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Most people think of multiple regression and the analysis of variance as two totally sep-
arate statistical techniques that answer two entirely different sets of questions. In fact, this 
is not at all the case. In the first place they ask the same kind of questions, and in the second 
place they return the same kind of answers, although the answers may be phrased somewhat 
differently. The analysis of variance tells us that three treatments (T1, T2, and T3) have differ-
ent means (Xi). Multiple regression tells us that means (Yi) are related to treatments (T1, T2, 
and T3), which amounts to the same thing. Furthermore, the analysis of variance produces a 
statistic (F) on the differences among means. The analysis of regression produces a statistic 
(F) on the significance of R. As we shall see shortly, these Fs are equivalent.

16.1  The General Linear Model

Just as multiple regression and the analysis of variance are concerned with the same gen-
eral type of question, so are they basically the same technique. In fact, the analysis of vari-
ance is a special case of multiple linear regression, which in turn is a special case of what 
is commonly referred to as the general linear model. The fact that the analysis of variance 
has its own formal set of equations can be attributed primarily to good fortune. It happens 
that when certain conditions are met (as they are in the analysis of variance), the somewhat 
cumbersome multiple-regression calculations are reduced to a few relatively simple equa-
tions. If it were not for this, there probably would not be a separate set of procedures called 
the analysis of variance.

For the student interested solely in the application of statistical techniques, a word is 
in order in defense of even including a chapter on this topic. Why, you may ask, should 
you study what amounts to a cumbersome way of doing what you already know how 
to do in a simple way? Aside from the cry of “intellectual curiosity,” there are several 
practical (applied) answers to such a question. First, this approach represents a relatively 
straightforward way of handling particular cases of unequal sample sizes, and understand-
ing this approach helps you make intelligent decisions about various options in statistical 
software. Second, it provides us with a simple and intuitively appealing way of running, 
and especially of understanding, an analysis of covariance—which is a very clumsy tech-
nique when viewed from the more traditional approach. Last, and most important, it rep-
resents a glimpse at the direction in which statistical techniques are moving. With the 
greatly extended use of powerful and fast computers, many of the traditional statistical 
techniques are giving way to what were previously impractical procedures. We saw an 
example when we considered the mixed models approach to repeated measures analysis 
of variance. Other examples are such techniques as structural equation modeling and that 
old and much-abused standby, factor analysis. Unless you understand the relationship be-
tween the analysis of variance and the general linear model (as represented by multiple 
linear regression), and unless you understand how the data for simple analysis of variance 
problems can be cast in a multiple-regression framework, you will find yourself in the 
near future using more and more techniques about which you know less and less. This is 
not to say that t, x2, F, and so on are likely to disappear, but only that other techniques will 
be added, opening up entirely new ways of looking at data. The recent rise in the use of 
Structural Equation Modeling is a case in point, because much of what that entails builds 
on what you already know about regression, and what you will learn about underlying 
models of processes.

In the past 25 years, several excellent and very readable papers on this general topic 
have been written. The clearest presentation is still Cohen (1968). A paper by Overall and 
Spiegel (1969) is also worth reviewing. Both of these papers appeared in the Psychological 
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Bulletin and are therefore readily available. Other good discussions can be found in Overall 
(1972), Judd and McClelland (1989), and Cohen, Cohen, West, and Aiken (2003). Also, 
Cramer and Appelbaum (1980) and Howell and McConaughy (1982) provide contrasting 
views on the choice of the underlying model and the procedures to be followed.

There are two different ways to read this chapter, both legitimate. The first is to look 
for general concepts and to go lightly over the actual techniques of calculation. That is the 
approach I often tell my students to follow. I want them to understand where the reasoning 
leads, and I want them to feel that they could carry out all of the steps if they had to (with 
the book in front of them), but I don’t ask them to commit very much of the technical mate-
rial to memory. On the other hand, some instructors may want their students to grasp the 
material at a deeper level. There are good reasons for doing so. But I would still suggest 
that the first time you read the chapter, you look for general understanding. To develop 
greater expertise, sit down with both a computer and a calculator and work lots and lots of 
problems.

The Linear Model

Consider first the traditional multiple-regression problem with a criterion (Y) and three pre-
dictors (X1, X2, and X3 ). We can write the usual model

Yi 5 b0 1 b1X1i 1 b2X2i 1 b3X3i 1 ei

or, in terms of vector notation

y 5 b0 1 b1x1 1 b2x2 1 b3x3 1 e

where y, x1, x2, and x3 are (n 3 1) vectors (columns) of data, e is a (n 3 1) vector of errors, 
and b0 is a (n 3 1) vector whose elements are the intercept. This equation can be further 
reduced to

y 1 Xb 1 e

where X is a n 3 (p 1 1) matrix of predictors, the first column of which is 1s, and b is a 
(p 1 1) 3 1 vector of regression coefficients1. This called a linear model because Y is the sum 
of a linear combination of predictor variables—nothing is raised to a power other than 1.

Now consider the traditional model for a one-way analysis of variance:

Yij 5 m 1 tj 1 eij

Here the symbol tj is simply a shorthand way of writing t1, t2, t3,…tp, where for any given 
subject we are interested in only that value of tj that pertains to the particular treatment in 
question. To see the relationship between this model and the traditional regression model, 
it is necessary to introduce the concept of a design matrix. Design matrices are used in a 
wide variety of situations, not simply the analysis of variance, so it is important to under-
stand them.

Design Matrices

A design matrix is a matrix of coded, or dummy, or counter variables representing group 
membership. The complete form of the design matrix (X) will have p 1 1 columns, repre-
senting the mean (m) and the p treatment effects. A subject is always scored 1 for m, since 

design matrix

1 Although a few equations in this chapter are laid out in matrix format, you do not need to know the rules of 
 matrix algebra to understand the material.
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m is part of all observations. In all other columns, she is scored 1 if she is a member of the 
treatment associated with that column, and 0 otherwise. Thus, for three treatments with two 
subjects per treatment, the complete design matrix would be

a 5

S m A1 A2 A3

1 1 1 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 1 0

5 1 0 0 1

6 1 0 0 1

Notice that subjects 1 and 2 (who received Treatment A1) are scored 1 on m and A1, and 0 
on A2 and A3, since they did not receive those treatments. Similarly, subjects 3 and 4 are 
scored 1 on m and A2, and 0 on A1 and A3.

We will now define the vector t of treatment effects as [m t1 t2 t3]. Taking X as the 
design matrix, the analysis of variance model can be written in matrix terms as

y 5 Xt 1 e

which can be seen as being of the same form as the traditional regression equation. The ele-
ments of t are the effects of each dummy treatment variable, just as the elements of b in the 
regression equation are the effects of each independent variable. Expanding, we obtain

y 5 F1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

V 3 Dm

t1

t2

t3

T 1 Fe11

e21

e12

e22

e13

e23

V
y 5             X             3    t      1   e  

which, following the rules of matrix multiplication, produces

 

Y11 5 m 1 t1 1 e11

Y21 5 m 1 t1 1 e21

Y12 5 m 1 t2 1 e12

Y22 5 m 1 t2 1 e22

Y13 5 m 1 t3 1 e13

Y23 5 m 1 t3 1 e23

For each subject we now have the model associated with her response. Thus, for the second 
subject in Treatment 2, Y22 5 m 1 t2 1 e22, and for the ith subject in Treatment j, we have 
Yij 5 m 1 tj 1 eij, which is the usual analysis of variance model.

The point is that the design matrix allows us to view the analysis of variance in a multi-
ple-regression framework, in that it permits us to go from

Yij 5 m 1 tj 1 eij  to  y 5 Xb 1 e
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Moreover, the elements of b are the values of m, t1, t2, …, tk. In other words, these are 
the actual treatment effects in which we are interested.

The design matrix we have been using has certain technical limitations that must 
be circumvented. We are going to turn it into something that looks quite different but 
actually carries all of the same information. First, the matrix is redundant in the sense 
that if we are told that a subject is not in A1 or A2, we know without being told that she 
must be in A3. This is another way of saying that there are only 2 df for treatments. For 
this reason we will eliminate the column headed A3, leaving only a 2 1 columns for 
the treatment effects. (We could eliminate any one of the three columns, but we usually 
drop the last one.) A second change is necessary if we want to use any computer pro-
gram that obtains a multiple-regression equation by way of first calculating the intercor-
relation matrix. The column headed m has no variance, and therefore cannot enter into 
a standard multiple-regression program—it would cause us to attempt division by 0. 
Thus, it too must be eliminated. This is no real loss, since our ultimate solution will not 
be affected. In fact, the software will sneak it back in.

One further change will be made simply for the sake of allowing us to test the desired 
null hypotheses using the method to be later advocated for factorial designs. Because we 
have omitted a column dealing with the third (or ath) level of treatments, solutions given 
our modified design matrix would produce estimates of treatment effects in relation to X3

rather than in relation to X#. In other words, b1 would turn out to be (X1 2 X3) rather than 
(X1 2 X#). This is fine if that’s what you want, but I would much rather see treatment effects 
as deviations from the grand mean. It just seems tidier. So we will modify the design matrix 
to make the mean (Xi) of each column of X equal to 0. Under this new system, a subject is 
scored 1 in column Ai if she is a member of Treatment Ai; she is scored 21 if she is a mem-
ber of the ath (last) treatment; and she is scored 0 if neither of these conditions apply. (This 
restriction corresponds to the fixed-model analysis of variance requirement that gti 5 0.)

These modifications have led us from

X 5 F1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

V   to   F1 1 0
1 1 0
1 0 1
1 0 1
1 0 0
1 0 0

V   to   F1 1
1 0
0 1
0 1
0 0
0 0

V   to   F 1 0
1 0
0 1
0 1

21 21
21 21

V
Although these look like major changes in that the last form of X appears to be far 

removed from where we started, it actually carries all the necessary information. We have 
merely eliminated redundant information, removed a constant term, and then caused the 
treatment effects to be given as deviations from X#.

16.2  One-Way Analysis of Variance

At this point a simple example is in order. Table 16.1 contains data for three subjects in each 
of four treatments. Table 16.1b shows the summary table for the corresponding  analysis of 
variance, along with the value of h2 (discussed in Chapter 11). Table 16.1c contains the 
estimated treatment effects (t̂i) where t̂i 5 m̂i 2 m̂. Because the fixed-model analysis of 
variance imposes the restriction thatgti 5 0, t4 is automatically defined by t1, t2, and t3 
(t4 5 0 2 gtj).
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Now let us approach the statistical treatment of these data by means of least-squares 
multiple linear regression. We will take as our criterion (Y) the raw data in Table 16.1. For 
the predictors we will use a design matrix of the form

X 5

Treatment 1
Treatment 1
Treatment 1
Treatment 1

 DA1 A2 A3

1 0 0
0 1 0
0 0 1

21 21 21

T
Here the elements of any one row of the design matrix are taken to apply to all the 

subjects in the treatment. The multiple-regression solution using the design matrix X as 
the matrix of predictors is presented in Exhibit 16.1. Here the dependent variable (Y) is the 
first column of the data matrix. The next three columns together form the matrix X. SPSS 
was used to generate this solution, but any standard program would be suitable. (I have 
made some very minor changes in the output to simplify the discussion.)

Notice the patterns of intercorrelations among the X variables in Exhibit 16.1. This 
type of pattern with constant off-diagonal correlations will occur whenever there are equal 
numbers of subjects in the various groups. (The fact that we don’t have constant off-diag-
onal correlations with unequal-n factorial designs is what makes our life more difficult in 
those situations.)

Notice that the regression coefficients are written in a column. This column can 
be called a vector, and is the vector b, or, in analysis of variance terms, the vector t. 
Notice that b1 5 2.50, which is the same as the estimated treatment effect of Treat-
ment 1 shown in Table 16.1. In other words, b1 5 t1. This also happens for b2 and b3. 
This fact necessarily follows from our definition of X and t. Moreover, if we were to 

Table 16.1 Illustrative calculations for simple one-way design with equal ns

(a) Data
Treatment 1 Treatment 2 Treatment 3 Treatment 4

8
9
7

5
7
3

3
4
1

6
4
9

8 5 2.667 6.333
X.. 5  5.500 

(b) Summary Table
Source   df  SS  MS  F  h2

Treatments
Error

 3
 8

45.667
27.333

15.222
 3.417

4.46 .626

Total 11 73.000

(c) Estimated Treatment Effects

 t̂1 5 X1 2 X.. 5 8.0 2 5.5 5 2.5

 t̂2 5 X2 2 X.. 5 5.0 2 5.5 5 20.5

 t̂3 5 X3 2 X.. 5 2.67 2 5.5 5 22.83
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Correlations

Y X1 X2 X3

Pearson Correlation Y 1.000  .239 2.191 2.526

X1 .239 1.000 .500 .500

X2 2.191  .500 1.000 .500

X3 2.526  .500 .500 1.000

Model Summary

Model R R Square
Adjusted 
R Square

Std.Error of 
the Estimate

1 .791(a) .626 .485 1.848
a Predictors: (Constant), X3, X2, X1

Coefficientsa

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.B Std. Error Beta

1 (Constant) 5.500 .534 10.307 .000

X1 2.500 .924 .717 2.705 .027

X2 2.500 .924 2.143 2.541 .603

X3 22.833 .924 2.812 23.066 .015
a Dependent Variable:Y

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 45.667  3 15.222 4.455 .040a

Residual 27.333  8  3.417

Total 73.000 11
aPredictors: (Constant), X3, X2, X1
bDependent Variable:Y

Exhibit 16.1 SPSS regression analysis of data in Table 16.1
579
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examine the significance of the bi, given as the column of t-ratios, we would simulta-
neously have tests on the hypothesis (H0 : tj 5 mi 2 m 5 0). Notice further that the 
intercept (b0) is equal to the grand mean (Y ). This follows directly from the fact that 
we scored the ath treatment as 21 on all coded variables. Using the (21) coding, the 
mean of every column of X (Xj) is equal to 0 and, as a result, gb1Xj 5 0 and therefore 
b0 5 Y 2 gb1Xj 5 Y20 5 Y . This situation holds only in the case of equal ns, because 
otherwise Xi would not be 0 for all i. However, in all cases, b0 is our best estimate of m 
in a least squares sense.

The value of R2 5 .626 is equivalent to h2, because they both estimate the percentage of 
variation in the dependent variable accounted for by variation among treatments.

If we test R2 for significance, we have F 5 4.46, p 5 .040. This is the F value we ob-
tained in the analysis of variance, although this F can be found by the formula that we saw 
for testing R2in Chapter 15.

F 1p, N 2  p 2 1 2 5
R2 1N 2 p 2 1 211 2 R2 2p

 F 13,8 2 5
.626 18 2
.374 13 2 5 4.46

Notice that the sums of squares for Regression, Error, and Total in Exhibit 16.1 are 
exactly equivalent to the sums of squares for Between, Error, and Total in Table 16.1. This 
equality makes clear that there is complete correspondence between sums of squares in 
regression and the analysis of variance.

The foregoing analysis has shown the marked similarity between the analysis of vari-
ance and multiple regression. This is primarily an illustration of the fact that there is no 
important difference between asking whether different treatments produce different means, 
and asking whether means are a function of treatments. We are simply looking at two sides 
of the same coin.

We have discussed only the most common way of forming a design matrix. This matrix 
could take a number of other useful forms, but we won’t go into that here. For a good dis-
cussion of these, see Cohen (1968).

16.3  Factorial Designs

We can readily extend the analysis of regression to two-way and higher-order factorial de-
signs, and doing so illustrates some important features of both the analysis of variance and 
the analysis of regression. (A good discussion of this approach, and the decisions that need 
to be made, can be found in Harris (2005).) We will consider first a two-way analysis of 
variance with equal ns.

The Full Model

The most common model for a two-way analysis of variance is

Yijk 5 m 1 ai 1 bj 1 abij 1 eijk

As we did before, we can expand the ai and bj terms by using a design matrix. But then 
how should the interaction term be handled? The answer to this question relies on the fact 
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that an interaction represents a multiplicative effect of the component variables. Suppose 
we consider the simplest case of a 2 3 2 factorial design. Letting the entries in each row 
represent the coefficients for all subjects in the corresponding cell of the design, we can 
write our design matrix as

X 5

a1b1

a1b2

a2b1

a2b2

 D A1 B1 AB11

1 1 1
1 21 21

21 1 21
21 21 1

T
The first column represents the main effect of A, and distinguishes between those sub-

jects who received A1 and those who received A2. The next column represents the main 
effect of B, separating B1 subjects from B2 subjects. The third column is the interaction of 
A and B. Its elements are obtained by multiplying the corresponding elements of columns 
1 and 2. Thus, 1 5 1 3 1, 21 5 1 3 21, 21 5 21 3 1, and 1 5 21 3 21. Once again, 
we have as many columns per effect as we have degrees of freedom for that effect. We have 
no entries of 0 simply because with only two levels of each variable a subject must either 
be in the first or last level.

Now consider the case of a 2 3 3 factorial. With two levels of A and three levels of 
B, we will have dfA

 5 1, dfB 5 2, and dfAB 5 2. This means that our design matrix will 
require one column for A and two columns each for B and AB. This leads to the following 
matrix:

X 5

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

 F A1 B1 B2 AB11 AB13

1 1 0 1 0
1 0 1 0 1
1 21 21 21 21

21 1 0 21 0
21 0 1 0 21
21 21 21 1 1

V
Column A1 distinguishes between those subjects who are in treatment level A1 and 

those in treatment level A2. Column 2 distinguishes level B1 subjects from those who are 
not in B1, and Column 3 does the same for level B2. Once again, subjects in the first a21 
and first b21 treatment levels are scored 1 or 0, depending on whether or not they served in 
the treatment level in question. Subjects in the ath or bth treatment level are scored 21 for 
each column related to that treatment effect. The column labeled AB11 is simply the product 
of columns A1 and B1, and AB12 is the product ofA1 and B2.

The analysis for a factorial design is more cumbersome than the one for a simple one-
way design, since we wish to test two or more main effects and one or more interaction ef-
fects. If we consider the relatively simple case of a two-way factorial, however, you should 
have no difficulty generalizing it to more complex factorial designs. The basic principles 
are the same—only the arithmetic is messier.

As an illustration, we will consider a case of a 2 3 4 factorial with four subjects per 
cell. Such a design is analyzed by the conventional analysis of variance in Table 16.2, 
which also includes means, estimated effects, and values of h2. From the summary 
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table, it is apparent that the main effect of B is significant but that the effects of A and 
AB are not.

To analyze these data from the point of view of multiple regression, we begin with the 
following design matrix. Once again, the elements of each row apply to all subjects in the 
corresponding treatment combination.

Table 16.2 Sample data and summary table for 2 3 4 factorial design

(a) Data

B1 B2 B3 B4 Means

A1 5 2 8 11

7 5 11 15

9 7 12 16

8 3 14 10

7.25 4.25 11.25 13.00 8.92750

A2 7 3 9 11

9 8 12 14

10 9 14 10

9 11 8 12

8.75 7.75 10.75 11.75 9.75000

Means 8.000 6.000 11.000 12.375 9.34375

(b) Summary Table

Source df SS MS F h2

A  1   5.282  5.282   ,1 .014

B  3 199.344 66.448 11.452* .537

AB  3  27.344  9.115 1.571 .074

Error 24 139.250  5.802

Total 31 371.220
*p , .05

(c) Estimated Treatment Effects

 m̂ 5 9.34375

 â1 5 A1 2 X.. 5 8.9375 2 9.34375 5 20.40625

  b̂1 5 B1 2 X.. 5 8.0000 2 9.34375 5 21.34375

 b̂2 5 B2 2 X.. 5 6.0000 2 9.34375 5 23.34375

 b̂3 5 B3 2 X.. 5 11.0000 2 9.34375 5 1.65625

 ab 5 AB11 2 A1 2 B1 1 X.. 5 7.2500 2 8.9375 2 8.0000 1 9.34375 5 2.34375

 ab12 5 AB12 2 A1 2 B2 1 X.. 5 4.2500 2 8.9375 2 6.0000 1 9.34375 5 21.34375

 ab13 5 AB13 2 A1 2 B3 1 X.. 5 11.2500 2 8.9375 2 11.0000 1 9.34375 5 0.65625
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X 5

a1b1

a1b2

a1b3

a1b4

a2b1

a2b2

a2b3

a2b4

 H
A1 B1 B2 B3 AB11 Ab12 AB13

1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 0 0 0 1
1 21 21 21 21 21 21

21 1 0 0 21 0 0
21 0 1 0 0 21 0
21 0 0 1 0 0 21
21 21 21 21 1 1 1

 
X

The first step in a multiple-regression analysis is presented in Exhibit 16.2 using all 
seven predictors (A1 to AB13). The results were obtained using SAS PROC CORR and 
PROC REG, although every software package should give the same answers. A program 
for doing this in R is presented on the Web site.

Exhibit 16.2 has several important features. First, consider the matrix of correlations 
among variables, often symbolized as R. Suppose that we simplify this matrix by defining the 
following sets of predictors: A r 5 3A1 4,  B r 5 3B1,  B2, B3 4, and  AB r 5 3AB11, AB12, AB13 4. 
If we then rewrite the intercorrelation matrix, we have

A r
B r
AB r

£ A r B r AB r
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

§
Notice that each of the effects is independent of the others (the intercorrelations are 

0.00). Such a pattern occurs only if there are equal (or proportional) numbers of subjects in 
each cell; this pattern is also what makes simplified formulae for the analysis of variance 
possible. The fact that this structure disappears in the case of unequal ns is what makes our 
life more difficult when we have missing subjects.

Next notice the vector b, labeled as the Parameter Estimate. The first entry (b0) is 
 labeled Intercep and is the grand mean of all of the observations. The subsequent entries 
(b1 … b7) are the estimates of the corresponding treatment effects. Thus b1 5 a1, b2 5 b1, 
b5 5 ab11, and so on. Tests on these regression coefficients represent tests on the corre-
sponding treatment effects. The fact that we have only the (a 2 1)(b 2 1) 5 3 interaction 
effects presents no problem, due to the restrictions that these effects must sum to 0 across 
rows and down columns. Thus if ab12 5 21.34, then ab22 must be 11.34. Similarly, 
ab14 5 0 2 gab1j 5 2 gab1j 5 1.03.

The value of R2 5 .625 represents the percentage of variation that can be accounted for by 
all the variables simultaneously. With equal ns, and therefore independent effects, it is equiva-
lent to h2

A 1 h2
B 1 h2

AB 5 .014 1 .537 1 .074 5 .625. The test on R2 produces an F of 5.711 
on 7 and 24 df, which, because it is significant (p 5 .0006), shows that there is a nonchance re-
lationship between the treatment variables, considered together, and the dependent variable (Y).

Two more parallels can be drawn between Table 16.2, the analysis of variance, and Ex-
hibit 16.2, the regression analysis. First, notice that SSregression 5 SSModel 5 SSY(1 2 R2) 5 
231.969. This is the variation that can be predicted by a linear combination of the predic-
tors. This value is equal to SSA 1 SSB 1 SSAB, although from Exhibit 16.2 we cannot yet 
partition the variation among the separate sources. Finally, notice that SSresidual 5 SSerror 5 
SSY(1 2 R2) 5 139.250, which is the error sum of squares in the analysis of variance. This 
makes sense when you recall that error is the variation that cannot be attributed to the sepa-
rate or joint effects of the treatment variables.
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Data Anova;
infile ‘Ex162.dat’;
input A1 B1 B2 B3 dv;
AB11 = A1*B1;
AB12 = A1*B2;
AB13 = A1*B3;

Run;

Proc Corr Data = Anova;
Var A1 B1 B2 B3 AB11 AB12 AB13;

Run;
Proc Reg Data = Anova;

Model dv = A1 B1 B2 B3 AB11 AB12 AB13;
Run;

Pearson Correlation Coeffi cients, N = 32

Prob > |r| under H0: Rho=0

A1 B1 B2 B3 AB11 AB12 AB13
A1 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

B1 0.00000 1.00000 0.50000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

B2 0.00000 0.50000 1.00000 0.50000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

B3 0.00000 0.50000 0.50000 1.00000 0.00000 0.00000 0.00000
1.0000 0.0036 0.0036 1.0000 1.0000 1.0000

AB11 0.00000 0.00000 0.00000 0.00000 1.00000 0.50000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

AB12 0.00000 0.00000 0.00000 0.00000 0.50000 1.00000 0.50000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

AB13 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 1.00000
1.0000 1.0000 1.0000 1.0000 0.0036 0.0036

The REG Procedure
Dependent Variable: dv

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F
Model 7 231.96875 33.13839 5.71 0.0006
Error 24 139.25000 5.80208
Corrected Total 31 371.21875

Root MSE 2.40875 R-Square 0.6249

Dependent Mean 9.34375 Adj R-Sq 0.5155

Coeff Var 25.77928

Exhibit 16.2 Regression solutions using all predictors for data in Table 16.2

(continued)
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Reduced Models

At this point we know only the amount of variation that can be accounted for by all of 
the predictors simultaneously. What we wish to know is how this variation can be parti-
tioned among A, B, and AB. This information can be readily obtained by computing several 
 reduced regression equations.

Because in the subsequent course of the analysis we must compute several multiple 
regression sums of squares relating to the different effects, we will change our notation and 
use the effect labels (a, b, and ab) as subscripts. For the multiple regression just computed, 
the model contained variables to account for a, b, and ab. Thus, we will designate the sum 
of squares regression in that solution as SSregressiona,b,ab

. SSregression. If we dropped the last three 
predictors (AB11, AB12, and AB13) we would be deleting those predictors carrying informa-
tion concerning the interaction but would retain those predictors concerned with a and b. 
Thus, we would use the designation SSregressiona,b

. If we used only A, AB11, AB12, and AB13 
as predictors, the model would account for only a and ab, and the result would be denoted 
SSregressiona,ab

.
I have run the individual regression solutions for our example, and the results are

 SSregressiona,b,ab
5 231.969

 SSregressiona,b
5 204.625

 SSregressionb,ab
5 226.687

 SSregressiona,ab
5 32.635

Now this is the important part. If the interaction term accounts for any of the variation in 
Y, then removing the interaction predictors from the model should lead to a decrease in ac-
countable variation. This decrease will be equal to the variation that can be attributable to 
the interaction. By this and similar reasoning,

 SSAB 5 SSregressiona,b,ab
2 SSregressiona,b

 SSA 5 SSregressiona,b,ab
2 SSregressionb,ab

 SSB 5 SSregressiona,b,ab
2 SSregressiona,ab

Parameter Estimates

Parameter            Standard

Variable DF Estimate Error t Value Pr > |t|

Intercep 1 9.34375 0.42581 21.94 <.0001

A1 1 20.40625 0.42581 20.95 0.3496

B1 1 21.34375 0.73753 21.82 0.0809

B2 1 23.34375 0.73753 24.53 0.0001

B3 1 1.65625 0.73753 2.25 0.0342

AB11 1 20.34375 0.73753 20.47 0.6454

AB12 1 21.34375 0.73753 21.82 0.0809

AB13 1 0.65625 0.73753 0.89 0.3824

Exhibit 16.2 (continued)
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The relevant calculations are presented in Table 16.3. (I leave it to you to verify that 
these are the sums of squares for regression that result when we use the relevant 
predictors.)

Looking first at the AB interactions, we see from Exhibit 16.2 that when the interaction 
terms were deleted from the model, the sum of squares that could be accounted for by the 
model decreased by

SSAB 5 SSregressiona,b,ab
2 SSregressiona,b

5 231.969 2 204.625 5 27.344

This decrement can only be attributable to the predictive value of the interaction terms, and 
therefore

SSAB 5 27.344

By a similar line of reasoning, we can find the other sums of squares.2 
Notice that these values agree exactly with those obtained by the more traditional 

 procedures. Notice also that the corresponding decrements in R2 agree with the computed 
values of h2.

As Overall and Spiegel (1969) pointed out, the approach we have taken in testing the 
effects of A, B, and AB is not the only one we could have chosen. They presented two 

2 A number of authors (e.g. Judd & McClelland) prefer to use the increase in the error term (rather than the 
 decrease in SSregression) when an effect is deleted. The result will be the same.

Table 16.3 Regression solution for the data in Table 16.2

 SSregressiona,b,ab
5 231.969     R2 5 .625

 SSresiduala,b,ab
5 139.250

 SSregressiona,b
5 204.6245    R2 5 .551

 SSregressionb,ab
5 226.687     R2 5 .611

 SSregressiona,ab
5 32.625     R2 5 .088

  SSAB 5 SSregressiona,b,ab
2 SSregressiona,b

5 231.969 2 204.625 5 27.344

 SSA 5 SSregressiona,b,ab
2 SSregreesionb,ab

5 231.969 2 226.687 5 5.282

 SSB 5 SSregressiona,b,ab
2 SSregressiona,ab

5 231.969 2 32.625 5 199.344

 SSerror 5 SSresiduala,b,ab
5 139.250

Summary Table

Source df SS MS F

A 1  5.282  5.282 ,1

B 3  199.344 66.448  11.452*

AB 3  27.344  9.115   1.571

Error 24 139.250  5.802

31 371.220
*p < .05
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alternative models that might have been considered in place of this one. Fortunately, how-
ever, the different models all lead to the same conclusions in the case of equal sample sizes, 
since in this situation effects are independent of one another and therefore are additive. 
When we consider the case of unequal sample sizes, however, the choice of an underlying 
model will require careful consideration.

16.4  Analysis of Variance with Unequal 
Sample Sizes

The least-squares approach to the analysis of variance is particularly useful for the case of 
factorial experiments with unequal sample sizes. However, special care must be used in 
selecting the particular restricted models that are employed in generating the various sums 
of squares.

Several different models could underlie an analysis of variance. Although in the case 
of equal sample sizes these models all lead to the same results, in the unequal n case they 
do not. This is because with unequal ns, the row, column, and interaction effects are no 
longer orthogonal and thus account for overlapping portions of the variance. [I would 
strongly recommend quickly reviewing the example given in Chapter 13, Section 13.11 
(pp. 444–446).] Consider the Venn diagram in Figure 16.1. The gray area enclosed by the 
surrounding square will be taken to represent SStotal. Each circle represents the variation 
attributable to (or accounted for by) one of the effects. The area outside the circles but 
within the square represents SSerror. Finally, the total area enclosed by the circles represents 
SSregressiona,b,ab

, which is the sum of squares for regression when all the terms are included in 
the model. If we had equal sample sizes, none of the circles would overlap, and each  effect 
would be accounting for a separate, independent, portion of the variation. In that case, the 
decrease in SSregression resulting from deleting of an effect from the model would have a 
clear interpretation—it would be the area enclosed by the omitted circle and thus would be 
the sum of squares for the corresponding effect.

But what do we do when the circles overlap? If we were to take a model that included 
terms for A, B, and AB and compared it to a model containing only A and B terms, the decre-
ment would not represent the area of the AB circle, because some of that area still would be 
accounted for by A and/or B. Thus, SSAB, which we calculate as SSregressiona,b,ab

2 SSregressiona,b
, 

represents only the portion of the enclosed area that is unique to AB—the area labeled with 
a “3.” So far, all the models that have been seriously proposed are in agreement. SSAB is 
that portion of the AB circle remaining after adjusting for A and B.

But now things begin to get a little sticky. Different and meaningful approaches 
have been put forth that differ in the way the remainder of the pie is allotted to 

Figure 16.1 Venn diagram  representing portions of overall variation
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A and B. Overall and Spiegel (1969) put forth three models for the analysis of variance, 
and these models continue to generate a voluminous literature debating their proper 
use and interpretation, even though the discussion began 30 years ago. We will refer 
to these models as Type I, Type II, and Type III, from the terminology used by SPSS 
and SAS. (Overall and Spiegel numbered them in the reverse order, just to make things 
more confusing.) Basically, the choice between the three models hinges on how we 
see the relationship between the sample size and the treatments themselves, or, more 
specifically, how we want to weight the various cell means to produce row and column 
means. Before exploring that issue, however, we must first examine the competing 
methods.

Method III, (or Type III Sum of squares) is the method we used in the pre-
ceding section. In this case, each effect is adjusted for all other effects. Thus we ob-
tain SSAB as SSregressiona,b,ab

2 SSregressiona,b
, SSA as SSregressiona,b,ab

2 SSregressionb,ab
, and SSB as

SSregressiona,b,ab
2 SSregressiona,ab

. In terms of Figure 16.1, each effect is defined as the part of 
the area that is unique to that effect. Thus, SSA is represented by area “1,” SSB by area 
“2,” and SSAB by area “3.”

Method II (or Type II SS) breaks up the pie differently. We continue to define SSAB as 
area “3.” But now that we have taken care of the interaction, we still have areas “1,” “2,” 
“4,” “5,” “6,” and “7,” which can be accounted for by the effects of A and/or B. Method II 
 essentially redefines the full model as SSregressiona,b

 and obtains SSA 5 SSregressiona,b
2 SSregressionb

, 
and SSB as SSregressiona,b

2 SSregressiona
. Thus, A is allotted areas “1” and “4,” whereas B is 

 allotted areas “2” and “5.” Methods II and III are summarized in Table 16.4.

Method III

Type III Sum of 
squares

Method II

Type II SS

Table 16.4 Alternative models for solution of nonorthogonal designs 

Method III
Yijk 5 m 1 ai 1 bj 1 abij 1 eijk

Source df SS
Portion of 
Diagram

A a21 SSregressiona,b,ab
2 SSregressionb,ab

1
B b21 SSregressiona,b,ab

2 SSregressiona,ab
2

AB (a21)(b21) SSregressiona,b,ab
2 SSregressiona,b

3
Error N2ab SSresiduala,b,ab

Total N21 SSY

Method II
Yijk 5 m 1 ai 1 bj 1 abij 1 eijk

and
Yijk 5 m 1 ai 1 bj 1 eijk

Source df SS
Portion of 
Diagram

A a21 SSregressiona,b
2 SSregressionb

1 1 4
B b21 SSregressiona,b

2 SSregressiona
2 1 5

AB (a21)(b21) SSregressiona,b,ab
2 SSregressiona,b

3

Error N2ab SSresiduala,b,ab

Total N21 SSY ©
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Both of these methods make a certain amount of sense when looked at from the point 
of view of the Venn diagram in Figure 16.1. However, the diagram is only a crude approxi-
mation and we have pushed it about as far as we can go.3

As Carlson and Timm (1974) argued, a more appropriate way to compare the mod-
els is to examine the hypotheses they test. These authors point out that Method III rep-
resents an estimation of treatment effects when cell means are weighted equally and is 
particularly appropriate whenever we consider sample size to be independent of treat-
ment conditions. A convincing demonstration of this is presented in Overall, Spiegel, 
and Cohen (1975).4 Carlson and Timm also showed that Method II produces estimates 
of treatment effects when row and column means are weighted by the sample size, but 
only when no interaction is present. When an interaction is present, simple estimates 
of row and column effects cannot be made, and, in fact, the null hypotheses actually 
tested are very bizarre indeed [see Carlson and Timm (1974) for a statement of the null 
hypotheses for Method II]. SPSS, which once relied on a method similar to Method II, 
finally saw the light some years ago and came around to using Method III as the default. 
They labeled this method “Unique SS” because each effect is assigned only that por-
tion of the variation that it uniquely explains. SAS has always tested Type III sums of 
squares as the default. An excellent discussion of the hypotheses tested by different ap-
proaches is presented in Blair and Higgins (1978) and Blair (1978). Hector, von Felten, 
and Schmid (2010) provide an excellent discussion of the alternative analyses. As Co-
chran and Cox suggested, “the only complete solution of the ‘missing data’ problem is 
not to have them” (p. 82).

There is a third method of computing sums of squares that at first seems particularly 
bizarre. Just to make matters even more confusing than they need to be, this is the method 
that SPSS and SAS refer to as “Type I SS,” or Method I, but which I will refer to as 
 hierarchical sums of squares, though it is sometimes referred to as sequential sums of 
squares, which is the term that SPSS uses. The peculiar thing about this approach is that 
it is dependent on the order in which you name your variables. Thus if you tell SAS or 
SPSS to model (predict or account for) the dependent variable on the basis of A, B, and 
AB, the program will first assign SSA 5 SSregressiona

. Then SSB 5 SSregressiona,b
2 SSregressiona

, 
and finally SSAB 5 SSregressiona,b,ab

2 SSregressiona,b
. In this situation the first effect is as-

signed all of the sums of squares it can possibly account for. The next effect is assigned 
all that it can account for over and above what was accounted for by the first one. Fi-
nally, the interaction effect is assigned only what it accounts for over and above the two 
main effects. But, if you ask the software to model the dependent variable on the basis 
of B, A, and AB, then SSB will equal SSregressionb

, which is quite a different thing from 
SSregressiona,b

2 SSregressiona
. The only time I could recommend using this approach is if you 

have a strong reason to want to control the variables in a particular order.5 If you can de-
fend the argument that Variable A is so important that it should be looked at first without 
controlling for any other variables, then perhaps this is a method you can use. But I have 
never seen a case where I would want to do that, with the possible exception of dealing 

Type I SS

Method I

hierarchical sums 
of squares

sequential sums 
of squares

3 From this discussion you could easily get the impression that Method II will always account for more of the 
variation than Method III. This is not necessarily the case, because the degree of overlap represents the cor-
relation between effects, and suppressor relationships might appear as “black holes,” canceling out accountable 
variation.
4 If you go back to this older literature, it is important to note that when those papers were written, what we call 
Method III was then called Method 1 and vice versa.
5 There is a good and honorable tradition of prioritizing variables in this way for theoretical studies using standard 
multiple regression with continuous variables. I have never seen a similar application in an analysis of variance 
framework, though I have seen a number of people talk about hypothetical examples.
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with a variable as a covariate, which we will discuss shortly. The only reason that I bring 
the issue up here at all is to explain some of the choices you will have to make in using 
computer software.

Many people writing in the R community have very strong and vocal opinions about 
the model to be tested, and they hold strongly to the Model I solution. That is the solu-
tion provided by the “anova” command in the base version of R. Fox (2002) supports 
the Type II solution and his library of functions in R (called “car”) can produce either 
Type II or Type III solutions assuming that you specify the proper contrasts. (Fox’s 
main function is called Anova, with a capital A, whereas the base system uses a lower 
case “a” and solves for Type I sums of squares.) I prefer the Type III approach because 
most cases of unequal sample size in the behavioral have no reason to wish to weight 
some cells more than others. However, keep in mind that if there is a significant inter-
action you will probably not care to look at the main effects (simple effects would be 
more revealing), and in that case  Methods II and III will bring you to the same place. 
However, if there is a noticeable, but nonsignificant interaction, the two models will 
lead you to different results. The battle over Type II and Type III sums of squares has 
gone on for a very long time, and there is no resolution in sight. I prefer Type III sums 
of squares but would not have a fit if I sat on a dissertation committee where the candi-
date used Type II sums of squares. Howell and McConaughy (1982) argued that there 
are very few instances in which one would want to test the peculiar null hypotheses 
tested by Method II when an interaction is present, but it is not worth falling on a sword 
in defense of either position. However, the conclusion to be drawn from the literature 
at present is that for the most common situations Method III is appropriate, because we 
usually want to test unweighted means. (This is the default method employed by SPSS. 
Method III sum of squares are the values labeled as Type III SS in SAS, and now by 
more recent versions of SPSS.) It is also the method that is approximated by the un-
weighted means solution discussed in Chapter 13. (You may recall that in Chapter 13 
we saw that the traditional label “unweighted means solution” really should be the “
equally weighted means solution,” if that name hadn’t been appropriated in the past 
for a different procedure, because, using it, we are treating all means equally, regardless 
of the sample sizes.) Method III essentially assumes that observations are missing com-
pletely at random, so there is no reason that a cell with more observations should carry 
any more weight than one with fewer observations. If this is not the case you should 
consider a different method.

As an illustration of Method III, we will take the data used in the previous example 
but add six additional observations to produce unequal cell sizes. The data are given in 
 Table 16.5, with the unweighted and weighted row and column means and the values result-
ing from the various regression solutions. The unweighted means are the mean of means 
(therefore, the mean of row1 is the mean of the four cell means in that row). The weighted 
mean of row1, for example, is just the sum of the scores in row1 divided by the number of 
scores in row1.

From Table 16.5 we see that R2
a,b,ab 5 .541, indicating that approximately 54% of the 

variation can be accounted for by a linear combination of the predictor variables. We do 
not know, however, how this variation is to be distributed among A, B, and AB. For that we 
need to form and calculate the reduced models.

Testing the Interaction Effects

First, we delete the predictors associated with the interaction term and calculate R2
a,b. For 

these data, R2
a,b 5 .483, representing a drop in R2 of about .05. If we examine the  predictable 

equally weighted 
means
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sum of squares (SSregression), we see that eliminating the interaction terms has produced a 
decrement in SSregression of

 SSregressiona,b,ab
5 216.017

 SSregressiona,b
5 195.805

 SSAB 5 20.212

This decrement is the sum of squares attributable to the AB interaction (SSAB).
In the case of unequal ns, it is particularly important to understand what this term rep-

resents. You should recall that SSregressiona,b,ab
, for example, equals SSY 1R2

a,b,ab 2 . Then

 SSAB 5 SSY 1R2
a,b,ab 2 2 SSY 1R2

a,b 2
 5 SSY 1R2

a,b,ab 2 R2
a,b 2

 5 SSY 1R2
01ab.a,b2 2

Table 16.5 Illustrative calculations for nonorthogonal factorial design

B1 B2 B3 B4

Unweighted
Mean

Weighted
Mean

A1 5 2 8 11

7 5 11 15

9 7 12 16 8.975 8.944

8 3 14 10

9 9

A2 7 3 9 11

9 8 12 14

10 9 14 10

9 11 8 12 9.590 9.950

7 13

11

12

Unweighted Mean 8.000 6.475 10.625 12.029 9.282

Weighted Mean 8.000 6.333 10.556 12.00 9.474

Full Model
 R2

a,b,ab 5 .541
SSregressiona,b,ab

5 216.017
 SSresidual 5 183.457

Reduced Models
 R2

a,b 5 .490
 SSregressiona,b

5 195.805

 R2
b,ab 5 .532

 SSregressionb,ab
5 212.552

 Ra,ab 5 0.77
 SSregressiona,ab

5 30.845

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13



592  Chapter 16 Analyses of Variance and Covariance as General Linear Models

The final term in parentheses is the squared semipartial correlation between the cri-
terion and the interaction effects, partialling out (adjusting for) the effects of A and B. In 
other words, it is the squared correlation between the criterion and the part of the AB in-
teraction that is orthogonal to A and B. Thus, we can think of SSAB as really being SSAB(adj), 
where the adjustment is for the effects of A and B. (In the equal-n case, the issue does not 
arise because A, B, and AB are independent, and therefore there is no overlapping variation 
to partial out.)6

Testing the Main Effects

Because we are calculating Method III SS, we will calculate the main effects of A and B 
in a way that is directly comparable to our estimation of the interaction effect. Here, each 
main effect represents the sum of squares attributable to that variable after partialling out 
the other main effect and the interaction.

To obtain SSA, we will delete the predictor associated with the main effect of A and 
calculate SSregressionb,ab

. For these data, R2
b,ab 5 .523, producing a drop in R2 of .532 2 

.523 5 .009. In terms of the predictable sum of squares (SSregression), the elimination of a 
from the model produces a decrement in SSregression of

 SSregressiona,b,ab
5 216.017

 SSregressionb,ab
5 212.552

 SSAB 5 3.465

This decrement is the sum of squares attributable to the main effect of A.
By the same reasoning, we can obtain SSB by comparing SSregression for the full model 

and for a model omitting b.

 SSregressiona,b,ab
5 216.017

 SSregressiona,ab
5 30.845

 SSB 5 185.172

These results are summarized in Table 16.6, with the method by which they were 
 obtained. Notice that the sums of squares do not sum to SStotal. This is as it should be, be-
cause the overlapping portions of accountable variation (segments “4,” “5,” “6,” and “7” of 
Figure 16.1) are not represented anywhere. Also notice that SSerror is taken as the SSresidual 
from the full model, just as in the case of equal sample sizes. Here again we define  SSerror 
as the portion of the total variation that cannot be explained by any one or more of the 
 independent variables.

6 Some people have trouble understanding the concept of nonindependent treatment effects. As an aid, perhaps an 
extreme example will help point out how a row effect could cause an apparent column effect, or vice versa. Con-
sider the following two-way table. When we look at differences among means, are we looking at a difference due 
to A, B, or AB? There is no way to tell.

B1 B2 Means

A1 X 5 10

n 5 20 n 5 0
10

A2

n 5 0

X 5 30

n 5 20
30

Means 10 30
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As I mentioned earlier, the unweighted-means solution presented in Chapter 13 is an 
approximation of the solution (Method III) given here. The main reason for discussing that 
solution in this chapter is so that you will understand what the computer program is giving 
you and how it is treating the unequal sample sizes.

A computer-based solution using SPSS is shown in Exhibit 16.3. It illustrates that the 
Type III sums of squares from SPSS do, in fact, produce the appropriate analysis of the 
data in Table 16.5.

Table 16.6 Calculation of sums of squares using Method III—the unweighted 
means solution 

Method III (Unweighted Means)

Source df SS

A a21 SSY 1R2
a,b,ab 2 R2

b,ab 2
B b21 SSY 1R2

a,b,ab 2 R2
a,ab 2

AB (a21)(b21) SSY 1R2
a,b,ab 2 R2

a,b 2
Error N2ab SSY 11 2 R2

a,b,ab 2
Total N21 SSY

Summary Table for Analysis of Variance

Source df SS MS F
A
B
AB
Error

 1
 3
 3
30

3.465
185.172
20.212

183.457

 3.465
61.724
 6.737
 6.115

<1
10.094

<1

Total 37 (399.474)

Exhibit 16.3 SPSS analysis of the data in Table 16.7

Tests of Between-Subjects Effects
Dependent Variable: DV

Source
Type III Sum 
of Squares  df

 Mean 
 Square

 
 F Sig.

Corrected Model 216.017a  7 30.860 5.046 .001

Intercept 3163.341  1 3163.841 517.370 .000

Rows 3.464  1 3.464 .566 .458

Columns 185.172  3 61.724 10.093 .000

Rows* Columns 20.212  3 6.737 1.102 .364

Error 183.457  30 6.115

Total 3810.000  38

Corrected Total 399.474  37
aR Squared 5 .541 (Adjusted R Squared 5 .434)
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16.5  The One-Way Analysis of Covariance

An extremely useful tool for analyzing experimental data is the analysis of covariance. 
As presented within the context of the analysis of variance, the analysis of covariance ap-
pears to be unpleasantly cumbersome, especially so when there is more than one covariate. 
Within the framework of multiple regression, however, it is remarkably simple, requiring 
little, if any, more work than does the analysis of variance. I will present the approach using 
coded dummy variables and multiple regression. However, once you understand the basic 
logic, you will understand the results from using SPSS or SAS without having to set up the 
design matrix yourself.

Suppose we wish to compare driving proficiency on three different sizes of cars to 
test the experimental hypothesis that small cars are easier to handle. We have available 
three different groups of drivers, but we are not able to match individual subjects on driv-
ing experience, which varies considerably within each group. Let us make the simplifying 
assumption, which will be discussed in more detail later, that the mean level of driving 
experience is equal across groups. Suppose further that using the number of steering errors 
as our dependent variable, we obtain the somewhat exaggerated data plotted in  Figure 16.2. 
In this figure the data have been plotted separately for each group (size of car), as a func-
tion of driving experience (the covariate), and the separate regression lines have been 
superimposed.

One of the most striking things about Figure 16.2 is the large variability in both per-
formance and experience within each treatment. This variability is so great that an analy-
sis of variance on performance scores would almost certainly fail to produce a significant 
 effect. Most of the variability in performance, however, is directly attributable to differences 
in driving experience, which has nothing to do with what we wish to study. If we could 
somehow remove (partial out) the variance that can be attributed to experience (the covari-
ate), we would have a clearer test of our original hypothesis. This is exactly what the analy-
sis of covariance is designed to do, and this is precisely the situation in which it does its job 
best—its job in this case being to reduce the error term.

A more controversial use of the analysis of covariance concerns situations in which the 
treatment groups have different covariate (driving experience) means. Such a situation (using 
the same  hypothetical experiment) is depicted in Figure 16.3, in which two of the treatments 

analysis of 
 covariance

covariate

Figure 16.2 Hypothetical data illustrating error-
reduction in the analysis of covariance
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have been displaced along the X axis. At the point at which the three regression lines inter-
sect the vertical line X 5 X, you can see the values Y r1, Y r2, and Y r3. These are the adjusted Y 
means and represent our best guess as to what the Y means would have been if the treatments 
had not differed on the covariate. The analysis of covariance then tests whether these adjusted 
means differ significantly, again using an error term from which the variance attributable to 
the covariate has been partialled out. Notice that the adjusted performance means are quite 
different from the unadjusted means. The adjustment has increased Y1 and decreased Y3.

Although the structure and procedures of the analysis of covariance are the same re-
gardless of whether the treatment groups differ on the covariate means, the different ways 
of visualizing the problem as represented in Figures 16.2 and 16.3 are instructive. In the 
first case, we are simply reducing the error term. In the second case, we are both reducing 
the error term and adjusting the means on the dependent variable. We will have more to say 
about this distinction later in the chapter.

Assumptions of the Analysis of Covariance

Aside from the usual analysis of variance assumptions of normality and homogeneity of 
variance, we must add two more assumptions. First, we will assume that whatever the re-
lationship between Y and the covariate (C), this relationship is linear.7 Second, we will 
assume homogeneity of regression—that the regression coefficients are equal across 
treatments—b*

1 5 b*
2 5 b*

3 5 c5 b*. This is merely the assumption that the three lines 
in Figures 16.2 or 16.3 are parallel, and it is necessary to justify our substitution of one 
regression line (the pooled within-groups regression line) for the separate regression lines. 
As we shall see shortly, this assumption is testable. Note that no assumption has been made 
about the nature of the covariate; it may be either a fixed or a random variable. (It can even 
be a categorical variable if we create dummy variables to represent the different levels of 
the variable, as we did in the earlier parts of this chapter.)

Calculating the Analysis of Covariance

When viewed within the framework of multiple regression, the analysis of covariance is 
basically no different from the analysis of variance, except that we wish to partial out the 

adjusted Y 
means

homogeneity of 
regression

Figure 16.3 Hypothetical data illustrating mean 
adjustment in the analysis of covariance

X
Driving Experience

P
er

fo
rm

an
ce

(X1, Y1)

(X3, Y3)

Y'1

(X2, Y2)

Y'2

Y'3

7 Methods for handling nonlinear relationships are available but will not be discussed here.
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596  Chapter 16 Analyses of Variance and Covariance as General Linear Models

effects of the covariate. As Cohen (1968) put it, “A covariate is, after all, nothing but an 
independent variable which, because of the logic dictated by the substantive issues of the 
research, assumes priority among the set of independent variables as a basis for accounting 
for Y variance.” (p. 439).

If we want to ask about the variation in Y after the covariate (C) has been partialled out, 
and if the variation in Y can be associated with only C, the treatment effect (a), and error, 
then SSregressionC,a

represents the total amount of accountable variation. If we now compare 
SSregressionC,a

 with SSregressionC
, the difference will be the variation attributable to treatment ef-

fects over and above that attributable to the covariate.
We will take as an example a variation on the study by Conti and Musty (1984) 

presented in Chapter 11. As you may recall, in that study the authors were interested in 
examining the effects of different amounts of THC, the major active ingredient in mari-
juana, injected directly into the brains of rats. The dependent variable was locomotor 
activity, which normally increases with the administration of THC by more traditional 
routes. Because of the nature of the experimental setting (all animals were observed un-
der baseline conditions and then again after the administration of THC), activity should 
decrease in all animals as they become familiar and more comfortable with the appara-
tus. If THC has its effect through the nucleus accumbens, however, the effects of moder-
ate doses of THC should partially compensate for this anticipated decrease, leading to 
relatively greater activity levels in the moderate-dose groups as compared to the low- or 
high-dose groups.

Conti and Musty (1984) actually analyzed postinjection activity as a percentage of 
preinjection activity, because that is the way such data are routinely analyzed in their 
field. An alternative procedure would have been to run an analysis of covariance on the 
postinjection scores, partialling out preinjection differences. Such a procedure would ad-
just for the fact that much of the variability in postinjection activity could be accounted 
for by variability in preinjection activity. It would also control for the fact that, by chance, 
there were group differences in the level of preinjection activity that could contaminate 
postinjection scores.

As will become clear later, it is important to note here that all animals were assigned 
at random to groups. Therefore, we would expect the group means on the preinjection 
phase to be equal. Any differences that do appear on the preinjection phase, then, are due 
to chance, and, in the absence of any treatment effect, we would expect that postinjection 
means, adjusted for chance preinjection differences, would be equal. The fact that subjects 
were assigned at random to treatments is what allows us to expect equal adjusted group 
means at postinjection (if H0 is true), and this in turn allows us to interpret group differ-
ences at postinjection to be a result of real treatment differences rather than of some artifact 
of subject assignment.

The data and the design matrix for the Conti and Musty (1984) study are presented 
in Table 16.7. The raw data have been divided by 100 simply to make the resulting sums 
of squares manageable.8 In the design matrix that follows the data, only the first and last 
subject in each group are represented. Columns 6 through 9 of X represent the interaction 
of the covariate and the group variables. These columns are used to test the hypothesis of 
homogeneity of regression coefficients across groups:

H0 : b
*
1 5 b*

2 5 b*
3 5 b*

4 5 b*
5

8 If the data had not been divided by 100, the resulting sums of squares and mean squares would be 1002 5 10,000 
times their present size. The F and t values would be unaffected.
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The full model (including the interaction predictors) states that

Yij 5 tj 1 c 1 ctj 1 eij

where tj represents the treatment effect for the jth treatment, c represents the covariate, ctj 
represents our term testing homogeneity of regression, and eij represents the error associ-
ated with the ith subject in treatment j.

We can compare two models either on the basis of the change in SSregression between the 
two models (using the residual from the more complete model for our error term), or on the 
basis of the decrease in R2. In this case the latter is somewhat simpler.

The regression analysis of this model would produce 

R2
t,c,ct 5 .8238

Table 16.7 Pre- and postinjection data from Conti and Musty (1984)

Control 0.1 m g 0.5 m g 1 m g 2 m g

Pre Post Pre Post Pre Post Pre Post Pre Post
4.34
3.50
4.33
2.76
4.62
5.40
3.95
1.55
1.42
1.90

1.30
0.94
2.25
1.05
0.92
1.90
0.32
0.64
0.69
0.93

1.55
10.56
8.39
3.70
2.40
1.83
2.40
7.67
5.79
9.58

0.93
4.44
4.03
1.92
0.67
1.70
0.77
3.53
3.65
4.22

7.18
8.33
4.05

10.78
6.09
7.78
5.08
2.86
6.30

5.10
4.16
1.54
6.36
3.96
4.51
3.76
1.92
3.84

6.94
6.10
4.90
3.69
4.76
4.30
2.32
7.35

2.29
4.75
3.48
2.76
1.67
1.51
1.07
2.35

4.00
4.10
3.62
3.92
2.90
2.90
1.82
4.94
5.69
5.54

1.44
1.11
2.17
2.00
0.84
0.99
0.44
0.84
2.84
2.93

Mean 3.377 1.094 5.387 2.586 6.494 3.906 5.045 2.485 3.943 1.560

Design Matrix

X 5
(47 3 9) 

Cov
4.34

…
1.90
1.55

…
9.58
7.18

…
6.30
3.94

…
7.35
4.00

…
5.54

T1

 1
…
1
0

…
0
0

…
0
0

…
0

–1
…
–1

T2

0
…
0
1

…
1
0

…
0
0

…
0

–1
…
–1

T3

0
…
0
0

…
0
1

…
1
0

…
0

–1
…
–1

T4

0
…
0
0

…
0
0

…
0
1

…
1

–1
…
–1

CT1

 4.34
…

 1.90
 0

…
 0
 0

…
 0
 0

…
 0
 –4.00

…
 –5.54

CT2

 0
…

 0
 1.55

…
 9.58
 0

…
 0
 0

…
 0
 –4.00

…
 –5.54

CT3

 0
…

 0
 0

…
 0
 7.18

…
 6.30
 0

…
 0
 –4.00

…
 –5.54

CT4

 0
…

 0
 0

…
 0
 0

…
 0
 3.94

…
 7.35
 –4.00

…
 –5.54

Y 5
(47 3 1)

1.30
…
0.93
0.93
…
4.22
5.10
…
3.84
2.29
…
2.35
1.44
…
2.93 ©
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If there is no significant difference in within-treatment regressions—that is, if the regres-
sion lines are parallel and thus the slopes of the regression lines that could be calculated for 
each group separately are homogeneous—called homogeneity of regression—the deletion 
of the interaction term should produce only a trivial decrement in the percentage of ac-
countable variation. When we delete the CT terms, we have

R2
t,c 5 .8042

The F test on this decrement is the usual F test on the difference between two models:

F 1 f 2 r, N 2 f 2 1 2 5
1N 2 f 2 1 2 1R2

t,c,ct 2 R2
t,c 21 f 2 r 2 11 2 R2

t,c,ct 2
 5

147 2 9 2 1 2 1 .8238 2 .8042 214 2 1 .1762 2 5 1.03

Given an F of 1.03 on 4 and 37 degrees of freedom, we have no basis to reject the assump-
tion of homogeneity of regression (common regression coefficients) within the five treat-
ments. Thus, we can proceed with the analysis on the basis of the revised full model that 
does not include the covariate by treatment interaction:

Yij 5 m 1 tj 1 c 1 eij

This model will serve as the basis against which we compare reduced models.
The three sets of results of the multiple-regression solutions using (1) the covariate and 

dummy treatment variables, (2) just the treatment variables, and then (3) just the covariates 
are presented in Table 16.8.

From Table 16.8 you can see that using both the covariate (Pre) and the group member-
ship dummy variates (T1 . . . T4), the sum of squares for regression (SSregressiont,c

) is equal to 
82.6435, which is the portion of the total variation that can be accounted for by these two 
sets of predictors. You can also see that the residual sum of squares (SSresidual) is 20.1254, 
which is the variability that cannot be predicted. In our analysis of covariance summary 
table, this will become the sum of squares for error.

When we remove the dummy group membership variates from the equation and use 
only the covariate (Pre) as a predictor, SSregression drops from 82.6435 to 73.4196. The dif-
ference between SSregression with and without the group membership predictors must be the 
amount of the sum of squares that can be attributable to treatment over and above the 
amount that can be explained by the covariate. For our data, this is

 SStreat1adj2 5 SSregressiont,c
2 SSregressionc

 5 82.6435 2 73.4196

 5 9.2239

This last value is called the adjusted treatment sum of squares for the analysis of covari-
ance, because it has been adjusted for any effects of the covariate. In this case, it has been 
adjusted for the fact that the five groups differed on the pretest measure.

We need one additional term to form our analysis of covariance summary table, and 
that is the sum of squares to be attributed to the covariate. There are a number of different 
ways to define this term, but the most common is to define it analogously to the way the 
adjusted treatment effect was defined. We will attribute to the covariate that portion of the 
variation that cannot be defined by the treatment effect. In other words, we will take the 
model with both the covariate and treatment predictors and compare it to a model with only 
the treatment predictors. The difference in the two sums of squares due to regression will 
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be the sum of squares that the covariate accounts for over and above what is accounted for 
by treatment effects.9 For our data, this is

SScovariate 5 SSregressiont,c
2 SSregressiont

 5 82.6435 2 44.3028

 5 9.2239

We now have all the information necessary to construct the analysis of covariance 
summary table. This is presented in Table 16.9. Notice that in this table the error term 
is  SSresidual from the full model and the other sums of squares are as calculated before. 

9 Not all software arranges things this way, so do not be surprised if you find printout with a different SScovariate.

Table 16.8 Regression analysis

(a) Full Model

 Ŷij 5 0.4347 1Pre 2 2 0.5922 1T1 2 1 0.0262 1T2 2 1 0.8644 1T3 2
 1 0.0738 1T4 2 1 0.2183
 R2

t,c 5 .8042

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression
Residual

 5
41

82.6435
20.1254

16.5287
0.4909

33.6726

Total 46 102.7689

(b) Reduced Model—Omitting Treatment Predictors

 Ŷij 5 0.5311 1Pre 2 2 0.26667
 R2

c 5 .7144

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression
Residual

 1
45

73.4196
29.3493

73.4196
0.6522

112.5711

Total 46 102.7689

(c) Reduced Model—Omitting Covariate (Pre)

Ŷij 5 21.2321 1T1 2 1 0.2599 1T2 2 1 1.5794 1T3 2 1 0.1589 1T4 2 1 2.3261
R2

t 5 .4311

Analysis of Variance Summary Table for Regression

Source df SS MS F

Regression
Residual

 4
42

44.3028
58.4661

11.0757
1.3921

7.9564

Total 46 102.7689
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600  Chapter 16 Analyses of Variance and Covariance as General Linear Models

Notice also that there is one degree of freedom for the covariate, because there is one co-
variate; there are (k 2 1) 5 (5 2 1) 5 4 df for the adjusted treatment effect; and there are 
N 2 k 2 c 5 41 df for error (where k represents the number of groups and c represents 
the number of covariates).

From the summary table we see that SStreat1adj2 5 9.2239. On 4 df this gives us MStreat1adj2 5 
2.3060. Dividing that term by MSerror 5 0.4909 we have F 5 4.698 on (4,41) df, which is 
significant at p , .05. Thus, we can conclude that after we control for individual preinjec-
tion differences in activity, the treatment groups do differ on postinjection activity.

Adjusted Means

Because F.05 14,41 2 5 2.61 , Fobt 5 4.698, we have rejected H0 : m1 1adj 2 5 m2 1adj 2  5 
m3(adj) 5 m4 1adj 2 5 m5 1adj 2  and conclude that there were significant differences among 
the treatment means after the effect of the covariate has been partialled out of the analysis. 
To interpret these differences, it would be useful, if not essential, to obtain the treatment 
means adjusted for the effects of the covariate. We are basically asking for an estimate of 
what the postinjection treatment means would have been had the groups not differed on the 
preinjection means. The adjusted means are readily obtained from the regression solution 
using the covariate and treatments as predictors.
From the analysis of the revised full model, we obtained (see Table 16.8)

Ŷij 5 0.4347 1Pre 2 2 0.5922 1T1 2 1 0.0262 1T2 2 1 0.8644 1T3 2
   1 0.0738 1T4 2 1 0.2183

Table 16.9 Summary tables for analysis of covariance

General Summary Table for One-Way Analysis of Covariance

Source df SS

Covariate
Treat (adj)
Error

c
k – 1
N – k – 1

SSregression1t,c2 2 SSregression1t2
SSregression1t,c2 2 SSregression1c2
SSresidual1t,c2

Total N – 1

Summary Table for Data in Table 16.7

Source df SS MS F

Covariate
Treat (adj)
Residual

 1
 4
41

38.3407
9.2239

20.1254

38.3407
2.3060
0.4909

78.108*
4.698*

Total 46 102.7689

Full Model:

Ŷij 5  0.4347 1Pre 2  2  0.5922 1T1 2  1  0.0262 1T2 2  1  0.8644 1T3 2  
  1  0.0738 1T4 2  1  0.2183

*p < .05
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Writing this in terms of means and representing adjusted means as Y rj , we have

Yrj 5 0.4347 1Pre 2 2 0.5922 1T1 2 1 0.0262 1T2 2 1 0.8644 1T3 2
  1 0.0738 1T4 2 1 0.2183

where Pre 5 4.8060 (the mean preinjection score) and T1, T2, T3, and T4 are (0, 1, –1) varia-
bles. (We substitute the mean Pre score for the individual Pre score because we are interested 
in the adjusted means for Y if all subjects had received the mean score on the covariate.) For 
our data, the adjusted means of the treatments are:

 Y r1 5 0.4347 14.8060 2 2 0.5922 11 2 1 0.0262 10 2 1 0.8644 10 2
       1 0.0738 10 2 1 0.2183

 5 1.7153

 Y r2 5 0.4347 14.8060 2 2 0.5922 10 2 1 0.0262 11 2 1 0.8644 10 2
  1 0.0738 10 2 1 0.2183

 5 2.3336

Y r3 5 0.4347 14.8060 2 2 0.5922 10 2 1 0.0262 10 2 1 0.8644 11 2
 1 0.0738 10 2 1 0.2183

 5 3.1719

 Y r4 5 0.4347 14.8060 2 2 0.5922 10 2 1 0.0262 10 2 1 0.8644 10 2
 1 0.0738 11 2 1 0.2183

 5 2.3813

 Y r5 5 0.4347 14.8060 2 2 0.5922 121 2 1 0.0262 121 2 1 0.8644 121 2
 1 0.0738 121 2 1 0.2183

 5 1.9353

The adjusted means are plotted in Figure 16.4.
The grand mean is

 Y #r5 0.4347 14.8060 2 2 0.5922 10 2 1 0.0262 10 2 1 0.8644 10 2
 1 0.0738 10 2 1 0.2183

 5 2.3075

Figure 16.4 Adjusted means by group
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602  Chapter 16 Analyses of Variance and Covariance as General Linear Models

which is the mean of the adjusted means. (In a case in which we have equal sample sizes, 
the adjusted grand mean will equal the unadjusted grand mean.)10 

Now we are about to go into deep water in terms of formulae, and I expect eyes to 
start glazing over. I can’t imagine that anyone is going to expect you to memorize these 
 formulae. Just try to understand what is happening and remember where to find them when 
you need them. Don’t expect to find them printed out by most statistical software.

Any individual comparisons among treatments would now be made using these ad-
justed means. In this case, however, we must modify our error term from that of the overall 
analysis of covariance. If we let SSe1c2 represent the error sum of squares from an analysis 
of variance on the covariate, then Huitema (1980), in an excellent and readable book on the 
analysis of covariance, gives as a test of the difference between two adjusted means

F 11, N 2 a 2 1 2 5
1Y rj 2 Y rk 2 2

MSrerror c a 1
nj

1
1
nk
b 1

1Cj 2 Ck 2 2
SSe1c2 d

where MS rerror is the error term from the analysis of covariance. For an excellent discussion 
of effective error terms and comparisons among means, see Winer (1971, pp. 771ff) and, 
especially, Huitema (1980). Huitema has a new edition due out soon.

As an example, suppose we wish to compare Y r1 and Y r3, which theory had predicted would 
show the greatest difference. From the preceding analysis, we either know or can compute

  MS rerror 5 0.4909

  SSe1c2 5 202.938  [calculation not shown]

  C1 5 3.3770    C3 5 6.4944

 Y r1 5 1.7153 Y r3 5 3.1719

F 11, 41 2 5
11.7153 2 3.1719 2 2

0.4909 c a 1
10

1
1
9
b 1

13.3770 2 6.4944 2 2
202.938

d
 5

2.1217
0.1271

5 16.69

The critical value F.05 11,41 2 5 4.08. We would thus reject the null hypothesis that the 
adjusted means of these two conditions are equal in the population. Even after adjusting for 
the fact that the groups differed by chance on the pretest, we find significant postinjection 
differences.

Exhibit 16.4 contains SPSS output for the analysis of variance. (The pretest and post-
test means were computed using the Compare means procedure.) Notice that I requested 
a “spread versus level” plot from the options menu. This plots the group means against the 
group variances. If the variances are homogeneous and independent of the means, this plot 
should look random. The plot reveals that there is a correlation between the size of the mean 
and the size of the variance. Notice, however, that the relationship appears very much reduced 
when we plotted the relationship between the adjusted means and their standard errors.

MS9error

10 An alternative approach to calculating adjusted means is to define

Yjr 5 Yj 2 bw 1Cj 2 C 2
where Cj is the covariate mean for Group j, C . is the covariate grand mean, and bw is the regression coefficient 
for the covariate from the complete model (here bw 5 0.4347). This more traditional way of calculating adjusted 
means makes it clear that the adjusted mean is some function of how deviant that group was on the covariate. The 
same values for the adjusted means will result from using either approach.
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Exhibit 16.4 SPSS output for analysis of Conti and Musty data 

(continued)

Report

Treatment Group PRETEST POSTTEST

Control Mean 3.3770 1.0940
N 10 10
Std. Deviation 1.3963 .5850

0.1 μg Mean 5.3870 2.5860
N 10 10
Std. Deviation 3.4448 1.5332

0.5 μg Mean 6.4944 3.9056
N 9 9
Std. Deviation 2.3781 1.4768

1 μg Mean 5.0450 2.4850
N 8 8
Std. Deviation 1.6876 1.1874

2 μg Mean 3.9430 1.5600
N 10 10
Std. Deviation 1.2207 .8765

Total Mean 4.8060 2.2857
N 47 47
Std. Deviation 2.3788 1.4947

Tests of Between-Subjects Effects
Dependent Variable: POSTTEST

Source
Type III Sum 
of Squares df Mean Square F Sig.

Eta 
Squared

Corrected Model 82.644a 5 16.529 33.673 .000 .804
Intercept .347 1 .347 .707 .405 .017
PRETEST 38.341 1 38.341 78.108 .000 .656
GROUP 9.224 4 2.306 4.698 .003 .314
Error 20.125 41 .491
Total 348.327 47
Corrected Total 102.769 46
a R Squared 5 .804 (Adjusted R Squared 5 .780)

Estimated Marginal Means

Treatment Group

Dependent Variable: POSTTEST

95% Confidence 
Interval

Treatment Group Mean
Std. 
Error

Lower 
Bound

Upper 
Bound

Control 1.715a .232 1.246 2.185
0.1 mg 2.333a .223 1.882 2.785
0.5 mg 3.172a .248 2.671 3.672
1 mg 2.381a .248 1.880 2.882
2 mg 1.935a .226 1.480 2.391 A
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16.6  Computing Effect Sizes 
in an Analysis of Covariance

As you might expect, computing effect sizes is a bit more complicated in analysis of cov-
ariance than it was in the analysis of variance. That is because we have choices to make in 
terms of the means we compare and the error term we use. You may recall that with facto-
rial designs and repeated measures designs we had a similar problem concerning the choice 
of the error term for the effect size.

As before, we can look at effect size in terms of r-family and d-family measures. 
 Normally I would suggest r-family measures when looking at an omnibus F test, and a 
 d-family measure when looking at specific contrasts. We will start with an r-family exam-
ple, and then move to the d-family. The example we have been using based on the study 
by Conti and Musty produced a significant F on the omnibus null hypothesis. Probably the 
most  appropriate way to talk about this particular example would make use of the fact that 
Group (or Dose) was a metric variable, increasing from 0 to 2mg.11 However, I am going to 
take a “second-best” approach here because the majority of the studies we run do not have 
the independent variable distributed as such an ordered variable.

r-Family Measure

As our r-family measure of association we will use h2, acknowledging that it is positively 
biased. You should recall that h2 is defined as the treatment SS divided by the total SS. But 
which sums of squares for treatments should we use—the ones from an analysis of vari-
ance on the dependent variable, or the ones from the analysis of covariance? Kline (2004) 
offers both of those alternatives, though he uses an adjusted SStotal in the second,12 without 

Spread vs.  Level Plot of POSTTEST

Groups: Treatment group
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Exhibit 16.4 (continued)

11 SPSS will test polynomial contrasts on the adjusted means. Just click on the CONTRAST button and ask for 
polynomial contrasts. For this example there is a significant quadratic component.
12 SPSS uses this same adjustment if you request effect sizes, and it is simply SStreat 1 SSerror .
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suggesting a choice. If the covariate naturally varies in the population (as it does in this 
case, where we expect different animals to vary in their pretest score, then it makes the 
most sense to divide the SStreat from the analysis of covariance by the SStotal (unadjusted) 
from that analysis. This will produce a value of h2, which is the percentage of “normal vari-
ation” accounted for by the independent variable.13 Then

h2 5
SStreat1adj2

SStotal
5

9.2239
102.7689

5 .09

An alternative approach, which will produce the same answer, is to take h2 as the dif-
ference between the R2 from a model predicting the dependent variable from only the 
 covariate (the pretest) and one predicting the dependent variable from both the covariate 
and the treatment. The increase in explained variation from the first of these models to the 
second represents what the treatment contributes after controlling for the covariate. For our 
example R2 using just the covariate is .714. (You can obtain this by an analysis of variance 
using the covariate as the independent variable, or by a regression of the independent vari-
able on the covariate.) When you add in the treatment effect the R2 is .804. These values are 
shown in the following table.

Step Predictors R2 Change in R2 F for change
1 Pretest .714
2 Pretest, Treatment .804 .090 4.689

h2 is the difference between these two values of R2, which is the contribution to explained 
variation of the treatment after controlling for the covariate. This is the same value we ob-
tained by the first approach.

d-Family Measure

Measures from the d -family often are more interpretable, and they are most often used for 
specific contrasts between two means. The example we have been using is not a very good 
one for a contrast of two means because the independent variable is a continuum. But I will 
use the contrast between the control group and the 0.5 mg group as an example, because 
these are the two conditions that Conti and Musty’s theory would have expected to show 
the greatest mean difference. Because we are working with an analysis of covariance, the 
appropriate means to compare are the adjusted means (Yi) from that analysis. In this case 
they are 3.1719 for the .5 mg condition and 1.7153 for the control condition. (You may 
recall that we performed a test on the difference between these adjusted means in the previ-
ous section, and it was significant.)

We have generally used

d 5
ĉ

ŝ

as our effect size estimate. When we are comparing two group means, ĉ is simply the dif-
ference between the two means because the coefficients are [21 0 1 0 0]. For our example, 
ĉ is 3.1719 2 1.7153 5 1.4566. But the question of most importance is what we will use 
for the estimate of the standard deviation. One of several choices would be the square root 
of MSerror from an analysis of variance, because this would be an estimate of the aver-
age variability within each group, and would thus standardize the mean difference in the 

13 If you were interested in the h2 for the quadratic relationship between dose and the activity level, controlling for 
the pretest activity level, you could just divide the SSquadratic by SStotal.
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metric of the original measurements. (Recall that we used SStotal from the analysis of vari-
ance when we calculated h2.) An alternative would be the square root of MSerror from the 
analysis of covariance, which would standardize the mean difference in the metric of the 
adjusted scores, which is a bit more difficult to understand. Cortina and Nouri (2000) 
have made the sensible suggestion that when the covariate normally varies in the popula-
tion, as ours does, we want to include that variability in our estimate of error. This means 
that we would use the square root of MSerror from the analysis of variance on the posttest 
scores. In that analysis MSerror is 1.392, which is simply the weighted mean of the group 
variances. Then

d 5
ĉ

ŝ
5

X3 2 X1"MSerror

5
3.1719 2 1.7153"1.392

5
1.4566
1.1798

5 1.23

Injection of the optimal dose of THC (0.5 mg) leads to an increase of postinjection activity 
by nearly 1 and a quarter standard deviations relative to the control group.

16.7  Interpreting an Analysis of Covariance

Interpreting an analysis of covariance can present certain problems, depending on the 
 nature of the data and, more important, the design of the experiment. A thorough and read-
able discussion of most of these problems is presented by Huitema (1980). Other  important 
sources for consideration of these problems are Anderson (1963), Evans and Anasta-
sio (1968),  Huitema (2005), Lord (1967, 1969), Maxwell and Cramer (1975), Reichardt 
(1979), Smith (1957), and Weisberg (1979).

The ideal application for an analysis of covariance is an  experiment in which partici-
pants are randomly assigned to treatments (or cells of a factorial design). In that situation, 
the expected value of the covariate mean for each group or cell is the same, and any differ-
ences can be attributed only to chance, assuming that the covariate was measured  before the 
treatments were applied. In this situation, the analysis of covariance will primarily  reduce 
the error term, but it will also, properly, remove any bias in the dependent variable means 
caused by chance group differences on the covariate. This was the situation in the Conti 
and Musty (1984) study that we have been discussing.

In a randomized experiment in which the covariate is measured after the treatment has 
been applied and has affected the covariate, interpreting the results of an analysis of covari-
ance is difficult at best. In this situation the expected values of the group covariate means 
are not equal, even though the subjects were assigned randomly. It is difficult to interpret 
the results of the analysis because you are asking what the groups would have been like 
had they not differed on the covariate, when in fact the covariate differences may be an 
integral part of the treatment effect. This problem is particularly severe if the covariate was 
measured with error (i.e., if it is not perfectly reliable). In this case an alternative analysis, 
called the true-score analysis of covariance, may be appropriate if the other interpretive 
problems can be overcome. Such an analysis is discussed in Huitema (1980, Chapter 14).

When subjects are not assigned to the treatment groups at random, interpreting the 
analysis of covariance can be even more troublesome. The most common example of this 
problem is what is called the nonequivalent groups design. In this design, two (or more) 
intact groups are chosen (e.g., schools or classrooms of children), a pretest measure is ob-
tained from subjects in both groups, the treatment is applied to one of the groups, and the 
two groups are then compared on some posttest measure. Since participants are not as-
signed to the groups at random, we have no basis for assuming that any differences that 
exist on the pretest are to be attributed to chance. Similarly, we have no basis for expecting 

true-score 
 analysis of 
 covariance

nonequivalent 
groups design
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the two groups to have the same mean on the posttest in the absence of a real treatment 
effect. Huitema (1980, pp. 149ff) gives an excellent demonstration that when the groups 
differ at the beginning of the experiment, the phenomenon of regression to the mean could 
lead to posttest differences even in the absence of a treatment effect. For alternative analy-
ses that are useful under certain conditions, see Huitema (1980). Maris (1998) takes a dif-
ferent view of the issue.

The problems of interpreting results of designs in which subjects are not randomly 
assigned to the treatment groups are not easily overcome. This is one of the reasons why 
random assignment is even more important than random selection of subjects. It is difficult 
to overestimate the virtues of random assignment, both for interpreting data and for mak-
ing causal statements about the relationship between variables. In what is probably only 
a slight overstatement of the issue, Lord (1967) remarked, “In the writer’s opinion, the 
 explanation is that with the data usually available for such studies, there is simply no logical 
or statistical procedure that can be counted on to make proper allowances for uncontrolled 
pre- existing differences between groups” (p. 305). (Lord was not referring to differences 
that arise by chance through random assignment.) Anderson (1963) made a similar point 
by stating, “One may well wonder exactly what it means to ask what the data would be like 
if they were not what they are” (p. 170). All of this is not to say that the analysis of covari-
ance has no place in the analysis of data in which the treatments differ on the covariate. 
Anyone using covariance analysis, however, must think carefully about her data and the 
practical validity of the conclusions she draws.

16.8   Reporting the Results of an 
Analysis of Covariance

The only difference between describing the results of an analysis of covariance and an 
analysis of variance is that we must refer to the covariate and to adjusted means. For the 
experiment by Conti and Musty we could write

Conti and Musty (1984) examined the effect of THC on locomotor activity in rats. They 
predicted that moderate doses of THC should show the greatest increase in activity (or 
the least decrease due to adaptation). After a pretesting session five different groups 
of rats were randomly assigned to receive 0, 0.1 mg, 0.5 mg, 1 mg, or 2 mg of THC. 
Activity level was measured in a 10-minute postinjection interval. Because there was 
considerable variability in pretest activity, the pretest measure was used as a covariate in 
the analysis.

The analysis of covariance was significant (F(4,41) 5 4.694, p 5 .003), with interme-
diate doses showing greater effect. Eta-squared was .09 using a SStotal that has not been 
adjusted for the covariate. A contrast of the means of the control group and the 0.5 mg 
group revealed a significant difference (F(1,41) 5 16.69, p , .05), with a standardized 
effect size (d) of 1.23.

16.9  The Factorial Analysis of Covariance

The analysis of covariance applies to factorial designs just as well as it does to single-
variable designs. Once again, the covariate may be treated as a variable that, because of 
methodological considerations, assumes priority in the analysis. In this section we will deal 
only with the case of equal cell sizes, but the generalization to unequal ns is immediate.
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The logic of the analysis is straightforward and follows that used in the previous 
 examples. SSregressionc, a, b, ab

 is the variation attributable to a linear combination of the covari-
ate, the main effects of A and B, and the AB interaction. Similarly, SSregressionc, a, b

 is the varia-
tion attributable to the linear combination of the covariate and the main effects of A and B. 
The difference

SSregressionc, a, b, ab
2 SSregressionc, a, b

is the variation attributable to the AB interaction, with the covariate and the main effects 
partialled out. Since, with equal sample sizes, the two main effects and the interaction are 
orthogonal, all that is actually partialled out in equal n designs is the covariate.

By the same line of reasoning

SSregressionc, a, b, ab
2 SSregressionc, a, ab

represents the variation attributable to B, partialling out the covariate, and

SSregressionc, a, b, ab
2 SSregressionc, b, ab

represents the variation attributable to the main effect of A, again partialling out the 
covariate.

The error term represents the variation remaining after controlling for A, B, and AB, 
and the covariate. As such it is given by

SSresidualc, a, b, ab

The general structure of the analysis is presented in Table 16.10. Notice that once again the 
error term loses a degree of freedom for each covariate. Because the independent variable 
and the covariate account for overlapping portions of the variation, their sums of squares 
will not equal SStotal.

As an example, consider the study by Spilich et al. (1992) that we examined in Chap-
ter 13 on performance as a function of cigarette smoking. In that study subjects performed 
either a Pattern Recognition task, a Cognitive task, or a Driving Simulation task. The sub-
jects were divided into three groups. One group (Active Smoking) smoked during or just 
before the task. A second group (Delayed Smoking) were smokers who had not smoked for 
three hours, and a third group (NonSmoking) was composed of NonSmokers. The depend-
ent variable was the number of errors on the task. To make this suitable for an analysis of 
covariance I have added an additional (hypothetical) variable, which is the subject’s meas-
ured level of distractibility. (Higher distractibility scores indicate a greater ease at being 
distracted.)

The data are presented in Table 16.11 and represent a 3 3 3 factorial design with one 
covariate (Distract).

Table 16.12 contains an abbreviated form of the design matrix, showing only the en-
tries for the first and last subject in each cell. Notice that the matrix contains a column for 

Table 16.10 Structure of the analysis of covariance for factorial designs 

Source df SS

A(adj) a21 SSregressionc,a,b,ab
2 SSregressionc,b,ab

B(adj) b21 SSregressionc,a,b,ab
2 SSregressionc,a,ab

AB (adj) (a21)(b21) SSregressionc,a,b,ab
2 SSregressionc,a,b

Error N2ab2c SSresidualc,a,b,ab

Covariate c SSregressionc,a,b,ab
2 SSregressiona,b,ab

Total N21 ©
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the covariate (denoted C), the usual design matrix elements for the main effects of Task (T ) 
and Group (G), and the Task 3 Group interaction. I have also added columns representing 
the interaction of the covariate with the Task 3 Group interaction. The latter will be used to 
test the hypothesis H0 : b

*
i 5 b*

j  for all values of i and j, because the assumption of homoge-
neity of regression applies to any analysis of covariance.

It is important to consider just what the interactions involving the covariate represent. 
If I had included the terms CT1 and CT2 I could have used them to test the null hypothesis 
that the regression lines of Errors as a function of Distract have equivalent slopes in the 
three tasks. Similarly, if I had included CG1 and CG2, I could have tested homogeneity of 
regression in each of the three smoking groups. Because I am most interested in testing the 
hypothesis of homogeneity of regression in each of the nine cells, I have included only the 
CTGij terms.

The first regression is based on all predictors in X. From this analysis we obtain

 SSregressionc, a, b, ab, cab
5 36724.771

 MSresidualc, a, b, ab, cab
5 71.134

If we drop the interaction terms representing the interaction of the covariate (Distract) with 
the Task 3 Group interaction, we have

SSregressionc, a, b, ab
 5 36389.60175

The difference between these two sums of squares 5 335.16925. The most complete model 
had 13 degrees of freedom, while the second had 9 df, meaning that the above sum of 
squares is based on 13 – 9 5 4 df. Converting to mean squares we have

MSdifference 5 335.16925/4 5 83.79231

Table 16.11 Hypothetical data on smoking and performance (modeled on Spilich et al., 1992)

Pattern Recognition
NS: Errors
   Distract

DS: Errors
   Distract

AS: Errors
   Distract

9
107

12
101

8
64

8
133

7
75

8
135

12
123

14
138

9
130

10
94

4
94

1
106

7
83

8
138

9
123

10
86

11
127

7
117

9
112

16
126

16
124

11
117

17
124

19
141

8
130

5
100

1
95

10
111

6
103

1
98

8
102

9
120

22
95

10
120

6
91

12
103

8
118

6
138

18
134

11
134

7
88

8
119

10
97

16
118

10
123

Cognitive Task
NS: Errors
   Distract

DS: Errors
   Distract

AS: Errors
   Distract

27
126

48
113

34
108

34
154

29
100

65
191

19
113

34
114

55
112

20
87

6
74

33
98

56
125

18
76

42
128

35
130

63
162

54
145

23
103

9
80

21
76

37
139

54
118

44
107

4
85

28
99

61
128

30
131

71
146

38
128

4
98

60
132

75
142

42
107

54
135

61
144

34
107

51
111

51
131

19
96

25
106

32
110

49
143

49
96

47
132

Driving Simulation
NS: Errors
   Distract

DS: Errors
   Distract

AS: Errors
   Distract

3
130

7
93

15
110

2
83

0
102

2
96

0
91

6
108

2
112

0
92

0
100

14
114

6
109

12
123

5
137

2
106

17
131

0
125

0
99

1
99

16
168

6
109

11
116

14
102

4
136

4
81

9
109

1
102

4
103

17
111

0
119

3
78

15
137

0
84

5
103

9
106

6
68

16
139

3
117

2
67

5
101

15
101

3
114

11
102

13
116
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We can test the difference between these two models by using MSresidual from the more 
complete model and computing

F 5
MSdifference

MSresidual
5

83.792
71.134

5 1.18

This is an F on [(f 2 r), (N 2 f 2 1)] 5 4 and 121 df. The critical value is F.05 14,121 2 5 2.45, 
so we will not reject the null hypothesis of homogeneity of regression. We will conclude 
that we have no reason to doubt that the regression lines relating Errors to Distract have the 
same slope in the nine cells. This will allow us to adopt a much simpler full model against 
which to compare subsequent reduced models. Our revised full model is

Ŷ 5 b0 1 b1C 1 b2T1 1 b3T2 1 b4G1 1 b5G2 1 b6TG11 1 b7TG12 1 b8TG21 1 b9TG22

or, in more traditional analysis of variance terms,

Yijk 5 m 1 Ck 1 ai 1 bj 1 abij 1 eijk

The results of the several multiple regression solutions needed for the analysis of cov-
ariance are shown in Table 16.13. By calculating and testing the differences between full 
and reduced models, you will be able to compute the complete analysis of covariance.

Exhibit 16.5 contains the results of an SPSS analysis of these data. You should compare 
your results with the results in that exhibit.

Table 16.12 Design matrix for the analysis of covariance for smoking data 

C T1 T2 G1 G2 TG11 TG12 TG21 TG22 cTG11 cTG12 cTG21 cTG22

X 
=

107
…
97

101
…

118
64
…

123
126

…
143
113

…
96

108
…

132
130

…
114

93
…

102
110

…
116

1
…
1
1

…
1
1

…
1
0

…
0
0

…
0
0

…
0

–1
…
–1
–1
…
–1
–1
…
–1

0
…
0
0

…
0
0

…
0
1

…
1
1

…
1
1

…
1

–1
…
–1
–1
…
–1
–1
…
–1

1
…
1
0

…
0

–1
…
–1
1

…
1
0

…
0

–1
…
–1
1

…
1
0

…
0

–1
…
–1

0
…
0
1

…
1

–1
…
–1
0

…
0
1

…
1

–1
…
–1
0

…
0
1

…
1

–1
…
–1

1
…
1
0

…
0

–1
…
–1
0

…
0
0

…
0
0

…
0

–1
…
–1
0

…
0
1

…
1

0
…
0
1

…
1

–1
…
–1
0

…
0
0

…
0
0

…
0
0

…
0

–1
…
–1
1

…
1

0
…
0
0

…
0
0

…
0
1

…
1
0

…
0

–1
…
–1
1

…
1
0

…
0
1

…
1

0
…
0
0

…
0
0

…
0
0

…
0
1

…
1

–1
…
–1
0

…
0

–1
…
–1
1

…
1

107
…
97
0

…
0

–64
…

–123
0

…
0
0

…
0
0

…
0

–130
…

–114
0

…
0

110
…

116

0
…
0

101
…

118
–64
…

–123
0

…
0
0

…
0
0

…
0
0

…
0

–93
…

–102
110
…

116

0
…
0
0

…
0
0

…
0

126
…

143
0

…
0

–108
…

–132
–130

…
–114

0
…
0

110
…

116

0
…
0
0

…
0
0

…
0
0

…
0

113
…
96

–108
…

–132
0

…
0

–93
…

–102
110
…

116

Y 
=

9
…
10
12
…
16
8

…
10
27
…
49
48
…
49
34
…
47
3

…
3
7

…
11
15
…
13 ©
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Table 16.13 Regression results for various models for data in Table 16.11

Model SSregression MSresidual R2

C, T, G, TG 36,389.602 71.539 .803

C, T, G 35,154.816 .775

C, G, TG 12,519.117 .276

C, T, TG 35,416.789 .781
T, G, TG 31,744.726 .700

(continued)

Tests of Between-Subjects Effects

Dependent Variable: ERRORS

Source
Type III Sum 
of Squares df Mean Square F Sig.

Eta 
Squared

Noncent.
Parameter

Observed 
Powera

Corrected Model 36389.602b 9 4043.289 56.519 .000 .803 508.671 1.000 
Intercept 892.395 1 892.395 12.474 .001 .091 12.474 .939 
DISTRACT 4644.876 1 4644.876 64.928 .000 .342 64.928 1.000 
TASK 23870.485 2 11935.243 166.836 .000 .727 333.673 1.000 
SMKGRP 563.257 2 281.629 3.937 .022 .059 7.873 .699 
TASK * SMKGRP 1626.511 4 406.628 5.684 .000 .154 22.736 .977 
Error 8942.324 125 71.539 
Total 90341.000 135
Corrected Total 45331.926 134
a Computed using alpha 5 .05
b R Squared 5 .803 (Adjusted R Squared 5 .789)

Exhibit 16.5 SPSS analysis of covariance of Spilich data

 1. Task * Smoking Group

Dependent Variable: ERRORS

95% Confidence Interval

Task Smoking Group Mean Std. Error
Lower 
Bound

Upper 
Bound

Patrecog NonSmokers  9.805a 2.184  5.482 14.128
Delayed smokers  9.732a 2.184  5.410 14.054
Active Smokers  9.558a 2.184  5.235 13.882

Cognitive NonSmokers 27.770a 2.188 23.440 32.101
Delayed smokers 40.436a 2.185 36.112 44.760
Active Smokers 43.785a 2.233 39.366 48.204

Driving NonSmokers  8.505a 2.191  4.169 12.842
Delayed smokers  8.921a 2.200  4.568 13.275
Active Smokers  5.820a 2.226  1.414 10.226

a Evaluated at covariates appeared in the model:DISTRACT 5 112.52.
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For purposes of comparison I have presented the analysis of variance from Exhibit 13.1. 
This is the analysis on the same data, but without the covariate.

Source df SS MS F
Task  2 28,661.526 14,330.763 132.895*
Group  2   1813.748    906.874   8.410*
Task × Group  4   1269.452    317.363   2.943*
Error 126 13,587.200    107.835

Total 134 45,331.926

p < .05

Notice that in this analysis we have a significant effect due to Task, which is uninterest-
ing because the tasks were quite different and we would expect that some tasks would lead 
to more errors than others. We have a significant effect due to Group, but the interaction 
better addresses our interests. We have a Task 3 Group interaction, which was what we 
were seeking because it tells us that smoking makes a difference in certain kinds of situ-
ations (which require a lot of cognitive processing) but not in others. Notice also that our
MSerror was 107.835, whereas in the analysis of covariance it was 71.539.

When we look at our analysis of covariance, one of the first things we see is that MSerror

(71.539) is about one-third smaller than it was in the analysis of variance. This is due to the 
fact that the covariate (Distract) was able to explain much of the variability in Errors that 
had been left unexplained in the analysis of variance.

Exhibit 16.5 (continued)

2. Task

Dependent Variable: ERRORS

95% Confidence 
Interval

Task Mean
Std. 
Error

Lower 
Bound

Upper 
Bound

Patrecog 9.699a 1.261 7.203 12.194
Cognitive 37.330a 1.274 34.810 39.851
Driving 7.749a 1.273 5.230 10.268
a Evaluated at covariates appeared in the model: DISTRACT 5 112.52.

3. Smoking Group

Dependent Variable: ERRORS

95% Confidence 
Interval

Smoking Group Mean
Std. 
Error

Lower 
Bound

Upper 
Bound

NonSmokers 15.360a 1.264 12.859 17.862
Delayed smoker 19.696a 1.266 17.191 22.202
Active Smokers 19.721a 1.261 17.225 22.217
a Evaluated at covariates appeared in the model: DISTRACT 5 112.52.
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Section 16.9   The Factorial Analysis of Covariance  613

Notice that Exhibit 16.5 presents partial eta-squared for the effects. These effect-size 
measures can be calculated as the difference between two R2 values, divided by (1 2 R2

reduced). 
For example, the model without the dummy variables for Task has an R2 5 .276. This 
leaves 1 2 .276 5 72.4% of the variation unexplained. When we add in the Task variables 
(going to the full model) we have R2 5 .803. This is an increase of .803 2 .276 5 .527, 
which accounts for .527/.724 5 72.8% of the variation that had been left unexplained. This 
is the value given in Exhibit 16.5 for Task, although SPSS doesn’t mention that this is a 
partial h2. Similar calculations will reproduce the other values.

Adjusted Means

The method of obtaining adjusted means is simply an extension of the method employed 
in the Conti and Musty example. We want to know what the cell means would have been if 
the treatment combinations had not differed on the covariate.

From the full model we have

Ŷ 5 b0 1 b1C 1 b2T1 1 b3T2 1 b4G1 1 b5G2 1 b6TG11 1 b7TG12 1 b8TG21 1 b9TG22

which equals

Ŷ 5 214.654 2 8.561T1 1 19.071T2 2 3.794G1 1 1.437G2 1 3.901TG11 2 1.404TG12

2 5.766TG21 1 1.668TG22 1 0.293Distract

Because we want to know what the Y means would be if the treatments did not differ on the 
covariate, we will set C 5 C 5 112.518 for all treatments.

For all observations in Cell11 the appropriate row of the design matrix, with C replaced by 
C, is

1  0  1  0  1  0  0  0    112.518

Applying the regression coefficients and taking the intercept into account, we have

Ŷ 5 214.654 2 8.561 11 2 1 19.071 10 2 2 3.794 11 2 1 1.437 10 2 1 3.901 11 2
2 1.404 10 2 2 5.766 10 2 1 1.668 10 2 1 0.293 1112.518 2

5 5.860

Applying this procedure to all cells we obtain the following adjusted cell means

Pattern Rec Cognitive Driving Row Means

NonSmokers 9.805 27.770 5.820 14.465
Delayed 9.732 40.436 8.921 19.696
Active 9.558 43.785 8.505 20.616

Column Means 9.699 37.330 7.749 18.259

These are the cell means given in Exhibit 16.5, and the row and column means can be 
found as the mean of the cells in that row or column.

Testing Adjusted Means

The adjusted means are plotted in Figure 16.5. They illustrate the interaction and also the 
meaning that may be attached to the main effects. Further analyses of these data are proba-
bly unnecessary because differences due to smoking seemed to be confined to the condition 
that requires high levels of cognitive processing. However, for the sake of completeness we 
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614  Chapter 16 Analyses of Variance and Covariance as General Linear Models

will assume that you wish to make a comparison between the mean of the NonSmoking 
group and the combined means of the Active and Delayed groups. In this case you want 
to compare X r1. with X r2. and X r3. combined. This comparison requires some modification 
of the error term, to account for differences in the covariate. This adjustment is given by 
Winer (1971) as

MSserror 5 MS rerror
 £1 1

SSg1c2
g 2 1
SSe1c2 §

where SSg1c2 and SSe1c2 represent the sum of squares attributable to Groups and Error 
 (respectively) in an analysis of variance on the covariate, and MS rerror is the error term from 
the overall analysis of covariance. This is not a very memorable formula, and it is one that 
I can see no reason to remember.

MS rerror 5 71.538

SSg1c2 5 2701.215

SSe1c2 5 54285.867

Thus

MSserror 5 71.538
£

1 1

2701.215
2 2 1

54285.867
§

5 75.098

To compare the adjusted means we have

c 5 2 114.465 2 2 1 119.696 2 2 1 120.616 2 5 2 11.382

F 11,125 2 5
nc2

aa2
i   MSserror

5
45 1211.382 2 2

6 175.098 2 5 12.938

50.00

Estimated Marginal Means of Predicted Value for Score

Smkgrp
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Covariates appearing in the model are evaluated at the
following values: Covar = 112.52

3

Task

1
2
3

Figure 16.5 Adjusted cell means as a function of Group and Task
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Section 16.10   Using Multiple Covariates  615

Because F.05 11,125 2 5 3.92, we can reject H0 and conclude that the Active Smoking 
group performs more poorly (overall) than the average of the other two groups.

Another experimenter might be interested in examining the effects of Group only for 
the Cognitive task. If we want to examine these simple effects, we will again need to mod-
ify our error term in some way. This is necessary because we will be looking at Groups for 
only some of the data, and the covariate mean of the Cognitive task subjects may differ 
from the covariate mean for all subjects. Probably the safest route here would be to run 
a separate analysis of covariance for only those subjects performing the cognitive task. 
 Although this method has the disadvantage of costing us degrees of freedom for error, it 
has the advantage of simplicity and eliminates the need to make discomforting assumptions 
in the adjustment of our error term.

To complete our discussion of the tests we might wish to conduct, consider the experimenter 
who wants to compare two particular adjusted cell means (whether or not they are in the same 
row or column). The adjusted error term for this comparison was given by Winer (1971) as

MSserror 5
2MS rerror

n
£

1 1

SScells1c2
tg 2 1
SSe1c2 §

where SScells1c2 is the sum of squares from an analysis of variance on the covariate.
You may wonder why we continually worry about adjusting the error term in making 

comparisons. The general nature of the answer is apparent when you recall what the con-
fidence limits around the regression line looked like in Chapter 9. (They were curved—in 
fact, they were elliptical.) For Xi 5 X, we were relatively confident about Ŷ. However, as Xi 
departed more and more from X we became less and less confident of our prediction, and con-
sequently the confidence limits widened. If you now go back to Figure 16.3, you will see that 
the problem applies directly to the case of adjusted means. In that figure, Y r1 is a long way from 
Y1, and we would probably have relatively little confidence that we have estimated it correctly. 
On the other hand, we can probably have a reasonable degree of confidence in our estimate of 
Y r2. It is just this type of consideration that causes us constantly to adjust our error term.

The example we have used points up an important feature of the analysis of covariance—
the fact that the covariate is just another variable that happens to receive priority. In de-
signing the study, we were concerned primarily with evaluating the effects of smoking. 
However, we had two variables that we considered it necessary to control: type of task and 
distractibility. The first one (Task) we controlled by incorporating it into our design as an 
independent variable. The second (Distractibility) we controlled by measuring it and treat-
ing it as a covariate. In many respects, these are two ways of treating the same problem. 
Although there are obvious differences in the way these two variables are treated, there are 
also important similarities. In obtaining SSgroup, we are actually partialling out both Task 
and the covariate. It is true that in the case of equal ns Task is orthogonal to Group, leaving 
nothing to partial out; but that is merely a technicality. In the case of unequal ns, the partial-
ling out of both variables is a very real procedure. Although it is important not to lose sight 
of the fact that the analysis of covariance is a unique technique with its own additional as-
sumptions, it is equally important to keep in mind that a covariate is just another variable.

16.10  Using Multiple Covariates

We have been concerned with the use of a single covariate. There is no theoretical or practi-
cal reason, however, why we must restrict ourselves in this way. For example, a study on 
the effectiveness of several different teaching methods might wish to treat IQ, Age, and 
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Type of School (progressive or conservative) as covariates. When viewed from the point 
of view of multiple regression, this presents no particular problem, whereas when viewed 
within the traditional framework of the analysis of variance, the computational complexi-
ties for only a very few covariates would be overwhelming.

In the expression R2
c, a, b, ab, b is really only a shorthand way of representing a set of 

 predictors (e.g., B1, B2, ..., Bb). By the same token, c can be used to stand for a set of  covariates 
(C1, C2, ..., Ck). Thus, in terms of the more specific notation, R2

c, a, b, ab might really represent

R2
0.IQ, Age, School, A1, B1, B2, AB11, AB12

When seen in this light, the use of multiple covariates is no different from that of single 
covariates. If C represents the covariates IQ, Age, and School, then SSAB1adj2 remains

SSAB1adj2 5 SSregression1IQ, Age, School, A1, B1, B2, AB11, AB122 2 SSregression1IQ, Age, School, A1, B1, B22
It should be apparent from the previous example that no restriction is placed on the 

nature of the covariate, other than that it is assumed to be linearly related to the criterion. It 
can be a continuous variable, as in the case of IQ and Age, or a discrete variable, as in the 
dichotomous classification of Schools as progressive and conservative.

A word of warning: Just because it is possible (and in fact easy) to use multiple covariates 
is not a good reason for adopting this procedure. Interpreting an analysis of covariance may be 
difficult enough (if not impossible) with only one covariate. The problems increase rapidly with 
the addition of multiple covariates. Thus, it might be easy to say, in evaluating several methods 
of teaching English, that such and such a method is better if groups are equated for age, IQ, type 
of school, parents’ occupation, and so on. But the experimenter must then ask himself if such 
equated groups actually exist in the population. If they do not, he has just answered a question 
about what would happen in groups that could never exist, and it is unlikely that he will receive 
much applause for his efforts. Moreover, even if it is possible to form such groups, will they be-
have in the expected manner? The very fact that the students are now in homogeneous classes 
may itself have an effect on the dependent variable that could not have been predicted.

16.11  Alternative Experimental Designs

The analysis of covariance is not the only way to handle data in which a covariate is im-
portant. Two common alternative procedures are also available: stratification (matched 
samples) and difference scores.

If we have available measures on the covariate and are free to assign subjects to treat-
ment groups, then we can form subsets of subjects who are homogeneous with respect to 
the covariate, and then assign one member of each subset to a different treatment group. 
In the resulting analysis of variance, we can then pull out an effect due to blocks (subsets) 
from the error term.

The use of matched samples and the analysis of covariance are almost equally effec-
tive when the regression of Y on C is linear. If r equals the correlation in the population 
between Y and C, and s2

e represents the error variance in a straight analysis of variance on 
Y, then the use of matched samples reduces the error variance to

s2
e 11 2 r2 2

The reduction due to the analysis of covariance in this situation is given by

s2
e 11 2 r2 2 1 fe 21 fe 2 1 2

where fe is the degrees of freedom for the error variance. Obviously, for any reason-
able value of fe, the two procedures are almost equally effective, assuming linearity of 
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regression. If the relationship between Y and C is not linear, however, matching will be 
more  effective than covariance analysis.

A second alternative to the analysis of covariance concerns the use of difference scores. 
If the covariate (C) represents a test score before the treatment is administered and Y a score 
on the same test after the administration of the treatment, the variable C 2 Y is sometimes 
used as the dependent variable in an analysis of variance to control for initial differences on 
C. Obviously, this approach will work only if C and Y are comparable measures. We could 
hardly justify subtracting a driving test score (Y) from an IQ score (C). If the relationship 
between C and Y is linear and if bCY 5 1.00, which is rarely true, the analysis of difference 
scores and the analysis of covariance will give the same estimates of the treatment effects. 
When bCY is not equal to 1, the two methods will produce different results, and in this case 
it is difficult to justify the use of difference scores. In fact, for the Conti and Musty (1984) 
data on THC, if we took the difference between the Pre and Post scores as our dependent 
variable, the results would be decidedly altered (F4,42 5 0.197). In this case, the analysis of 
covariance was clearly a more powerful procedure. Exercise 16.24 at the end of the chapter 
illustrates this view of the analysis of covariance. For a more complete treatment of this 
entire problem, see Harris (1963) and Huitema (1980, 2005).

The thing to keep in mind here is that a slope of 1.0 on the relationship between pre- 
and post-test scores implies that the intervention led to a similar increase in scores, re-
gardless of where people started. But it might be that the change is proportional to where 
people started out. Someone who is very poor in math may have much more to gain by an 
intervention program than someone who was doing well, and thus the gain score will be 
directly (and negatively) related to the pretest score. In the example from Conti and Musty 
(1984), more active animals were likely to change more than less active animals, which 
may be why they took as their dependent variable the posttest score as a percentage of the 
pretest score, rather than just the difference between their two scores.

difference scores

General linear model (16.1)

Design matrix (16.1)

Method III (16.4)

Type III SS (16.4)

Method II (16.4)

Type II SS (16.4)

Method I (16.4)

Type I SS (16.4)

Hierarchical sums of squares (16.4)

Sequential sums of squres (16.4)

Equally weighted means (16.4)

Analysis of covariance (16.5)

Covariate (16.5)

Adjusted Y means (16.5)

Homogeneity of regression (16.5)

MS rerror (16.5)

True-score analysis of covariance (16.6)

Nonequivalent groups design (16.6)

Stratification (16.11)

Difference scores (16.11)

Key Terms

Exercises

16.1 The following hypothetical data were obtained from poor, average, and good readers on the 
number of eye fixations per line of text.

Poor Average Good

10 5 3
 7 8 5
 8 4 2
11 6 3
 5 5 4 
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618  Chapter 16 Analyses of Variance and Covariance as General Linear Models

a. Construct the design matrix for these data.

b. Use any standard regression program to calculate a least-squares analysis of variance.

c. Run the analysis of variance in the traditional manner and compare your answers.

16.2 For the data in Exercise 16.1,

a. Calculate treatment effects and show that the regression model reproduces these treat-
ment effects.

b. Demonstrate that R2 for the regression model is equal to h2 for the analysis of variance.

16.3 Taking the data from Exercise 16.1, add the scores 5 and 8 to the Average group and the 
scores 2, 3, 3, and 5 to the Good group. Rerun the analysis for Exercise 16.1 using the more 
complete data.

16.4 Rerun the analysis of Exercise 16.2 for the amended data from Exercise 16.3.

16.5 A psychologist was concerned with the relationship between Gender, Socioeconomic Status 
(SES), and perceived Locus of Control. She took eight adults (age 5 25 to 30 years) in each 
Gender–SES combination and administered a scale dealing with Locus of Control (a high 
score indicates that the individual feels in control of his or her everyday life).

SES

Low Average High

Male 10 16 18
12 12 14
 8 19 17
14 17 13
10 15 19
16 11 15
15 14 22
13 10 20

Female  8 14 12
10 10 18
 7 13 14
 9  9 21
12 17 19
 5 15 17
 8 12 13
 7  8 16 

a. Run a traditional analysis of variance on these data.

b. The following sums of squares have been computed on the data using the appropriate 
design matrix (a 5 Gender, b 5 SES).

SSY 5 777.6667 SSreg1a, b, ab2 5 422.6667

SSreg1a, b2 5 404.0000 SSreg1b, ab2 5 357.333

SSreg1a, ab2 5 84.000

 Compute the summary table for the analysis of variance using these sums of squares. 

16.6 Using the SES portion of the design matrix as our predictor, we find that SSreg1b2 5 338.6667.

a. Why is this value the same as SSSES in the answer to Exercise 16.5?

b. Will this be the case in all analyses of variance?

16.7 When we take the data in Exercise 16.5 and delete the last two low-SES males, the last three 
average-SES males, and the last two high-SES females, we obtain the following sums of 
squares:
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SSY 5 750.1951 SSreg1a,b,ab2 5 458.7285

SSreg1a,b2 5 437.6338 SSreg1b,ab2 5 398.7135

SSreg1a,ab2 5 112.3392 SSreg1a2 5 95.4511

 SSreg1b2 5 379.3325

 SSreg1ab2 5 15.8132

 Compute the analysis of variance using these sums of squares.

16.8 Using only the SES predictors for the data in Exercise 16.7, we find SSreg1b2 5 379.3325. 
Why is this not the same as SSSES in Exercise 16.7?

16.9 For the data in Exercise 16.5, the complete model is
1.1667A1 2 3.1667B1 2 0.1667B2 1 0.8333AB11 2 0.1667AB12 1 13.4167

a. Show that this model reproduces the treatment and interaction effects as calculated by 
the method shown in Table 16.2.

16.10 For the data in Exercise 16.7, the complete model is
1.2306A1 2 3.7167B1 2 0.3500B2 1 0.4778AB11 2 0.5444AB12 1 13.6750

a. Show that this model reproduces the treatment and interaction effects as calculated in 
Table 16.3.

16.11 Using the following data, demonstrate that Method III (the method advocated in this  chapter) 
really deals with unweighted means.

B1 B2

A1

 5 11
 3  9

14 
 6
11
 9

A2

10  6
11  2
12
 7 

16.12 Draw a Venn diagram representing the sums of squares in Exercise 16.5.

16.13 Draw a Venn diagram representing the sums of squares in Exercise 16.7.

16.14 If you have access to SAS, use that program to analyze the data in Exercise 16.7. Add /SS1 
SS2 SS3 SS4 to the end of your Model command and show that

a. Type I sums of squares adjust each term in the model only for those that come earlier in 
the model statement.

b. Type II sums of squares adjust main effects only for other main effect variables, while 
adjusting the interaction for each of the main effects.

c. Type III sums of squares adjust each term for all other terms in the model.

d. Type IV sums of squares in this case are equal to the Type II sums of squares.

16.15 In studying the energy consumption of families, we have broken them into three groups. 
Group 1 consists of those who have enrolled in a time-of-day electrical-rate system (the 
charge per kilowatt-hour of electricity is higher during peak demand times of the day). 
Group 2 is made up of those who inquired into such a system but did not use it. Group 3 
 represents those who have shown no interest in the system. We record the amount of the 
electrical bill per month for each household as our dependent variable (Y). As a covariate, 
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620  Chapter 16 Analyses of Variance and Covariance as General Linear Models

we take the electrical bill for that household for the same month last year (C). The data 
follow:

Group 1 Group 2 Group 3

Y C Y C Y C

58 75 60 70 75 80

25 40 30 25 60 55

50 68 55 65 70 73

40 62 50 50 65 61

55 67 45 55 55 65 

a. Set up the design matrix.

b. Run the analysis of covariance.

16.16 To refine the experiment described in Exercise 16.15, a psychologist added an additional set 
of households to each group. This group had a special meter installed to show them exactly 
how fast their electric bill was increasing. (The amount-to-date was displayed on the meter.) 
The data follow; the nonmetered data are the same as those in Exercise 16.15.

Y C Y C Y C

Nonmetered 58 75 60 70 75 80 

25 40 30 25 60 55

50 68 55 65 70 73

40 62 50 50 65 61

55 67 45 55 55 65

Metered 25 42 40 55 55 56

38 64 47 52 62 74

46 70 56 68 57 60

50 67 28 30 50 68

55 75 55 72 70 76 

a. Run the analysis of covariance on these data—after first checking the assumption of 
homogeneity of regression.

b. Draw the appropriate conclusions.

16.17 Compute the adjusted means for the data in Exercise 16.16.

16.18 Compute the energy savings per household for the data in Exercise 16.16 by subtracting this 
year’s bill from last year’s bill. Then run an analysis of variance on the savings scores and 
compare that to the analysis of covariance.

16.19 Klemchuk, Bond, and Howell (1990) examined role taking in children. Children were ad-
ministered a battery of role-taking tasks. They were classified as being in daycare or not be-
ing in daycare, and as ages 2–3 or ages 4–5. The hypothesis was that children with daycare 
experience would perform better on role-taking tasks. The data are available at the book’s 
Web site as Ex16-19.dat. Run the appropriate analysis.

Computer Exercises
16.20 Use the data set named in Epinuneq.dat on the Web site to examine the results of the study 

by Introini-Collison and McGaugh (1986) described prior to Exercises 11.29–11.31. Using 
any statistical package, run a two-way analysis of variance with unequal sample sizes. What 
would you conclude from this analysis?
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16.21 Use the data from Mireault and Bond (1992) in the file named Mireault.dat referred to in Exer-
cise 7.6 to run a two-way analysis of variance on the Global Symptom Index T score (GSIT) us-
ing Gender and Group as independent variables. Plot out the cell means and interpret the results.

16.22 Using the same data as in Exercise 16.21, run an analysis of covariance instead, using year 
in college (YearColl) as the covariate.

a. Why would we want to consider YearColl as a covariate?

b. How would you interpret the results?

16.23 In Exercise 16.22 we used YearColl as the covariate. Run an analysis of variance on Year-
Coll, using Gender and Group as the independent variables. What does this tell us that is 
relevant to the preceding analysis of covariance?

16.24 Everitt reported data on a study of three treatments for anorexia in young girls. One treat-
ment was cognitive behavior therapy, a second was a control condition with no therapy, and 
a third was a family therapy condition. These are the same data we examined in Chapter 14. 
The data follow and are available on the Web site.

Group Pretest Posttest Gain

1 80.5 82.2 1.7

1 84.9 85.6 .7

1 81.5 81.4 2.1

1 82.6 81.9 2.7

1 79.9 76.4 23.5

1 88.7 103.6 14.9

1 94.9 98.4 3.5

1 76.3 93.4 17.1

1 81.0 73.4 27.6

1 80.5 82.1 1.6

1 85.0 96.7 11.7

1 89.2 95.3 6.1

1 81.3 82.4 1.1

1 76.5 72.5 24.0

1 70.0 90.9 20.9

1 80.4 71.3 29.1

1 83.3 85.4 2.1

1 83.0 81.6 21.4

1 87.7 89.1 1.4

1 84.2 83.9 2.3

1 86.4 82.7 23.7

1 76.5 75.7 2.8

1 80.2 82.6 2.4

1 87.8 100.4 12.6

1 83.3 85.2 1.9

1 79.7 83.6 3.9

1 84.5 84.6 .1

1 80.8 96.2 15.4

1 87.4 86.7 2.7

Group Pretest Posttest Gain

2 80.7 80.2 2.5

2 89.4 80.1 29.3

2 91.8 86.4 25.4

2 74.0 86.3 12.3

2 78.1 76.1 22.0

2 88.3 78.1 210.2

2 87.3 75.1 212.2

2 75.1 86.7 11.6

2 80.6 73.5 27.1

2 78.4 84.6 6.2

2 77.6 77.4 20.2

2 88.7 79.5 29.2

2 81.3 89.6 8.3

2 78.1 81.4 3.3

2 70.5 81.8 11.3

2 77.3 77.3 0.0

2 85.2 84.2 21.0

2 86.0 75.4 210.6

2 84.1 79.5 24.6

2 79.7 73.0 26.7

2 85.5 88.3 2.8

2 84.4 84.7 0.3

2 79.6 81.4 1.8

2 77.5 81.2 3.7

2 72.3 88.2 15.9

2 89.0 78.8 210.2

3 83.8 95.2 11.4

3 83.3 94.3 11.0

3 86.0 91.5 5.5 ©
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622  Chapter 16 Analyses of Variance and Covariance as General Linear Models

a. Run an analysis of variance on group differences in Gain scores. (You may have already 
done this in Chapter 14.)

b. Now run the analysis on Posttest scores, ignoring Pretest scores.

c. Finally, run the analysis on Posttest scores using Pretest as the covariate.

d. How do these three answers relate to one another, and what do they show about the dif-
ferences and similarities between analysis of covariance and the treatment of gain (or 
change) scores?

e. Calculate h2 on Groups for the analysis of covariance.

f. Calculate d for the contrast on the two therapy groups (ignoring the control group) using 
adjusted means.

16.25 Write up the results of Everitt’s experiment, including effect sizes.

Discussion Questions
16.26 I initially thought of creating an analysis of variance example from the example in Chap-

ter 14, Section 14.7. I could have used Sex and Group as the independent variables, post-
test scores as the dependent variable, and pretest scores as the covariate (ignoring FU6 and 
FU12 entirely). This would have made a very bad example for the analysis of covariance. 
Why would that be? Is there any way in which we might be able to salvage the study as an 
analysis of covariance example?

16.27 I said that in any experiment where we have pretest and posttest scores we could either look 
at the difference scores (compared across groups) or use the pretest as a covariate. These 
two analyses will be equivalent only when the slope relating posttest to pretest scores is 
1.00. How likely do you think it is that such a condition would be met (or at least approxi-
mated)? What does b 5 1.00 actually imply?

16.28 Make up or find an example with respect to Exercise 16.25 where the slope is not nearly 1.0. 
Analyze it using both the analysis of covariance and a t test on difference scores. Do either 
of these analyses make sense?

3 82.5 91.9 9.4

3 86.7 100.3 13.6

3 79.6 76.7 22.9

3 76.9 76.8 20.1

3 94.2 101.6 7.4

3 73.4 94.9 21.5

3 80.5 75.2 25.3

3 81.6 77.8 23.8

3 82.1 95.5 13.4

3 77.6 90.7 13.1

3 83.5 92.5 9.0

3 89.9 93.8 3.9

3 86.0 91.7 5.7

3 87.3 98.0 10.7


