scores relative to H0, 
convert into critical x.bar, convert into z-score 
relative to HT, calculate power.
(sort of stupid and slow, but makes the process 
explicit)

Option 2: Obtain critical x.bar, calculate power.
(you need to know true/null means and s.d.s –
can’t work with effect sizes)

Option 3: Obtain critical z-score rel to H0, use 
power to calculate z-score relative to HT, 
calculate power.
(probably the most general/useful formulation)

General note: Make sure you consider what the distributions look like!  (sample from world?)

1-pnorm(abs(qnorm(a/2))-d*sqrt(n))

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



pwr::pwr.norm.test(d,n)

pwr::pwr.norm.test(0.875,16)

0.938

Sample 16 male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean
heights:

mean=68.5” sd=4”
What is the power of our test?  (2-tail alpha = 0.05)



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=1 power=0.139



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=2 power=0.235



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=4 power=0.417



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=8 power=0.697



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=10 power=0.79



Sample n male heights from North Korea
mean=65” sd=4”

Test if sample mean is different from male S.Korean heights:
mean=68.5”sd=4”

What should n be for our power to be 0.8?  (2-tail alpha = 
0.05)

Distribution of male heights in North Korea and South Korea.  

n=11 power=0.827



Z-test power functions
• Get the power given d, n, and alpha.  (2-tailed!)

• Get the necessary n to reach power, given d, and alpha.

pwr::pwr.norm.test(d=d, n=n, sig.level=alpha)

pwr::pwr.norm.test(d=d, sig.level=alpha, power=power)



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals
• Null hypothesis significance testing
• Power



q=(1-α)% confidence interval on mean

x ± zα /2σ 0 / n



Critical z score?
• What is the Z_crit such that q% of of all z-scores are 

between –Z_crit and +Z_crit?  E.g., q=90%
• What is the distance between the sample mean and the population mean (in units of 

standard errors of the mean) such 90% of the other potentially sampled distances are 
less than this one?

Q
(1-Q)/2

[1] 0.9
[1] 0.05

So 90% in the middle of the dist. Therefore 5% in either tail.
Z_crit = qnorm((1-Q)/2) [1] -1.64

90% of Z-scores are 
within 1.64 of 0.0.

90% of sample means are 
within 1.64 s.e.m of the 
population mean.



A confidence interval
We have: a sample mean, n, population sd, and get s.e.m.
x_bar = mean(x)
n = length(x)
sdX = 15
sem = sdX/sqrt(n)

[1] 108
[1] 16

[1] 3.75

90% of Z-scores are within 
1.64 of 0.

90% of sample means are within 
1.64 s.e.m.s of population mean.

90% of sample means are within 
1.64*3.75=6.15 IQ points of the 
population mean

90% interval on population mean
108-6.15 to 108+6.15
[101.85 to 114.15]

Z_crit = qnorm((1-Q)/2) [1] -1.64



Confidence interval on pop. mean
• Q% confidence interval:

Sample mean +/- z_crit * sem
z_crit defined such P(abs(z) < z_crit) = Q%

Z_crit = qnorm((1-Q)/2) [1] -1.64

90% z-score interval on deviation of sample mean from 
population mean (in standard errors of the mean):  

[-1.64 to 1.64]

90% interval on deviation of sample mean from population mean 
(in units of x, here IQ):

[-1.64*sem to 1.64*sem] = [-6.15 to 6.15]

90% interval on population mean:
x_bar + [-1.64*sem to 1.64*sem] = [101.85 to 114.15]



Confidence interval on pop. mean
• Q% confidence interval:

Sample mean +/- z_crit * sem
z_crit defined such P(abs(z) < z_crit) = Q%

Z_crit = qnorm((1-Q)/2) [1] -1.64

x ± zα /2σ 0 / n

Mean(x) = 110. n=25. st.dev = 15. 
What is the 75% (z-score) confidence interval on the mean?



Let’s calculate a confidence interval.

• What if we think these folks might have different mean 
and a different sd than the overall IQ population… 
Can’t we just use the sample sd to define sem?
– Not with the z (normal) distribution.  
– We will use the “T” distribution.   More later
(This is why Z-score confidence intervals are good for 
illustration, but very rarely used in practice)

x [16] 120 113 129 113 …



Confidence intervals are weird.

90% of Z-scores are within 1.64 of 0.

90% of sample means are within 1.64 s.e.m.s of population 
mean.

90% of sample means are within 1.64*3.75=6.15 inches of 
the population mean

90% interval on population mean
108-6.15 to 108+6.15 = [101.85 to 114.15]

These are 
probability 
statements about 
the distribution of 
all possible sample 
means

How did we get to 
this statement 
about the 
population mean?



Confidence intervals are weird.



Sample 16 male heights. mean=64”.  
H0: Sample from South Korean male population:

mean=68.5” sd=4”
What’s our 95% confidence interval on the mean of this 
sample’s population?
Step 1) assume that this sample’s population has the same standard deviation in height as the 
population of South Koreans (so we can do a Z-test conf. interval).   <- ! This should worry you !

abs(qnorm(0.05/2,0,1)) [1] 1.96Critical Z

64-1.96*(4/sqrt(16)) [1] 62.04CI lower bound

So our 95% confidence interval on the mean is [62, 66]

(1-0.95) [1] 0.05Critical alpha

64+1.96*(4/sqrt(16)) [1] 65.96CI upper bound



Confidence intervals and NHSTs on mean
• We reject the null hypothesis at a certain alpha if…
– The z.score is larger (absolute value) than z.crit (ergo p < α)
– The sample mean is further than z.crit*sem from null mean
– The (1-α) confidence interval excludes the null mean

112

95% (1-0.05) CI 
around sample mean

Null 
Hypothesis 

mean

Z-crit for 
alpha = 

0.05
reject null 
if sample 

mean 
is past 
these



• We reject the null hypothesis at a certain alpha if…
– The z.score is larger (absolute value) than z.crit (ergo p < α)
– The sample mean is further than z.crit*sem from null mean
– The (1-α) confidence interval excludes the null mean

113

Confidence intervals and NHSTs on mean



• We reject the null hypothesis at a certain alpha if…
– The z.score is larger (absolute value) than z.crit (ergo p < α)
– The sample mean is further than z.crit*sem from null mean
– The (1-α) confidence interval excludes the null mean

114

Confidence intervals and NHSTs on mean



• We reject the null hypothesis at a certain alpha if…
– The z.score is larger (absolute value) than z.crit (ergo p < α)
– The sample mean is further than z.crit*sem from null mean
– The (1-α) confidence interval excludes the null mean

115

Confidence intervals and NHSTs on mean



• We reject the null hypothesis at a certain alpha if…
– The z.score is larger (absolute value) than z.crit (ergo p < α)
– The sample mean is further than z.crit*sem from null mean
– The (1-α) confidence interval excludes the null mean

• If the sample mean (x.bar) passes the critical rejection 
value (null mean ± z.crit*sem) then the null mean will 
fall outside the (x.bar ± z.crit*sem) confidence interval 
around the sample mean.

• If we can reject at alpha, then the null mean falls 
outside the 1-alpha confidence interval.  And vice versa.

1-alpha confidence interval provides same NHST, but is more useful.

Confidence intervals and NHSTs on mean



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals and NHST analogue
• Null hypothesis significance testing
• Power
• Wrap up



Normal variable stats.
• NHST: Z-test.
– Get (2-tailed) p-value via 

• Confidence intervals on mean
– Equivalent to null hypotheses!

• Effect size
– Scale and sample size neutral.

• Alpha, Beta, Power.
– Effect size and n matter.

• Critically: We assert that we know the real 
standard deviation.  We usually do not

2*pnorm(-abs(z),0,1)

zx =
x −µ0
σ X

n

x ± zα /2σ 0 / n
za = qnorm(a/2,0,1)

d = µT −µ0
σ X

pow =   pwr::pwr.norm.test(d, n, alpha)

n.needed   =  pwr::pwr.norm.test(d, power=power, alpha)



H0 false H0 true
Reject H0 Woohoo!

Fail to reject H0 rror Ok.

Errors in NHST

Re
je

ct
. Reject.

Type I error (Pr = α)

Correct failure to 
reject null (Pr = 1-α)

Type II error (Pr = β)

Correct rejection of null 
(Pr = 1-β ‘power’)



Confidence intervals
- If a 90% confidence interval on the mean 

excludes the null hypothesis mean, we can 
reject that null hypothesis with 2-tailed 
alpha = 0.1, and vice versa.

- We expected 90 out of 100 90% confidence 
intervals to include the true mean.  
“90%” refers to a long-run property of the procedure used 
to define the confidence interval, not to the specific 
confidence interval you have.



Probabilities in classical statistics refer to frequencies 
under some statistical model.
– p-value: what proportion of hypothetical samples from the 

null hypothesis model, would have a statistic at least as 
extreme as ours? 

– Alpha: probability of rejecting the null hypothesis for data 
sampled from the null hypothesis model.

– Power: probability of rejecting the null hypothesis for data 
sampled from some alternative model.

– Sampling distribution: the probability distribution of a 
statistic given that it is sampled from some model.

– Confidence interval probability: probability that a 
confidence interval computed in this manner using samples 
from some model will contain the model parameter value.



Probabilities in null hypothesis significance testing refer 
to peculiar conditional probabilities:
– p-value:

P(X > x.sample | null is true) P(X > x.sample | X~null)

– Alpha: 
P(significant | null is true)

– Power: 
P(significant | null is false)

• Really important:
– These do not give us the probability that the null is false:

P(null is false | significant)  !!



Outline
• There is only one test.
• Central limit theorem, normal distribution, and 

sampling distribution of the sample mean
• Z-test
• Confidence intervals and NHST analogue
• Null hypothesis significance testing
• Power
• Wrap up


