201ab / 193 Quantitative methods L.oo: Introduction

Website: http://vulstats.ucsd.edu/

Instructors: Ed Vul Wenhao Qi

> g	limpse	e(babyn	ames::baby	names)					
0bs	Observations: 1,858,689									
Variables: 5										
\$ y	\$ year <dbl> 1880, 1880, 1880, 1880, 1880, 1</dbl>									
\$ s	ex <c< td=""><td>hr> "F</td><td>", "F", "F</td><td>", "F'</td><td>", "F", "F", ".</td></c<>	hr> "F	", "F", "F	", "F'	", "F", "F", ".					
\$ n	<pre>\$ name <chr> "Mary", "Anna", "Emma", "Elizab</chr></pre>									
\$ n	i <i< td=""><td>.nt> 70</td><td>65, 2604,</td><td>2003,</td><td>1939, 1746, 1.</td></i<>	.nt> 70	65, 2604,	2003,	1939, 1746, 1.					
\$ p	rop <c< td=""><td>lbl> 0.</td><td>07238433,</td><td>0.0266</td><td>57923, 0.02052.</td></c<>	lbl> 0.	07238433,	0.0266	57923, 0.02052.					
>										
> b	abynan	ies::ba	bynames							
# A	tibbl	.e: 1,8	58,689 x 5	5						
	year	sex	name	n	prop					
	<dbl></dbl>	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>					
1	1880	F	Mary	7065	0.07238433					
2	1880	F	Anna	2604	0.02667923					
3	1880	F	Emma	2003	0.02052170					
4	1880	F	Elizabeth	1939	0.01986599					
5	1880	F	Minnie	1746	0.01788861					
6	1880	F	Margaret	1578	0.01616737					
7	1880	F	Ida	1472	0.01508135					
8	1880	F	Alice	1414	0.01448711					
9	1880	F	Bertha	1320	0.01352404					
10	1880	F	Sarah	1288	0.01319618					
# .	wit	h 1,85	8,679 more	rows						

10 20 30 40 50 60 70 80 90 100

How much lower/higher is the rate of a given crime in each state from what we would expect based on city populations?

(random effect of crime:state combination in a mixed effect Poisson regression of FBI crime counts in each city)

...You could make new discoveries...

How Reliable Are Psychology Studies?

A new study shows that the field suffers from a reproducibility problem, but the extent of the issue is still hard to nail down.

Psychology's Replication Crisis Can't Be Wished

Away

It has a real and heartbreaking cost.

In cancer science, many "discoveries" don't hold up Why Most Published

Anchoring (Jacowitz & Kahneman, 1995) - Babies Anchoring (Jacowitz & Kahneman, 1995) - Everest Allowed/Forbidden (Rugg, 1941)-Anchoring (Jacowitz & Kahneman, 1995) - Chicago-Anchoring (Jacowitz & Kahneman, 1995) - NYC-Corr. between I and E math attitudes (Nosek et al., 2002)-Retro. gambler's fallacy (Oppenheimer & Monin, 2009)-Gain vs loss framing (Tversky & Kahneman, 1981)-Sex diff. in implicit math attitudes (Nosek et al., 2002)-Low-vs.-high category scales (Schwarz et al., 1985)* Quote Attribution (Lorge & Curtis, 1936)-Norm of reciprocity (Hyman and Sheatsley, 1950)-Sunk costs (Oppenheimer et al., 2009)-Imagined contact (Husnu & Crisp, 2010)-Flag Priming (Carter et al., 2011)-Currency priming (Caruso et al., 2013)-

Why Most Published Research Findings Are False

John P. A. Ioannidis

... or you could embarrass yourself.

Important data skills by research role

- Consumer
 - Read / interpret data presentations: common graphs, statistics, results
 - Basic numeracy, relevant questions for particular statistics
- Reviewer
 - Sufficient understanding to spot analysis/report mismatch
 - Reason from reported stats/data rather than written words
 - Know which deviations from model assumptions produce which biases
 - Come up with more diagnostic graphs, and a more incisive analyses
- Producer
 - Given data: read it, clean it, make it usable
 - Given a postulated relationship: make diagnostic graphs, identify relevant statistic, estimate with uncertainty, compare to null model
 - Given a vague description of a relationship: make it precise, identify relevant variable, decide on appropriate form of model
- Synthesizer: Translate between statistics, relate uncertainty across studies.
- Path-breaker: reason from first principles to develop new methods...

What we aim to cover.

201a:

- Data Hygiene, cleaning, types, visualizing, describing
- Foundations Probability, sampling, null hypotheses, etc.
- General linear model Correlation / Regression, Multiple regression, ANOVA, ANCOVA
- Pointers to GLM extensions
 Linearizing transforms, covarying errors

201b:

- Linear mixed effects
- Generalized Linear model e.g., Logistic regression
- Likelihood and optimization
- Resampling method
- Bayesian methods

Math

The landscape of introductory courses dealing with data.

R, Rstudio – this will be hard for some.

Syllabus Psych 193 (10 undergrads) Psych 201a:

TuTh 2-3:20, We 5-7

TuTh 2-3:50, We 5-7

Grading: 75% Homework 25% Project Grading: 25% Homework 25% Project 25% Midterm 25% Final

Projects: Check website for details (will update soon)
Homework: vulstats.ucsd.edu/hw/ (will be running soon)
Exams: collaboration not tolerated

Website: vulstats.ucsd.edu

\leftrightarrow \rightarrow C $($ vulstats.ucsd.edu		201a	201a	201b	201b	
Syllabus 201a Schedule 201a Projects 201b Sche	Syllabus	Schedule	Projects	Schedule	Projects	Notes
UCSD 201a/b: Quantitativ	201a	Scheo	dule.			
This is the website for FA2016 / WI2017 Psych 201 course.	Date	Topic	3:50pm, vvea me	Reading	m, all in 1350 Hon	nework
201a covers probability, classical statistical methods, and their	2017-09-28	L Introdu	ction	R4DS: 1, 4, 6,	8	tryr
201b goes over more advanced modern methods, and assume	2017-10-03	L Visualiz	ation, tidy data	R4DS: 2, 3, 12	2	graph
Class meetings	2017-10-04	R Read a	nd clean data			
Some class meetings are "lectures" others are "labs". Which is	2017-10-05	L Summa	arizing data	R4DS: 5, 11		
Location:	2017-10-10	L Probab	ility			data
1350 McGill Hall	2017-10-11	R Simulat	ting probability			
Times:	2017-10-12	L Randor	n variables			Installation
Tuesdays 2-4pm Wednesdays 5-7pm	2017-10-17	L NHST: 1	foundations			1. Download and install R fc
Thursdays 2-4pm	2017-10-18	R NHST s	simulations			2. Download and install RSt
La a face a face a	2017-10-19	L NHST: 1	t-, chi-			https://www.rstuaio.com/
Instructors	2017-10-24	L Regress	sion			Getting start
Ed Vul (edwardvul+201@gmail.com)	2017-10-25	R t-, chi-,	pwr::			I recommend starting by comple
Office nours: 4-5pm Tuesday, and by appointment - 5137 McGi	2017-10-26	L Regres	sion			Getting orien
Office hours: TBD - TBD	2017-10-31	L Multiple	e regression		reg	Basic usage of rstudio is fairly s edit scripts in the editor window
	2017-11-01	R Regres	sion			More advanced use of the Rstud look at the Rstudio IDE cheat-sh
Resources	2017-11-02	L Multiple	e regression			here
	2017-11-07	R Multiple	e regression			Packages
	2017-11-08	L Review				we will use a number of packag some operations easier/more in
	2017-11-09	L MIDTE	RM			<pre>packages <- c('tidyverse 'lme4') install_packages(packages(packages))</pre>
	2017-11-14	L ANOVA				AN If you are having any problems
	2017-11-15	R ANOVA				the first lab period.

← .

your system: https://cran.rstudio.com/

udio for your system: products/rstudio/download/

ed with R.

ting the instruction on tryr.codeschool.com.

nted in Rstudio

traight-forward: enter R commands into the console,

dio IDE will be acquired with time, but you can take a neet, available with all the other rstudio cheat-sheets

es that extend the functionality of basic R, and make tuitive.

please let Jarrett know (jlovelet@ucsd.edu) before

Campuswire

https://campuswire.com/p/G8F0D1572 (code: 2647)

0	Class feed Intro quant methods: Psyc 201	Ed Vul ★ Visible to: Everyone √
O Notifications 99+	All categories v Q + New post	Welcome! #1
○ DMs	✓ This week	Lectures
Q Search	Welcome! #1 Welcome, today's lecture will be in 3 ∅ 心 0 ∞ a few seconds ago	Welcome, today's lecture will be in 3545 Mandler hall.
		ტ 0 ♀ 0 ● 1 答 1
		Comments
Class feed		
# Rooms		
🗀 Files		Q
Insights		No one's commented here yet
ලි Settings		Be a maverick and get the conversation going
l← Collapse		Comment on this note 🖉 😁 f(*) GIF 😳
Ed 🐵 🔂	• 😪 🛓 🛓 3 online now	Type @ to mention some Press enter to send 🔽

Homework: vulstats.ucsd.edu/hw/

Login: UCSD username (e.g. for evul@ucsd.edu -- evul) Password: Your student ID. More once its running next week

L	.og in below.
Class:	Psych 201ab 2017/2018 🔽
Username:	
Password:	

You are not logged in. Please do so.

		#	Assignment	Criterion	Due	Attempts	Completed
View	Upload	1	Test Homework	90%	2016-11-07	54	2017-09-25
View	Upload	1	Test Homework	90%	2017-11-07	7	2017-09-25
View	Upload	1	HW: 00; tryr.	90%	2017-10-02	0	-
View	Upload	3	Another Test Homework	90%	2017-11-07	Те	st Home

Answer	Your answer	Correct answer	Works on test?	Hints
ans.01	16 numeric[1]	16 numeric[1]	Yes	
ans.02	50.5 numeric[1]	50.5 numeric[1]	Yes	
ans.03	3.637 numeric[1]	3.637 numeric[1]	Yes	
ans.04	1.773 numeric[1]	1.773 numeric[1]	Yes	
ans.05	abc character[1]	abc character[1]	Yes	
ans.06	29.01 numeric[1]	29.01 numeric[1]	Yes	
ans.07	TRUE logical[1]	TRUE logical[1]	Yes	
ans.08	FALSE logical[1]	FALSE logical[1]	Yes	Ī
ans.09	146.7 numeric[1]	146.7 numeric[1]	Yes	

work

PSYC201: Test homework.

INSTRUCTIONS

1. Download to one directory:

- Skeleton script;
- test.R the skeletal R script for you to fill in with your code. Data files:
- weird_file.Rdata this file contains variables used in several problems. (this file is loaded with load('weird file.Rdata')) earthquakes.csv - A data set of 1000 earthquakes with their latitude, longitude, depth,

magnitude, and locations reporting them. (you're responsible for loading this csv file)

- 2. edit the skeleton script so that it stores answers to the questions below in the appropriate variable names. (make sure not to hard-code variables, or your script won't pass the generalization test!)
- 3. upload the script to be graded

Problem 1

load weird file.Rdata, use those variables.

1.b		
s x > y ?		
c > y ?		

Projects

201 ab projects

The goal is to analyze a large, rich dataset to answer an interesting behavioral/social/neural question, with the final product being a potentially publishable paper.

This project is divided into two phases to be implemented in 201a and 201b.

In 201a your goal is to identify a conjunction of an interesting question and a data source that might answer it. You will need to understand the data, clean it, make graphs of the data that might answer the question, and do simple analyses to get your bearings.

In 201b you will do the more complete analyses, likely using more advanced methods that we will cover in 201b, and turn the initial report from 201a into something that could be submitted for publication.

Examples of this sort of thing:

Examples: skill learning in online games, sequential dependence in yelp reviews, stereotype threat in chess play, income mobility over time, scaling laws in cities, crowd within in real estimation, personality in blog posts, neurosynth brain mapping example.

You will notice that particularly successful examples usually have a combination of a few things:

(1) a coherent research question, with a good justification for why the naturalistic data maps onto theoretical constructs of interest.

(2) a novel dataset, which might mean data that had not preciously been available, or a dataset that was created by cleverly combining/coregistering previously separate datasets.

(3) and (sometimes or) a fairly sophisticated analysis that adequately grapples with the complicated structure of the data.

The full project will span both 201a and 201b (previously I had it only in 201b, and that was not enough time)

201a

How to ask debugging questions

- Isolate the problem.
 - Identify the smallest unit of code that reproduces the problem.
 - Independent of other code, particular variables in memory, the larger dataset, loaded packages, etc.
- Steps to take
 - Make sure all variables in play are as expected.
 - Check types!
 - Google function name and key words from error message (omitting terms specific to your circumstance, like local variable names).
 - Spend 15-30 min reading/trying solutions.
 - Ask. Include smallest unit of code/data that produces the problem, and briefly mention what you found by way of failed answers.

How do we go beyond the data?

"Inference"/"Induction"/"Generalization"/"Prediction"

- Combine data with assumptions
 - Sample is representative (resampling)
 - A model
 - (may not be transparent)

- Inferences are always uncertain
 - (uncertainty not always transparent)

Fields dealing with data

- Differences in regimes, goals:
 - small, low-d samples from experiments with binary causal questions (classical stats)
 - largish, mid-d samples from surveys or the wild with meaningful model parameters (modern regression modeling, econometrics, etc.)
 - large, high-d naturalistic datasets, with an emphasis on prediction and discovery of structure (ML, data science)
- Differences in emphasis: mathematical theory vs algorithmic implementation.
- Data-structure fields and subareas: geostatistics, timeseries, networks, raw signals, images, surveys, text, censored data, etc.
- Domain-specific bundles: econometrics, psychometrics, biostatistics, etc.

Data scale \rightarrow methods

	Intervention	Sample size	Dimensions	Structure
Psychophysics	Experiment	10 ⁰ (x10 ³)	10 ⁰	Flat, subject
Personality	Survey	10 ²	10 ¹	Flat
Behavioral	Experiment	10 ¹ (x10 ¹)	10 ⁰	Flat, subjects, items
Political, Sociology	Survey	104	10 ¹	Demography, Geography, Networks
Financial, Macroeconomic	Observation	10 ³	10 ²	Timeseries
Neuroimaging	Experiment	10 ¹ (x10 ²)	10 ⁴	(3D) Spatial, Timeseries
Text (corpus linguistics, NLP)	Observation	10 ³ 10 ¹¹	10 ¹ or 10 ⁵	Markov? Bags of words? CFG?
Images	Observation	10 ³ ··· 10 ⁸	10 ⁵⁺	Optics, the 3D world.
Sports	Observation	$10^2 \cdots 10^5$	10 ¹⁻²	Relational, game mechanic
Web user data	Observation	$10^3 \cdots 10^{12}$	10 ¹ ··· 10 [?]	All sorts

data structure \rightarrow methods

- Flat, tabular data
- Hierarchical/relational data
- Timeseries/sequential data
- Censored / survival data
- Raw signal varying over time, space
- Network data
- Image data
- Text
- Spatial / geographic data

$\textbf{Goals} \rightarrow \textbf{methods}$

- Describe/summarize data
 - Literal "statistics"
 - Visualization
- Predict new data

 classification / regression
- Characterize process / population
 - Estimate model parameters
 - Choose among models
 - Clustering, dimensionality reduction, factor analysis, etc.
 - Separate signal from "noise"

We usually have multiple goals.

Data structures we cover

B[s.id]

A[s.id]

s.id

Normal LM/GLM structure: each unit is uniquely associated with a measurement.

Repeated measures structure:

Explanatory variables at only two levels. (e.g., "between subject" and "within subject").

. . .

C1[s.id]

. . .

Y[s.id]

Explanatory variables at more than two levels. (e.g., classes in schools in districts)

Crossed random effects

(e.g., subjects with explanatory variables crossed with items with explanatory variables)

Relationship between models

In general, special cases of broader model classes are usually favored despite being less flexible because they are simpler and allow for easier estimation and inference.

- Making your life easier (in the long run):
 - Adhere to sensible file/directory structure
 - Name files / folders coherently
 - Save data in universal, machine-readable format (text)
 - Record everything.
 - Automate recording.
 - Make a text file describing where data came from.
 - A codebook if necessary
 - Conventional, stranger-readable coding.
 - Tidy data: one row per measurement, no empty cells, etc.
 - Never alter the raw data.
 - Write standalone scripts for data cleaning, analysis
 - Version control (I like git)
 - Consider writing papers in R Markdown (papaja?)

- Avoid pain in R scripts
 - Do:

Use data frames (not matrices, isolated vectors, etc) Name columns conveniently, factor levels clearly Index columns by name, not number Subset rows by logical filters, not numbers Pass named (not place) arguments to functions Make your code state-independent and self-sufficient

- Do not:
 - attach()

save subsets into new variables

use rownames (store as explicit column if you want) Use "magic numbers"

bard code stuff in the middle

hard code stuff in the middle of the script.

- Experiment design suggestions:
 - KISS
 - Aim for within-{subject,item} design
 - Build in checks for:
 - attention
 - reliability
 - manipulation
 - confounds
 - strategy
 - blindness.
 - Debug design by pre-planning analysis/paper.

• Debug design by pre-planning analysis/paper.

"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of." - Fisher (1938)

- What are you trying to do? (concrete Q, candidate As)
- What will decisive figure look like? (diagnostic?)
- How will you go from data to figure?
- How big is the expected effect? Noise? (Power, bitrate)

Debug further by playing devil's advocate (reviewer)

- What assumptions link interpretation to measures, manipulations?
- If your interpretation is wrong, what explains your awesome figure?
- What are plausible, alternate causal routes between manipulations and measurements?

- Be replicable:
 - Aim for precise, quantitative estimates; not p<0.05 Clean, quantitative measurements; large samples, within-subject designs
 - Be precise in your "theories".
 - "you must not fool yourself" (Feynman on cargo cult science)
 - Be responsible for answer, not adherence to rulebook
 - Pre-register (with yourself?) to spot data-driven analysis
 - Everything open by default.
 - Look at your data and variability (visualization)
 - How much would you bet on replication success?
 - Replicate.
 - Didn't predict the effect? Replicate.
 - Following up on someone's one-off result? Replicate.