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Repeated Measures

and Related Designs

In this chapter we take up repeated measures designs—designs that are widely used in the
behavioral and life sciences. We begin by considering some basic elements of repeated
measures designs. We then take up single-factor repeated measures designs, after which
we consider two-factor experiments with repeated measures on both one factor and on two
factors. We conclude this chapter with an introduction to split-plot designs, which include
two-factor repeated measures designs with repeated measures on one factor.

271 FElements of Repeated Measures Designs

Description of Designs
Repeated measures designs utilize the same subject (person, store, plant, test market, etc.)
for each of the treatments under study. The subject therefore serves as a block, and the
experimental units within a block may be viewed as the different occasions when a treatment
is applied to the subject. A repeated measures study may involve several treatments or only
a single treatment that 1s evaluated at different points in time. Subjects used in repeated
measures studies in the behavioral and life sciences include persons, households, observers,
and experimental animals. At other times the subjects in repeated measures designs are
stores, test markets, cities, and plants. We shall refer to all of these study units used in
repeated measures designs as subjects.
Three examples of repeated measures designs follow.

1. Fifteen test markets are to be used to study each of two different advertising campaigns.
In each test market, the order of the two campaigns will be randomized, with a sufficient
time lapse between the two campaigns so that the effects of the initial campaign will not
carry over into the second campaign. The subjects in this study are the test markets.

2. Twohundred persons who have persistent migraine headaches are each to be given two
different drugs and a placebo, for two weeks each, with the order of the drugs randomized
for each person. The subjects in the study are the persons with migraine headaches.

3. Ina weight loss study, 100 overweight persons are to be given the same diet and their
weights measured at the end of each week for 12 weeks to assess the weight loss over
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time. Here the subjects are the overweight persons, who are observed repeateq)

- - . c ) ¥ 1O provi
information about the etfects of a single treatment over time. Provide

Each of these studies involves a repeated meusures desigit because the same g
is measured repeatedly. This key characteristic distinguishes this type of design
designs considered earlier.

ubject
from the

Advantages and Disadvantages

A principal advantage of repeated measures designs is that they provide good precision
for comparing treatments because all sources of variability between subjects are excluded
from the experimental error. Only variation within subjects enters the experimenta] error,
since any two treatments can be compared directly for each subject. Thus, one may view thé
subjects as serving as their own controls. Another advantage of a repeated measures design
is that it economizes on subjects. This is particularly important when only a few subjects
(e.g., stores, plants, test markets) can be utilized for the experiment. Also, when interest isin
the effects of a treatment over time, as when the shape of the learning curve for a new Process
operation is to be studied, it is usually desirable to observe the same subject at different
points in time rather than observing different subjects at the specified points in time.

Repeated measures designs have a serious potential disadvantage, however, namely, that
there may be several types of interference. One type of interference is an order effect, whichis
connected with the position in the treatment order. For instance, in evaluating five different
advertisements, subjects may tend to give higher (or lower) ratings for advertisements
shown toward the end of the sequence than at the beginning. Another type of interference
is connected with the preceding treatment or treatments. For instance, in evaluating five
different soup recipes, a bland recipe may get a higher (or lower) rating when preceded by
a highly spiced recipe than when preceded by a blander recipe. This type of interference is
called a carryover effect.

Various steps can be taken to minimize the danger of interference effects. Randomization
of the treatment orders for each subject independently will make it more reasonable to
analyze the data as if the error terms are independent. Allowing sufficient time between
treatments is often an effective means of reducing carryover effects. It may be desirable at
times to balance the order of treatment presentations and sometimes even the number of
times each treatiment is preceded by any other treatment. Latin square designs and crossover
designs (discussed in Chapter 28) are helpful to this end.

How to Randomize

The randomization of the order of the treatments assigned to a subject is straightforward. For
each subject, a random permutation is used to define the treatment order, and indepéndent
permutations are selected for the different subjects.

Comment

Designs with repeated measures, discussed here, need to be distinguished from designs with repeated
obgervations, discussed in Section 26.7. In repeated measures designs. several or all of the treatments
are applied to the same subject. Designs with repeated observations, on the other hand, are designs
where several observations on the response variable are made for a given treatment applied to an
experimental unit. It is possible to develop a repeated measures design with repeated 0bservati0n§, as
when a given subject is exposed to each of the treatments under study and a number of observattons
are made at the end of each treatment application. u
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97.2 Single-Factor Experiments with Repeated Measures
on All Treatments

Model

FIGURE 27.1
Layout for
Smgle-Factor
Repeated
Measures
Design

s=5r=4).

We first consider repeated measures designs where the treatments are based on a single
factor, as in the examples in Section 27.1. Almost always, the subjects in repeated measures
designs (persons, stores, test markets, experimental animals) are viewed as a random sample
from a population. Hence, in all of the models for repeated measures designs to be presented
in this chapter, the effects of subjects will be viewed as random.

Figure 27.1 contains the layout for a single-factor experiment with repeated measures on
all treatments. Here, there are five subjects and four treatments, with the order of treatments
independently randomized for each subject. Notice that this layout corresponds to the one
in Figure 21.1 for a randomized complete block design. Indeed, as we shall see next, the
models for single-factor repeated measures designs are formally the same as the ones for
randomized block designs, with blocks now considered to be subjects.

When treatment effects are fixed, a model often appropriate for a single-factor repeated
measures design is the following additive model:

Yij = M- —I—pl “+ ‘Cj +€ij (27.1)
where:

[L.- 1S a constant

pi are independent N (0, o2)

7; are constants subject toy z; = 0
&;; are independent N (0, o'%)

©; and &;; are independent

i=1,....,8;j=1,...,r

Treatment Order
1 2 3 4

Subject 1 T, T3 T, n
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Note that repeated measures model (27.1) is identical to randomized block model (25,6
with random block effects, except that i), = s. 67)
Hence. we know from Section 25.5 that repeated measures model (27.1) assum,

following about the observations Y;;: s the
E{Yi;} =p.. +7; (27.2a)

oY) =o; =0, +0° (27.2b)

oYy Yyt =0, =woy; j# ] (27.2¢)

o{Yy, Yrpt =0 i £ (27.2q)

where w is the coefficient of correlation between any two observations for the same subject;

w =

(27.2¢)

"<q|.)|bqw

Thus, repeated measures model (27.1) assumes that in advance of the random trials, any
two treatment observations Y;; and Y;;- for a given subject are correlated in the same fashiop
for all subjects. This key assumption implies, as we saw in (25.71), that the variance-
covariance matrix of the observations Y;; for any given subject has compound Symmetry.
Any two observations from different subjects in advance of the random trials are independent
according to model (27.1).

Equally important, we know from Chapter 25 that repeated measures model (27.1)
assumes that, once the subjects have been selected, any two observations for a given subject
are independent. Thus. model (27.1) assumes that there are no interference effects in the
repeated measures study, such as order effects or carryover effects from one treatment to
the next.

Comment
If interaction effects between subjects and treatments are present, interaction model (25.74) can be

employed. As we noted in Chapter 25, both the additive and interaction models lead to the same
procedures for making inferences about the treatment effects. n

Analysis of Variance and Tests

Since repeated measures model (27.1) is the same as randomized complete block model
(25.67), the analysis of variance and the test for treatment effects will be the same gs before.

Analysis of Variance. The ANOVA sums of squares for repeated measures model (27.1)
are the same as in (21.6). but the names of two of the sums of squares are usually changed
for repeated measures applications. The sum of squares for blocks in (21.6a) will now
be called the sum of squares for subjects, and the interaction sum of squares between
blocks and reatments in (21.6¢) will now be called the interaction sum of squares between
treatments und subjects. These two sums of squares will be denoted, respectively, by $S5 and
SSTR.S. Thus, the analysis of variance decomposition for single-factor repeated measures
model (27.1) is:

SSTO = SSS + SSTR + SSTR.S (27.3)
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TABLE 27.1 ANOVA Table for Single-Factor Repeated Measures Design—ANOVA
Model (27.1) with Subject Effects Random and Treatment Effects Fixed.

Source of
Variation ss df MS E{MS}
Subjects 558 s—1 Mss 0% +ro}?
>t
Treatments SSTR r—1 MSTR o%+ S
Error SSTR.S r—1(s—-1) MSTR.S o?
Total $STO sr—1
where:
SSTO =" (¥;; — ¥.)? (27.3a)
i i
SSS=r» (%.—Y) (27.3b)
SSTR =s Y (¥; — 1) (27.3¢)
i
SSTRS =" (¥ - Y. — ¥, + L.p (27.3d)
i

Note that no error sum of squares is present because there are no replications here.

Table 27.1 contains the analysis of variance table for repeated measures model (27.1). It
is the same as the ANOVA table in Table 25.8 for additive randomized block model (25.67),
except for the change in notation. Note again that in the absence of interactions between
treatments and subjects, the interaction mean square MSTR.S 1s an unbiased estimator of

the error variance o 2.

Comment

In repeated measures studies, SSTR and SSTR.S are sometimes combined into a within-subjects sum
of squares SSW:

SSW = SSTR + SSTR.S (27.9)
which can be shown to equal:
SSW=> "> "t~ 1.y’ (27.42)
i
Hence, the ANOVA decomposition in (27.3) can also be expressed as follows:
SSTO= SS8§ + SSwW (27.5)
~ —~
Between- Within-
subjects subjects

variability  variability |
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Example

TABLE 27.2
Data-—Wine-
Judging
Example
(ratings on a

scale of 0 to 40).

Test for Treatment Effects.  Asthe E{MS} column in Table 27.1 indicates, the 5

. . Ppropria
statistic for the test on treatment effects: phiate

H(): all T, = 0
H,: not all 7; equal zero (27.6a)
is:
. MSTR
~ MSTR.S (27.6b)

When Hy holds, F* follows the F distribution, and the decision rule for controlling the
Type Lerror at « is:

IfF* < F[l —o;r — 1, (r — D(s — 1)], conclude H,

IfF*> F[l —a;r — 1, (r — 1)(s — 1)], conclude H, (27.6c)
In a wine-judging competition, four Chardonnay wines of the same vintage were judged
by six experienced judges. Each judge tasted the wines in a blind fashion, i.e., without
knowing their identities. The order of the wine presentation was randomized independently
for each judge. To reduce carryover and other interference effects, the judges did not drink
the wines and rinsed their mouths thoroughly between tastings. Each wine was scored on
a 40-point scale; the higher the score, the greater is the excellence of the wine. The data
for this competition are presented in Table 27.2. A plot of the wine scores for each judge
is shown in Figure 27.2. We see that there are some distinct differences in ratings between
Jjudges but that the ratings for wines 3 and 4 are consistently best and for wine 1 generally
worst. We also see that the rating curves for the judges do not appear to exhibit substantial
departures from being parallel. Hence, an additive model appears to be appropriate.

The six judges are considered to be a random sample from the population of possible
judges, while the four wines tasted are of interest in themselves. Hence, single-factor re-
peated measures model (27.1) was expected to be appropriate, with the effects of subjects
(judges) considered random and the effects of treatments (wines) considered fixed. As

judge Wine (j) ’
i 1 2 3 4 Y.
1 20 24 28 28 25
2 15 18 23 24 20
3 18 19 24 23 21
4 26 26 30 30 28
5 22 24 28 26 25
6 19 21 27 25 23

20.00 22.00 26.67 26.00 23.67 =Y.

<



 AGURE 27.2
plot of Wine
Geores for Each
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‘FIGURE 27.3
MINITAB

:ANOVA Table
Yor Single-
:Factor
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Yy
Judge

30 4

1

5
25 6

2

3
20
15+

0} | | i 1
1 2 3 4
Wine

Factor Type Levels Values
judge random 6 1 2 3 4 5 6
Wine fixed 4 1 2 3 4
Analysis of Variance for Rating
Source DF SS MS F P
judge 5 173.333 34.667 32.50 0.000
Wwine 3 184.000 61.333 57.50 0.000
Error 15 16.000 1.067
Total 23 373.333

we shall see later, additional diagnostic analysis supports the appropriateness of ANOVA
model (27.1).

Figure 27.3 contains MINITAB ANOVA output for the wine-judging data in Table 27.2.
To test for treatment effects:

Hytnn=n=1t3=1=0

H,: not all z; equal zero

we use the results of Table 27.3:

e MSTR _ 61.333 _ 575
T MSTRS  1.067
For level of significance o = .01, we require F(.99;3, 15) = 5.42. Since F* = 575 >
5.42, we conclude H,, that the mean wine ratings for the four wines differ. The P-value for
this test is 04.
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TABLE 27.3 Estimated Within-Subjects
Variance-Covariance Matrix between Treatment
Observations—Wine-Judging Example.

4

J
1 2 3 4
1 [14.000 11.000 9.200 8.200
. 2 10.000 8.200 7.600
/ 3 7.067 6.200
4 6.800
Comments

t. As we noted in Chapter 25 (in Comment 2 on p. 1065), a conservative test for treatment effects
should be used if the assumptions of compound symmetry in repeated measures model (27.1) are not
met (i.€., if either the variances of the observations for different treatments for a given subject are not
the same for all subjects or if the correlations between any two treatment observations for a given
subject are not the same for all treatment pairs and for all subjects). In repeated measures studies, the
compound symmetry assumption will be violated, for instance, if repeated responses over time are
more highly correlated for observations closer together than for observations further apart in time.

2. When the treatment effects are random, test statistic (27.6b) and decision rule (27.6¢) are still
appropriate for testing treatment effects.

3. The efficiency of the repeated measures design in the wine-judging example, relative to a
completely randomized design where each judge is used to assess a single wine, can be measured by
means of (21.14). Using the results in Ficure 27.3 with n;, = 5, we obtain:

s — DMSS + s(r — )MSTR.S _ 5(34.667) + 6(3)(1.067) _
(sr — HMSTR.S B 23(1.067) N
Thus. almost eight times as many replications per treatment would have been required with a com-

pletely randomized design in which each judge rates a single wine as in the repeated measures design
to achieve the same precision for any estimated contrast.

E= 7.85

4. When a single-factor repeated measures design involves » = 2 treatments, the F* statistic in
(27.6b) 1s equivalent to the two-sided ¢ test for paired observations based on test statistic (A-69).

5. Occasionally. a formal test for subject effects is desired:

Ho: (T/.;) =0
Hl,:(rﬁ >0

Table 27.1 indicates that the appropriate test statistic for repeated measures model (27.1) is F =
MSS/MSTR.S. |

Evaluation of Appropriateness of Repeated Measures Model
Since repeated measures model (27.1) is equivalent to randomized block model (25.67), the
earlier discussion on diagnostics for randomized block models is entirely applicable here.
In particular, a plot of the responses Y;; by subject, as in Figure 27.2, can be examined for
indications of serious lack of pasallelism, which would suggest that additive model (27.1)
may not be appropriate.
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Residual sequence plots by subject can be helpful for studying constancy of the error
variance and presence of interference effects. The residuals for repeated measures models
(27.1) are the same as in (21.5):

o — Y+ X 27.7)

=i

€ij = Yij -
A normal probability plot of the estimated residuals in (27.7) can be helpful for evaluating
whether the residuals are normally distributed.

In addition to these graphic diagnostics, the estimated within-subjects variance-
covariance and correlation matrices for the treatment observations ¥;; can be examined for
appropriateness of the repeated measures model. A typical entry in the variance-covariance
matrix is the estimated within-subjects covariance between observations for treatments j
and j”:

=1 (Y = X)) (Vi — ¥5)
s—1

(27.8)

The estimated within-subjects variance-covariance matrix should show variances of the
same order of magnitude, and all of the covariances should be of similar magnitude. Of
course, estimated variances and covariances tend to be subject to large sampling errors unless
the sample sizes are very large. Hence, moderate differences in variances and covariances
should be viewed as likely to be the result of sampling errors.

The estimated correlation matrix should show approximately similar coefficients of
correlation between pairs of treatment observations within a subject.

Finally, the Tukey test described in Section 20.2 can be conducted to examine the ap-
propriateness of the additive model. This test will need to be interpreted here as conditional
on the subjects actually used in the repeated measures study.

For the wine-judging example, the residuals were obtained from (27.7), and are presented in
Figure 27.4ain SAS/GRAPH aligned dot plots by wine. These plots support the assumption
of constant error variance. Figure 27.4b presents residual sequence plots for each judge,
where the residuals are plotted in the order in which the wines were tasted by the judge.
These plots do not indicate any correlations of the error terms within a judge, and thus
suggest that no interference effects are present. Finally, a normal probability plot of the
residuals is presented in Figure 27.4c¢. This plot shows evidence of the effects of the rounded
nature of the data, but does not suggest any major departure from normality. The correlation
between the ordered residuals and their expected values under normality is .993, which also
suggests that lack of normality is not a problem here.

Table 27.3 presents the estimated within-subjects variance-covariance matrix for the
treatment observations. The differences found there could easily arise from sampling errors.

As we noted earlier, the plot of the responses by subject in Figure 27.2 also supports
the appropriateness of model (27.1), since the plots for the judges are reasonably parallel.
Thus, there is no indication of interactions between subjects and treatments.

On the basis of these and other diagnostics, it was concluded that repeated measures
model (27.1) is reasonably appropriate for the data in the wine-judging example.
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FIGURE 27.4 SAS/GRAPH Diagnostic Residual Plots—Wine-Judging Example.

(a) Residual Dot Plots

(c) Normal Probability Plot
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Analysis of Treatment Effects
The analysis of treatment effects for single-factor repeated measures model (27.1) proceeds
in exactly the same fashion as described in Section 21.5 for randomized block designs
with fixed treatment effects. The multiples in (21.9) for setting up confidence intervals
are applicable here as they stand. The mean square used in estimating the variance of the
estimated contrast is still the interaction mean square, which is now denoted by MSTR.S.
We shall illustrate the estimation procedures by an example.

In the wine-judging example, it was desired to compare all treatment means p.; pairwise,
with a 95 percent family confidence coefficient. Here y.; is the mean rating of wine j
averaged over judges. The Tukey procedure was utilized for this purpose. Using (17.30)
with MSE replaced by MSTR.S and the estimated pairwise difference denoted by L, we
obtain using the results in Figure 27.3:

.
Example
Examp™®

R 1 2
s2L} = MSTR.S( + 1) = 1.067(—6—) = 3557

S S

Using (21.9b), we find for a 95 percent family confidence coefficient:

1 1
T = -—-2—q(.95;4, 15) = —

4.08) = 2.885
N N

Hence:
Ts{L} = 2.885+/.3557 = 1.72

Thus we obtain for the pairwise comparisons (see Table 27.2 for the ¥, DE
~2.39 = (26.00 — 26.67) — 1.72 < p.g — p3 < (26.00 — 26.67) + 1.72 = 1.05
2.28 = (26.00 — 22.00) — 1.72 < ftg — pp < (26.00 —22.00) + 1.72 =5.72
4.28 = (26.00 — 20.00) — 1.72 < phs — pop < (26.00 —20.00) +1.72 =772
2.95 = (26.67 —22.00) — 1.72 < p3 — p2 < (26.67 — 22.00) + 1.72 = 6.39
4.95 = (26.67 —20.00) - 1.72 < p3 — py < (26.67 —20.00) +1.72 = 8.39
28 = (22.00 — 20.00) — 1.72 < pg — oy < (22.00 — 20.00) + 1.72 =3.72

We display these results graphically as follows:

Wine Wine
Wine Wine 4 3
: 2 ; _/
b e i
hd - L N
20 25

Taste Score

We conclude from these pairwise comparisons that wines 3 and 4 are judged best, and do
not differ significantly from each other. Wines 1 and 2 are judged to be inferior to wines 3
and 4, with wine 1 receiving a mean rating significantly lower than that for wine 2. The
family confidence coefficient of .95 applies to the entire set of comparisons.
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TABLE 27.4
Ranked Data
for Coffee
Sweeteners in

a Repeated
Measures
Design—Coffee
Sweeteners
Example.

Ranked Data

Example

Sweetener ()

Subject

i A B C D E

1 5 1 2 4 3
2 4 2 1 5 3
3 3 2 1 4 5
4 5 2 3 4 1

5 4 1 2 3 5
6 4 1 3 5 2
R.; 4.17 1.50 2.00 4.17 3.17

Comment

When the treatments are time order positions, as when process rework is observed for a new many.
facturing process at periodic intervals. the nature of the time effect may be analyzed by developing
an appropriate regression model. =

In repeated measures studies, the observations are frequently ranks, as when a number of
tasters are each asked to rank recipes or when several university admissions officers are
each asked to rank applicants for admission. When the data in a repeated measures study
are ranks, the nonparametric rank F test described in Comment 3 on page 900 may be used
for testing whether the treatment means are equal. No new principles are involved, so we
shall proceed directly to an example.

Six subjects were each asked to rank five coffee sweeteners according to their taste pref-
erences, with rank 5 assigned to the most preferred sweetener. The data are presented in
Table 27.4 and suggest that a sweetener effect may be present. For example, no judge ranked
sweetener B higher than 2 (not preferred).

Test statistic ¢21.7b) tor the ranked data here is:

Fr 9.00
R 120

For level of significance o = .05, we need F(.95;4, 20) = 2.87. Since F}; = 7.5 > 2.87,
we conclude that the five sweeteners are not equally liked. The P-value of the test is .0007.

7.5

Multiple Pairwise Testing Procedure

Just as in the case of the rank F test for single-factor studies (Section 18.7), we can use
a large-sample testing analog of the Bonferroni pairwise comparison procedure to obtain
information about the comparative magnitudes of the treatiment means for repeated measures
designs when the rank F test (or the Friedman test) indicates that the treatment means ¢ differ.
Testing limits for all g = r(r — 1)/2 pairwise comparisons using the mean ranks R.; are
set up as follows for family level of significance o:

. t/2
R,—Ry+B [LGLQ] 27.9)
;
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where:

B =z(1 —a/2g) (27.9a)
_r@r—10)
2
If the testing limits include zero, we conclude that the corresponding treatment means . ;
and p.p do not differ. If the testing limits do not include zero, we conclude that the two
corresponding treatment means differ. We can then set up groups of treatments whose means
do not differ according to this simultaneous testing procedure.

(27.9b)

We now wish to make all pairwise tests by means of (27.9) with family level of significance
o = .20for the coffee sweeteners example. Forr = 5, wehave g = 5(4)/2 = 10and obtain:

B = z[1 — .20/2(10)] = z(.99) = 2.326
Thus, the right term in (27.9) fors =6 and r = 5 is:
r(r+ 1) 1/2 5(6)] 1/2
B|— =2.326|—— =2.12
[ 6s ] 6(6)

We note from Table 27.4 that the pairs of mean ranks whose difference does not exceed
2.12 are (B, C), (B, E), (C, E), (A, E), (D, E), and (A, D). Hence, we can set up two groups,
within which the treatment means do not differ:

Group 1 Group 2
Sweetener B l—i.z =1.50 Sweetener E R s=3.17
Sweetener C R.3=2.00 Sweetener A Ra=4.17
Sweetener E R.s=3.17 Sweetener D R.4s=4.17

Thus, we conclude with family level of significance of .20 that sweeteners A and D are
preferred to sweeteners B and C, and that it is not clear whether sweetener E belongs in the
preferred group or in the other group.

Comments

1. The rank F test can also be used for repeated measures designs where the observations are not
ranked, in case the distribution of the error terms departs far from normality. Ranks of the cbservations
Y); are then assigned within each subject, and the rank F test is carried out in the usual manner.

2. The test statistic F}; is related to Kendall’s coefficient of concordance W in the following way:
Fr

W=—r—
Fg+n—1

(27.10)

The coefficient of concordance W is a measure of the agreement of the rankings of the s subjects. It
equals 1 if there is perfect agreement, and equals 0 if there is no agreement, that is, if all treatments
receive the same mean ranking. For the coffee sweeteners example in Table 27.4, the coefficient of
concordance W is:
W= 75
75+6—1

This measure indicates that a fair amount of agreement exists between the subjects. |

= .60
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27.3 'Two-Factor Experiments with Repeated Measures
on One Factor

Description of Design

FIGURE 27.5
Layout for
Two-Factor
Design with
Random
Assignments of
Factor A Level
to Subjects and
Repeated
Measures on
Factor B.

In many two-factor studies, repeated measures can only be made on one of the two factorg
Consider, for instance, an experimenter who wished to study the effects of two types Of
incentives (factor A) on a person’s ability to solve problems. The researcher also wanteqd to
study two types of problems (factor B)—abstract and concrete problems. Each eXperimenta]
subject could be asked to do each type of problem, but could not be exposed to more thay,
one type of incentive stimulus because of potential interference effects. Thus, the design
the experimenter utilized may be represented schematically as shown in Figure 27.5.

In a two-factor experiment with repeated measures on one factor, two randomizations
generally need to be employed. First, the level of the nonrepeated factor (A, in Figure 27.5)
needs to be randomly assigned to the subjects. Second, the order of the levels of the repeated
factor (B, in Figure 27.5) needs to be randomized independently for all subjects.

Since s subjects are randomly assigned incentive stimulus A, and s subjects are randomly
assigned incentive stimulus A,, as far as factor A is concerned the experimentis a completely
randomized one. On the other hand, as far as factor B (type of problem) is concerned, each
subjectis ablock. Thus, for factor B, the experiment is a randomized complete block desigp,
with block effects random. We call this experimental design a two-factor experiment with
repeated measures on factor B.

In the experiment depicted in Figure 27.5, comparisons between factor A level means
involve differences between groups of subjects as well as differences associated with the
two factor A levels. On the other hand, comparisons between factor B level means at the
same level of factor A are based on the same subject, and hence only involve differences
associated with the two factor B levels. Thus, for these latter comparisons, each subject
serves as its own control. The main effects of factor A are therefore said to be confounded

Treatment
? Order

Incentive Stimulus Subject 1 2

1 I ABy A1BZ/(
*
A
s l AB A1BZJ
s+ 1 l A;B, AB J
A,
2s | A;B, A;B; l
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with differences between groups of subjects, whereas the main effects of factor B are free
of such confounding. It is for this reason that tests on factor B main effects will generally
be more sensitive than tests on the main effects for factor A.

Comments

1. A two-factor experiment with repeated measures on one factor may be viewed as an incomplete
block design. With reference to the repeated measures design in Figure 27.5, there are four treatments
(AyBy, A, By, A3By, and A; B,) and one-half of the blocks (subjects) contain treatments A; By and
A, B; while the other half of the blocks contain treatments A, By and A3 B,.

2. When the factor on which repeated measures are taken is time, randomization of the levels of the
repeated factor is impossible. Consider, for instance, a study of two different advertising campaigns
in which the effect on sales is to be measured in 10 test markets during four consecutive months.
Here, the only randomization required is for assigning the advertising campaigns to the test markets.
Similarly, when the nonrepeated factor is a characteristic of the subject, such as age of subject, no
randomization is involved for that factor. u

The development of a model for a two-factor experiment with repeated measures on one
factor is only a little more complex than for earlier cases. As before, we shall develop the
model for random subject effects and fixed factor A and factor B effects. Let, as usual,
o; and f; denote the factor A and factor B main effects, respectively, (af) ;. the AB
interaction effect, and p the subject (block) main effect. We do need to recognize, however,
that the subject effect in this design is nested within factor A. Therefore, we will denote this
effect by pi(j)- As before, we assume that there are no interactions between treatments and
subjects, although this condition is not essential here. A model that incorporates the above
specifications is as follows for a balanced study, where the number of subjects receiving
each level of factor A is the same:

Yij = pos + pigpy + 0 + B + (@B) i + &ijx (27.171)
where:

... 1S a constant

pigjy are independent N (0, 0'2)

«; are constants subject toy o; = 0

B are constants subjecttoy B =0

(B) jx are constants subject to Zj (@B)jx =0forall k and) _,(aB);x = Oforall j
&1 are independent N (0, 0'2)

Pi(» and &;, are independent

i=1,...,sj=L...,ak=1,...,b

The observations Y} forrepeated measures model (27.11) have the following properties:

E{Yij} = po + i + B+ (@) ji (27.12a)
oY} =0f =0 +0° (27.12b)
Ve, i) =02 k#K (27.12¢)

U{Yijk, Yi’j'k'} =0 i -‘,é i’ and/or J -‘,é j, (27.12d)
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Note that the observations Y;;; have constant variance. In addition, in advance of (he rando
trials any two observations for different levels of factor B for the same subject haye Oonstanm
covariance, for all subjects, while observations for different subjects are independen., Alsot
all observations are assumed to be normally distributed. ?

Once the subjects have been selected, repeated measures model (27.11) assumeg that an
two observations for the same subject are independent, that is, that there are o intﬂferencz
effects.

Analysis of Variance and Tests

Analysis of Variance. The ANOVA sums of squares for repeated measures mode] (27.1)
can be obtained by means of the rules in Appendix D. The sum of squares that is used for
estimating the error variance turns out to be the interaction sum of squares SSB.S(A). The
ANOVA sums of squares are shown in Table 27.5. Also shown there are the degrees of
freedom for each sum of squares.

Tests for Factor Effects. The expected mean squares for the analysis of variance in
Table 27.5 are given in Table 27.6. These expected mean squares can be obtained by means
of the rules in Appendix D.

1t is clear from the expected mean squares in Table 27.6 that the test for AB interaction

effects:

H()i all (oz,B)jk =0
H,: not all (aB) ;x equal zero

uses the test statistic:

. MSAB
"~ MSB.S(A)

TABLE 27.5 Analysis of Variance for Two-Factor Experiment with Repeated Measures on

Factor B—Model (27.11).

Source of Variation A1) df
Factor A SSA=bs» (¥ — V.Y’ a—1
i
Factor B SSB=as Z(Y.k —Y..)2 b—1
k
AB interactions SSAB=sY > (Vj— ¥j. — U+ ¥..)? (@a—1)b-1)
j k
Subjects (within factor A) SSS(A) = bz Z(?,-,-. % as—1)
T
Error SSB.S(A) = Z Z Z(y,-,-k —Yp— Y +Y)2 a(s—Db-1)
i j k
Total abs — 1

SSTO = "N (v — ¥..)?
ik



(‘A, B fixed,
Ssubjects
fandom).
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. ABiifteractions

' Subjects (within‘factor 4)

"Source of Variation
@

Factor-A

FactorB

Error

and the decision rule for controlling the Type I error at « is:

If F* < F{1 —a;(a— D® — 1), a(s — )b — 1)], conclude Hy
If F* > F{1 —a;(a — )b — 1), a(s — 1)(b — 1)], conclude H,

The test for factor A main effects:
H()I all i = 0
H,: not all ; equal zero
uses the test statistic:

. MsA
~ MSS(A)

and the decision rule for controlling the Type I error at o is:
If F* < F[1 —a;a — 1, a(s — 1)], conclude Hy
If F* > F[l —a;a — 1, a(s — 1)], conclude H,
Finally, the test for factor B main effects:
H()Z all ﬂk =0
H,: not all B, equal zero

uses the test statistic:
F* e MSB
"~ MSB.S(A)

and the decision rule for controlling the Type I error at « is:

If F* < F[1—a;b—1,a(s — 1)(b — 1)], conclude Hy
If F* > F[1 —a;b—1,a(s — 1)(b — 1)], conclude H,

(27.13¢)

(27.14a)

(27.14b)

(27.14¢)

(27.15a)

(27.15b)

(27.15¢)
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Comments

1. When the assumption of compound symmelry in repeated measures model (27.] 1} is not met
the conservative test discussed in Comment 2 on page 1065 should be employed. ?

2. When the study is not balanced (i.e., when the number of subjects within each leve] of factor Ajs
not the same), the tests described here are no longer appropriate. Instcad, the methods for unbalance,|

mixed and random effects models discussed in Section 25.7 can he employed. n

Evaluation of Appropriateness of Repeated Measures Model

Our earlier discussion on evaluating the appropriateness of a repeated measureg model
applies here also. The residuals for repeated measures model (27.11) are:

eiji = Vi — Y = Vi + ¥ (27.16)

A special feature of repeated measures model (27.11) also warrants attention. This mode]
requires that the variance between subjects, 6/?, be constant for all levels of factor A. Thig
assumption can be examined by dot plots of the estimated subject effects ¥;;. — ¥, ;- Toreach
level of factor A.

We can also conduct a formal test of the equality of the between-subjects variances by
noting that the variation between subjects within factor A, SSS(A), can be decomposed into

components for each factor A level:
SSS(A) = SSS(A,) + SSS(A2) + - -- + SSS(AL) (27.17)
where:

SSS(A;) =b» (V. — Y.y’ (27.17a)

Each component sum of squares has n — | degrees of freedom associated with it. We can
therefore test the equality of the between-subjects variances by means of the Hartley test
statistic (18.8) or the Brown-Forsythe test statistic (18.12). For the latter test, d;; in (18.11)
1s defined as the absolute difference between the estimated mean, ?,, and the median of
the estimated means Y....., ¥,;..

Similarly, the error variation, SSB.S(A), can be decomposed into components for each
factor A level:

SSB.S(A) = SSB.S(A;) + SSB.S(A3) + - -- + SSB.S(A,) (27.18)
where:

SSB.S(A;) =3 > (Vi — Yy — Vi + ¥, (27.18a)
ik .

Each component has (s — 1)(b — 1) degrees of freedom associated with it. The Hartley or
Brown-Forsythe tests can be conducted here also, this time to test for the equality of the
error variance o> for the different factor A levels.

The Hartley test assumes normality and is sensitive to this assumption. Hence, the
appropriateness of the normality assumption should be established first before the Hartley
test is employed. Unlike the Hartley test, the Brown-Forsythe test is robust and relatively
insensitive to departures front normality.
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“analysis of Factor Effects: Without Interaction

%

Example 1

When the two factors do not interact or the interactions are not important, the main effects
may be analyzed in a straightforward fashion. The relevant mean square to be used in the
estimated variance of an estimated contrast of factor A level means for repeated measures
model (27.11) is MSS(A) because this mean square is the denominator of the appropriate
F* statistic for testing factor A main effects. Similarly, the mean square for estimating
contrasts of factor B level means is MSB.S(A).

The multiples for the estimated standard deviation of an estimated contrast of factor A
or factor B level means are as follows:

Main A Effect Main B Effect

Single comparison
1 —a/2;a(s - 1)] 1 —a/2;a(s— 1Y(b-T1)] (27.19a)

Tukey procedure (for pairwise comparisons)

—a;a,0(s —1)] —a;ba(s—DH-1] (27.19b)

1

Scheffé procedure
S2=(@-NDF1—aa-1,a(s —1)]
S2=(b-DF[1—ab—1,as—1)b-1] (27.19c)

1

Bonferroni procedure
B=11—a/2g o(s — D] B=t1—-0a/2ga(s—T)b—1)] (27.19d)

Note from Table 27.6 that the analysis of factor B effects can be carried out more precisely
than that for factor A effects. The reason is that comparisons among factor A levels utilize
MSS(A), which involves the variability among the subjects as well as the experimental
error, while comparisons among factor B levels utilize MSB.S(A), which involves only
experimental error.

A national retail chain wanted to study the effects of two advertising campaigns (factor A)
on the volume of sales of athletic shoes over time (factor B). Ten similar test markets (sub-
jects, S) were chosen at random to participate in this study. The two advertising campaigns
(A, and A;) were similar in all respects except that a different national sports personality
was used in each. Sales data were collected for three two-week periods (B;: two weeks
prior to campaign; B;: two weeks during which campaign occurred; Bs: two weeks after
campaign was concluded). The experiment was conducted during a six-week period when
sales of athletic shoes are usually quite stable.

The data on sales (coded) are presented in Table 27.7, and are plotted in Figure 27.6
by test market for each advertising campaign. There is no evidence in Figure 27.6 of any
interactions between the test markets and the treatments. In general, sales tended to increase
during each advertising campaign, and then tended to decline to previous or lower levels
than just before the campaign.
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TABLE 27.7

Data—A thletic Advertising Test Time Period
Shoes Sales Campaign Market k= k=2 k=3
Example. i=1 958 1,047 933
i=2 1,005 1,122 986
j=1 i=3 351 436 339
i=4 549 632 512
i=35 730 784 707
i=1 780 897 718
= 229 275 202
j=2 Si=3 883 964 817
i=4 624 695 599
i=5 375 436 351
FIGURE 27.6 (a) Campaign 1 (b) Campaign 2
Plots of Sales

Y;

Data by Test Tk Yiak
Market and

Campaign— /\

Athletic Shoes gl 900 |-

Sales Example.

700 - /\ 700 |- g/@\‘
sool. /\ s00L

300 |- 300 -

0TI 1 ! OT' I §~

1 2 3 1 2
Period Period

K

From Figure 27.6 and other diagnostic analyses (not shown), it was concluded that
repeated measures model (27.11) is appropriate here. Figure 27.7 contains the MINITAB
output for the fit of this model.

First we wish to test for campaign-time interaction effects:

H0: all (Olﬂ)jk =0
H,: not all (@f) ;x equal zero
We use the results from Figure 27.7 in test statistic (27.13b):

_ MSAB 196
" MSB.S(A) ~ 358

*



{GURE 27.7
“'JITAB
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Factor Type Levels Values
A fixed 2 1 2
S(A) random 5 1 2 3 4 5
B fixed 3 1 2 3
Analysis of Variance for Y
Source DF Ss MS F P
A 1 168151 168151 0.73 0.417
S(A) 8 1833681 229210 640.31 0.000
B 2 67073 33537 93.69 0.000
A*B 2 391 196 0.55 0.589
Error 16 5727 358
Total 29 2075023 71553
Source Variance Error Expected Mean Square
Component Term (using restricted model)
1A 2 (5) + 3(2 + 15Q[1]
ZS(A) 76284.0 5 (5) + 32
3B 5 (5) + 10Q[3]
4A*B 5 (5) + 5Q[4]
5 Error 358.0 )
MEANS
A N Y
1 15 739.40
2 15 589.67
B N Y
1 10 648.40
2 10 728.80
3 10 616.40

For level of significance o = .05, werequire F(.95;2, 16) = 3.63. Since F* = .55 < 3.63,
we conclude Hy, that no significant interaction effects are present. The P-value for the test
is .59.

Next we wish to test for advertising campaign main effects:

Hof all i = 0
H,: not all o; equal zero
We use the results from Figure 27.7 in test statistic (27.14b):

MSA 168,151

F*= = =.
MSS(A) 229,210

For level of significance & = .05, we require F(.95; 1, 8) = 5.32. Since F* = .73 < 5.32,
we conclude Hy, that no advertising campaign main effects exist. The P-value for the test is
.42. Thus, either of the two national sports personalities is equally effective in the advertising
campaign.
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Finally, we wish to test for time period effects:
Hpall B, =0
H,: not all g, equal zero
Using the results from Figure 27.7 in test statistic (27.15b), we obtain:

_ MSB 33537 03.7
- MSB.S(A) 358

For level of significance o = .05, we require F'(.95;2, 16) = 3.63.Since F* = 93,7 . 3 63
we conclude H,, that period main effects exist. The P-value for the test is 0. ’

To examine the nature of the time period effects, we shall conduct pairwise comp
of mean sales for the three time periods:

*

arisons

L= Mok — Moo

The Tukey procedure will be employed, with a 99 percent family confidence coefficient.
We require:

1 1
T =—=q(99:3,16) = —
/2! ) V2

, . 2MSB.S(A) 2(358)
sH{LY = -

as 2(5)
Hence, Ts{L} = 3.3871.60 = 28.6.

The point estimates of the changes in mean sales, based on the estimated factor B level
means Y., in Figure 27.7, are:

(4.78) = 3.38

= 71.60

[~

Yo — Y., =728.8 — 648.4 = 804
h=Y3— Y, =6164—648.4=-32.0
[i=Y3—Y¥Y>=6164—7288=—112.4

[~

and the desired confidence intervals therefore are:
52 < per — pey < 109
—6l < pey — g <=3
—141l € poy — pen < -84

We conclude with family confidence coefficient .99 that the two advertising campaigns lead
to an immediate increase in mean sales of between 52 and 109 (8 to 17 percent), but that
mean sales in the following period fall below those for the period preceding the campaign
by somewhere between 3 and 61 (.5 to 9 percent).

Analysis of Factor Effects: With Interaction
When interactions exist between the two factors, the analysis of factor effects becomes con-
siderably more complex. As we saw in Chapter 19, page 848, when interaction effects are
important, attention usually focuses on simple effects. To compare simple main effe(fts of
the repeated measure factor B, the appropriate error term for these pairwise Comparlsf)nS
remains MSB.S(A). the same as when there is no interaction. However, the appl'()Pl”'ate
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error term used for the pairwise comparisons of the simple main effects for factor A needs
to be modified from that used without interaction in comparing main effects of factor A. For
each level of factor B considered individually, the analysis reduces to a single-factor exper-
iment in which there are no repeated measures. Hence, the mean square within treatments
is the appropriate error term to make pairwise comparisons among the treatment effects
within each level of factor B. This mean square is a weighted average of MSB.S(A) and
MSS(A) where the weights are the corresponding degrees of freedom:

a(b — 1)(s — 1)MSB.S(A) + a(s — 1)MSS(A)

MS(Within Treatments) = ab(s — 1)

Note that MS(Within Treatments) is a linear combination of mean squares whose expecta-
tions are not necessarily the same. Stated differently, MS(Within Treatments) represents a
pooling of what will often be heterogeneous sources of variability.

To employ this error term as a basis for pairwise comparisons among the simple main
effects, we employ the Satterthwaite procedure. The correspondences to (25.26) for L=
MS(Within Treatments) are:

- _ _alb—D(s—1) _a(s—1)
MS, = MSB.S(A)  MS, =MSS(A) ¢, = oD ¢, = p—

Substitution of these values into (25.28) leads to the Satterthwaite adjusted degrees of
freedom:

[SSB.S(A) + SSS(A) 1
[SSB.S(A)]? [SSS(A)?
ab— (s —1) a(s — 1)

dfadj =

(27.20)

We will now illustrate the analysis of factor effects in the presence of interactions with an
example.

During exercise, blood flow increases in some parts of the body in response to metabolic
demand. Using radioactive microspheres, an experiment was conducted to determine in
which of five parts of the body (factor B) this occurs. Microspheres distribute in tissue
as a function of blood flow; i.e., the greater the blood flow to a part of the body, the
more microspheres (and radioactivity) it will contain. The experiment was designed to
compare blood flow in five different parts of the body (factor B) between the resting control
condition (factor A,) and during exercise (factor A,). Tissues were examined in the following
parts of the body: bone, brain, skin, muscle, and heart. The experiment was conducted by
injecting a total of eight rats (subjects) intravenously with radioactive microspheres. After
the microspheres were injected, four rats were exercised on a treadmill for 15 minutes (factor
Aj) and the other four rats were placed on the treadmill, but the treadmill was not turned
on (factor A;). At the end of the 15-minute period, the rats were sacrificed and tissues in
the five parts were harvested and the radioactivity in the tissues was measured. The data for
this blood flow experiment are presented in Table 27.8 and plotted in Figure 27.8 by body
part for each exercise condition.

On the basis of Figure 27.8 and other diagnostic analyses (not shown), it was decided
that repeated measure model (27.11) is appropriate here. Table 27.9 contains the analysis
of variance table based on repeated measures model (27.11).
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TABLE 27.8

Data—Blood Body Part
Flow during Exercise k=1 k=2 k=3 k=4 k=5
Exercise Condition (Bone) (Brain) (Skin) (Musde) (Heart)
Example.* (No Exercise)  i=1 4 3 5 5 4
i=2 1 3 6 3 8
j=1 i=3 3 1 4 4 7
i=4 1 4 3 2 7
(Exercise) i=1 3 6 12 22 11
Q=2 3 5 8 18 12
j=2 T i=3 4 7 10 20 14
i=4 2 4 7 16 8
*Adapted from FJ. Gordon, Anaivsis of Variance: Designs, Computations, and Multiple Comparisons. Department of Pharmacoogy,
Emory University School of Medicine, 2003.
Zﬁ:l;:iszoi.g Source of
. Variation ss df MS F* P-value
Variance
Table—Blood A 324.9000 1 324.9000 44.104 .0006
Flow during S(A) 44.2000 6 7.3667
Exercise B 389.5000 4 97.3750 49.936 .0000
Example. AB 262.1000 4 65.5250 33.603 .0000
B.S(A) 46.8000 24 1.9500
Total 1067.5000 39

FIGURE 27.8 Plot of Exercise Condition by Body Part for Each Rat—Blood Flow during Exercise Example.

(a) No Exercise (4;) (b) Exercise (A;)
25 25
201 20~
E 15 _5 15
© ©
8 10} 810l
oo o
51 5 F
0 0
1 1 1 1 1 | 1 I 1 1
Bone Brain Skin Muscle Heart Bone Brain Skin Muscle Heart

Body Part (B) Body Part (B)
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First we wish to test for exercise by body part interaction effects:
Hy: all (Olﬂ)jk =0
H,: not all (of) j; equal zero
We use the results from Table 27.9 as the test statistic (27.18a):

_ MSAB 655250
~ MSB.S(A)  1.9500

For level of significance o = .05, we require F(.95;4, 24) = 2.776. Since F* = 33.6 >
2.776, we conclude H,, suggesting that interaction effects are present. The P-value for the
test is O+.

Next, because of the presence of a strong interaction effect, we wish to compare simple
main effects of the repeated measures factor B (body part). We shall conduct pairwise
comparisons of mean blood flows among body parts separately within the exercise and no
exercise conditions; namely,

%

= 33.603

No Exercise Exercise
Dy = pai — paz Dii = par — jr22
Dy, = pa1— phas Diz= 1 — 23
D3 = pa1 — ptaa Dis = p21 — p2a
Dy = pa1— pas Dia = par — pas
Ds = paz— pas Dis = p22— p23
D¢ = praz — paa D16 = pr22 — .24
D; = paz — pas D17 = pt22 — pr.2s
Dg = paz— g Dig = pt23 — .24
Do = pa3 — pas D19 = pt23 — p.2s
Dio = ftaa — pas D20 = pr2a — ph2s

The Tukey procedure will be employed, with a 90 percent confidence coefficient, for each
exercise condition. Then to combine these two Tukey procedures, a Bonferroni adjustment
will be made for each exercise condition. Thus, we require

1 4.17
T =—=g(95,5,24) = — = 2.95
Nike )="hA
- 2MSB. 2(1.95
by = MSBSA) _ (149 ) _ 975

where .95 is used in the T argument instead of .90 to incorporate the Bonferroni adjustment
for the two conditions. Hence, Ts{D} = 2.954/.975 = 2.91. Table 27.10 lists the cell
means by exercise group and body part.

Any means within an exercise group that differ by more than 2.91 units are concluded
to be significantly different from one another at the .10 level of significance. Therefore,
for the no exercise group, heart is significantly different from bone, brain, and muscle. For
the exercise group: heart is significantly different from bone, brain, and muscle; muscle is
significantly different from bone, brain, skin, and heart; and skin is significantly different
from bone, brain, and muscle.
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TABLE 27.10 Treatment Means by Exercise Group and Body Part—Blood Flow dyy;
Exercise Example. "8

k=1 k=2 k=3 k=4 k=5

(Bone) (Brain) (Skin) (Musde) (Heart)
j = 1 (No exercise) 2.25 275 4.50 3.50 6.50
j = 2 (Exercise) 3.00 5.50 9.25 19.00 11.25

To examine simple main effects of the nonrepeated measure factor A (exercise) for each
level of B (body part), we shall conduct the five pairwise comparisons of mean blood flows
between the two exercise groups within each body part; namely,

Dy = gy — 1oy
Dy = pya —
Dy = pgs —
Dy=pgg—
Ds = pgs — pas
The Tukey procedure will be employed using a 95 percent confidence coefficient for each

body pait with a Bonferroni adjustment for the five body parts. The within-treatment sum
of squares 1s

SS(Within Treatments) = SSB.S(A) + SSS(A) = 46.8000 + 44.2000 = 91.0000
The approximate Satterthwaite adjusted degrees ot freedom from (27.20) are:

[46.8000 + 44.2000]>  8281.0000
(46.8000)>  (44.2000)>  416.8667
2(4)(3) 2(3)

dfudi = = 19.86

Being conservative, we use df,,; = 19 associated with MS(Within Treatments), where

91.0000

MS(Within Treatments) = = 3.033

Thus, we require

! 4.05
T = —(99:2.19) = -2 — 286
s2! RN

- 2MS(Within Treatments) _ 2(3.033) _

2D} 1.52

S

Hence, TS{D} = 2.864/1.52 = 3.53. Any means within body parts that differ by more than
3.53 units are significantly different from one another at the . 10 level of significance. There-
fore, we conclude that average blood flow for skin, muscle, and heart differ significantly
between exercise groups.
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Treatment Order

1 2

Subject 1 AyBy AzB,
Block 1

Subject 2 ABy ABy

Subject 3 AB, AB,
Block 2

Subject 4 AyBy AzB,

Subject 2n, — 1§ AB,; AB,
Block ny,

Subject 2ny, A,B, AyB,

Blocking of Subjects in Repeated Measures Designs

As already noted, comparisons among factor B effects can usually be carried out with
greater precision than those for factor A effects because the latter involve between-subject
variability as well as experimental error. To improve the precision of factor A comparisons,
it is often helpful to block the subjects by some appropriate characteristic(s) so that the
subjects within a block are homogeneous. Figure 27.9 illustrates the blocking of subjects
in connection with the repeated measures design of Figure 27.5. Altogether, n; blocks
are used, each consisting of two similar subjects. One subject in each block is assigned at
random to factor level A,, the other is assigned to factor level A,. In the second stage of
randomization, each subject is randomly assigned the order of the two levels of factor B,
namely, type of problem. Thus, the only difference between the repeated measures designs
in Figures 27.9 and 27.5 is the blocking of the subjects for purposes of studying factor A
effects more precisely. Note that for this layout, the number of subjects is s = 2n,.

When there is a choice between which of the two factors should be the one on which
repeated measutres are taken (factor B), it should be the one for which more precise estimates
are required. The reason is that even with blocking, the variability between subjects within
a block will usually be greater than the variability within a subject.

274 'Two-Factor Experiments with Repeated Measures
on Both Factors

In Section 27.2 we considered single-factor repeated measures studies. The model for these
designs can be extended when the treatments follow a factorial structure. For example,
consider a study where four treatments are employed that represent two levels of each of
two factors. Figure 27.10 depicts the layout for such a design when four subjects are utilized
in the study. Note that the order of the treatments is randomized within each subject. When
the treatments represent a factorial structure, we can explore as usual interaction effects as
well as the main effects for the two factors. The design in Figure 27.10 is said to represent
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FIGURE 27.10
Layout for
Two-Factor
Repeated
Measures
Design with
Repeated
Measures on
Both Factors
(s=4,a=2,
b=2)

Model

Treatment Order

1 2 3 4
Subject 1 lr A8y 4L) AiBy AyBy J
2 lVAZBl AiB; 4B, ABy J
3 l’ AyB; ABy AzBy ABy J
4 ( ABy B, ABy B, J

repeated measures on both factors because each subject recerves all treatments defined by
the tactorial structure.

When both fuctor effects are fixed. the subjects constitute a random sample, and there are
repeated measures on both factors. a model frequently appropriate is given by:

Yiie = oo + o + oy + B+ (@B) e + (padij + (0B)ix + &1

where:

(27.21)

... 1$ @ constant

pi are independent N (0, o))

o are constants subject toy a; =0

By are constants subject o) B = 0

(aB) ; are constants subject to Zj (@B)j = Oforall k and) ", (af)jx = Oforall j
(pB)ir are N (0. b—;—Laf)ﬁ> subject to the restrictions Y, (pB)i: = 0 for alti

1, .
T {(pBYk- (0B)y) = — 02 for k # K
b

a ™

~1 2 .
(por);; are N (0. ¢ o, > subject to the restrictions ), (pa);; = 0 for all i

|
“{(Pa)i_,'. (pOl),»I-'} = _ZO-/_W for j # j
pi. (por);; and (pB)y are pairwise independent
&;; are independent N (0, o) and independent of p;, (pcr)i; and (pB)ik

i=1,....5) =

Note that two of the interaction terms in the model are random since the factor o; 15 2

random effect and that all sums of effects over the fixed factor levels are zero.

The observations Y;j, for repeated measures model (27.21) have the following properties:
E{Yijd = o + o + Bu + (@B) i (27.229)

, a—1 , b—1 ,

(27.22b)
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Model (27.21) is an extension of the single-factor repeated measures model (27.1), where
the treatment effect t; is now decomposed into factor A and factor B main effects and an
AB interaction effect. However, separate first-order treatment-by-subject interaction terms
are assumed to exist.

Once the subjects have been selected, repeated measures model (27.21), like the earlier
repeated measures model (27.1), assumes that all of the treatment observations for a given
subject are independent—that is, that there are no interference effects.

Analysis of Variance and Tests

Analysis of Variance. The ANOVA sums of squares for model (27.21) and the expected
mean squares can be obtained readily by following the rules in Appendix D. The sum of
squares for estimating the error variance terms reflects the interactions between treatments
and subjects. Table 27.11 presents the ANOVA decomposition, degrees of freedom, and
expected mean squares for two-factor repeated measures model (27.21).

Tests for Factor Effects. It is clear from the expected mean squares column in
Table 27.11a that the test for AB interaction effects:

H()Z all (Olﬂ)jk =0

(27.23a)
H,: not all (of) ;x equal zero
uses the test statistic:
MSA
x_ MSAB (27.23b)
MSABS
and the decision rule for controlling the Type 1 error at « is:
IfF*<F[l—-a;(a—1)b-1),@— DmB-—1)(s — D], conclude H,
[ ( X ) ( X X ) o (27.23¢)
HF*>F[l—o;(a— )G -1, (@@— 1)®-1)(s —1)], conclude H,
The test for factor A main effects:
Hy:allo; =0
(27.24a)
H,: not all o; equal zero
uses the test statistic:
MSA
F* = —— 27.24b
MSAS ( )
and the decision rule for controlling the Type I error at o is:
IF*< F[l—a;a—1, (a— 1)({s —1)], conclude H;
< F[ ( )1 ) b (27.24¢)
fF* > F[1—-co;a—1,(a— 1) — 1)], conclude H,
Similarly, the test for factor B main effects:
Hy:all B =0
o all B (27.25a)
H,: not all 8, equal zero
uses the test statistic:
MSB
v MS (27.25b)

" MSBS
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TABLE 27.11
ANOVA Table
and Sumns of
Squares for
Two-Factor
Repeated
Measures
Design with
Repeated
Measures on
Both Factors—
Subjects
Random,
Factors A and
B Fixed.

(a) ANOVA Table
Source of
Variation ss df MS E{Mms}
Subjects(S) AR s—1 MSS o2 4 gbs?
n
2
Factor A SSA a—1 MSA 074 bo2 | ps Z\"‘
=1
2
Factor B SSB b—1 MSB 0%+ aoZ, + 0525
ABinteractions  SSAB (a—1)b—1) MSAB o2 s ZZ(“‘B)
(a-1)b-1)
AS interactions SSAS (a-1-1) MSAS o2 + bo?,
BS interactions SSBS (b—T)(s—-1) MSBS o2 + ag,fﬂ
Error SSABS  (a—1)b—1)s—1)  MSABS o2
Total §§TO abs — 1
(b) Sums of Squares
§§§ = abZ(?,».. —¥.)?
i
SSA=sby (¥;.— V.
J
SSB =50y (Vo — V..)?
k
SSAB = sZZ(Y,k V= Yo+ XY
SSAS = bz Z(Y,, R A &
$SBS = aZZ(Y,k—Y, — Vg + Vo)
SSABS = ZZZ(Y,”( - Y/,'. - Y,'.k — ?-,'k + ?/.. + ?, + E-k — ?)Z
i j k
and the decision rule for controlling the Type 1 error at « 1s:
If F* < F[l —a:b— 1, (b — l)(s — 1)]. conclude Hy (27.250'

IfF*> F[l —a;b—1,(b—1)(s — )], conclude H,

Comments

1. When the effects of either factor A or factor B are random, the expected mean squares can be
found by employing the rules in Appendix D. In turn, these expected mean squares will identify the
appropriate test statistics.

2. Conservative F tests described in Section 25.5 should be used when the assumption of com-
pound symmetry in repeated mcasures model (27.21) is not met.
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3. Repeated measures model (27.21) assumes that treatments and subjects interact. If treatments
and subjects do not interact, it can be shown that the treatment by subject interaction sum of squares
is made up of three components:

SSTR.S = SSAS + SSBS + SSABS

Thus, it is possible to pool the first-order interactions in the model (the factor A by subject interactions
and the factor B by subject interactions) with the second-order interactions (the factor A by factor B
by subject interactions). When the repeated measures model does not allow for interactions between
treatments and subjects, the analysis of factor effects becomes somewhat easier. However, in many
cases, MSARBS tends to be considerably smaller than either MSAS or MSBS, justifying the use of
separate error terms. |

gvaluation of Appropriateness of Repeated Measures Model

Our earlier discussion on the evaluation of the appropriateness of repeated measures model
(27.1) applies here as well. In particular, residual sequence plots by subject should be
constructed to examine whether interference effects are present and whether the error vari-
ance is constant. Plots of the observations by subject should be utilized to see whether the
assumption of no treatment by subject interactions is appropriate.

Analysis of Factor Effects

If factors A and B do not interact or interact only in an unimportant fashion, the analysis
of factor A and factor B main effects proceeds as usual. For the analysis of either factor A
or factor B main effects, either MSAS or MSBS, respectively, will be used in the estimated
variance of the estimated contrast since this mean square is the denominator of the F* test
statistic for testing factor A or factor B main effects.

The multiples for the estimated standard deviation of an estimated contrast of factor A
or factor B level means are as follows:

Main A Effect Main B Effect

Single comparison

tt —a/2;(a—1)(s—1)] 1 —a/2;(b—T1(s—-1)] (27.264a)
Tukey procedure (for pairwise comparisons)

1 1
T=—q[1—a;0(a—1)s-1 T=—g[1—o;b(b—1)s—1 27.26b
ﬁQ[ a;0,(a—1)(s—1)] ﬁq[ a;b (b—1(s-1] ( )

Scheffé procedure

$2=(a—NF[1 —eza—1,(a—1)(s—1)]
SZ=(b-DF[1—a;b—1,(b-1)s-1] (27.26¢)

Bonferroni procedure
B=1H1—a/2g;(a—1)s— 1)] B=H1—a/2g;(b—1)s—-1)] (27.26d)

If strong interactions between factors A and B exist that cannot be made unimportant by
some simple transformation, the analysis of the factor effects should be performed in terms
of the treatment means p.;;, which are averaged over subjects. This analysis is similar
to that in Section 27.3 for a two-factor study with interaction. The pooled mean square
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Example

TABLE 27.12
Data—Blood
Flow Example.

Specialized Study Desigits

MSTR.S will be used in estimating the variance of any estimated contrast of the tre
means. The degrees of freedom associated with MSTR.S will need to be estimated us
Sauerthwaite procedure discussed before in Chapter 25, page 1043,

atment
1ng the

A clinician studied the effects of two drugs used either alone or together on the blood figw
in human subjects. Twelve healthy middle-aged males participated in the study and
are viewed as a random sample from a relevant population of middle-aged males, The four
treatments used in the study are defined as follows:

Ay By placebo (neither drug)
AqiB; drug B alone
Az By drug A alone

AzBy both drugs A and B

The 12 subjects received each of the four treatments in independently randomized orders.
The response variable is the increase in blood flow from before to shortly after the ad-
ministration of the treatment. The treatments were administered on successive days. This
wash-out period prevented any carryover effects because the effect of each drug is short-
lived. The experiment was conducted in a double-blind fashion so that neither the physician
nor the subject knew which treatment was administered when the change in blood flow was
measured.

Table 27.12 contains the data for this study. A negative entry denotes a decrease in
blood flow. Figure 27.11 contains the MINITAB output for the fit of repeated measures
model (27.21). Included in the output are the expected mean squares for the specified
ANOVA model. As explained in Chapter 25, each term in an expected mean square is
represented in the MINITAB output by (1) the numeric code, in parentheses. for the variance
of the model term and (2) the preceding number, which is the numerical multiple. When the
model term is fixed, the letter Q is used in the printout to show that the variance is replaced
by the sum of squared effects divided by degrees of freedom. For example, the expected
value of MSA as shown in Figure 27.11 is:

Sa:
2-1

which corresponds, of course, to the factor A expected mean square shown in Table 27.11a.

(7) +2(5) +24Q[2] = 0° + 20, + 24

. Treatment
Subject
i A By A B, Az By A2 B,
1 2 10 9 25
2 —1 8 6 21
3 0 11 8 24
10 -2 10 10 28
11 2 8 10 25

12 -1 8 6 23



jFIGURE 27.11
MINITAB
Output for
ANOVA—
Example.
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(2) MINITAB Output

Analysis of Varlance for Flow

Source DF Ss Ms F P
Subject 1 258.50 23.50 20.68 0.000
A 1 1587.00 1587.00 775.87 0.000
B 1 2028.00 2028.00 524.89 0.000
A*B 1 147.00 147.00 129.36 0,000
Subject*A 1 22.50 2.05 1.80 0.172
Subject*B 11 42.50 3.86 3.40 0.027
Error 11 12.50 1.14
Total 47 4098.00
Source Variance Error Expected Mean Square for Each Term
Component Term (using restricted model)
1 Subject 5.5909 7 (D) +40)
2A 5 7) + 2(5) + 24Q[2]
3B 6 (7) + 2(6) + 24Q[3]
4 A*B 7 ) +12Q[4]
5 Subject*A 0.4545 7 D+25
6 Subject*B 1.3636 7 7) + 2(6)
7 Error 1.1364 @)
(b) SAS Cutput
Source DF Type il SS | Mean Square F Value Pr>F
a 1| 1587.000000 | 1587.000000 775.87 <.0001
Error(a) 11 22.500000 2.045455
Source DF Typelll SS | Mean Square F value Pr>F
b 1] 2028.000000 | 2028.000000 524.89 <.0001
Error(b) 1 42.500000 3.863636
Source DF Type llI SS | Mean Square F Value Pr>F
a*b 1| 147.0000000 | 147.0000000 129.36 <.0001
Error(a*b) | 11 12.5000000 1.1363636
N Mean Std Dev Minimum Maximum
albi 12 0.5000000 2.1105794 —2.0000000 4.0000000
alb2 12 | 10.0000000 3.1908961 5.0000000 | 16.0000000
azb1 12 8.5000000 2.0225996 6.0000000 | 12.0000000
aZb2 12 | 25.0000000 3.4377583 20.0000000 | 31.0000000

1159
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FIGURE 27.12
Interaction

Plot with
Responses
Superimposed—
Blood Flow
Example.

|
@
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Blood Flow
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Various diagnostics were utilized to see if repeated measures model (27.21) is appropriate
for the data in Table 27.12. The results (not shown here) supported the appropriateness of
this model. The clinician expected the two drugs to interact in increasing the blood flow,
To test for interaction effects:

Hy: all (01,3),'1; =0

H,: not all («f) ;+ equal zero
we use test statistic (27.23b) and the results from Figure 27.11:

*

_ MSAB _ 147.000
" MSABS  1.1364

For level of significance o = .01, we require F(.99; 1, 11) = 9.65. Since F* = 129.36 >
9.65, we conclude H,, that interaction effects exist. The P-value for this test is 0.

Figure 27.12 contains an interaction plot of the estimated treatment means, with the
responses superimposed. Substantial interaction effects are evident. To study the nature of
the interaction effects, the clinician wished to compare the joint use of the two drugs with
the use of each drug alone, drug A with drug B, and each drug with no drug. Thus, the
following pairwise comparisons are to be made:

= 129.36

Ly = pya — piem Ly = poy — pen
Ly = ptoyy — piona Ls = pi2 — pegy
Ly = py — pepz

Point estimates of these pairwise comparisons are ()_f_,-k values are in Figure 27.11b):

250—-85=165 L,=85—.5=80
25.0—10.0 = 15.0 Ls=100~.5=95
85— 10.0=—15

I
i

L
L
L
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The estimated variance of each estimate L is given in (17.22), with the relevant mean square
here being MSABS. Hence, we have:

A 1 1 2
SYLY=MSABS| -4+ - ) =1.1364 | — ) =.18%4
s s 12

and s{L} = .435. Using the Bonferroni procedure with a 95 percent family confidence
coefficient, we require B =t[1 — (.05)/2(5);11] =#(.995;11) =3.106. Hence,
£(.995; 11)s{L} = 3.106(.435) = 1.35 and the desired confidence intervals with a 95 per-
cent family confidence coefficient are:

15.15 < o — oy < 17.85 6.65 < gy — pe <9.35
13.65 < pupp — a2 < 16.35 8.15 < a2 — e < 10.85
—2.85 < g — perz < —.15

It is clear from these results that either drug A alone or drug B alone leads to an increase
in blood flow, and that the combination of the two drugs leads to a substantial additional
increase in blood flow as compared to when either drug is used alone. Finally, a significant
difference exists in the mean effects of the two drugs used alone.

Comments

1. Repeated measures designs are discussed in more detail in References 27.1 and 27.2.

2. In economics and econometrics, repeated measurement data over time are commonly referred
to as panel data. The process of combining cross-sectional data and data over time to form a panel is
called pooling. See References 27.3 and 27.4 for a discussion of these models and their analyses.

3. Another area of application for repeated measurement data is referred to as growth curve model
analyses. Here separate regression models are fit to each subject over time. See Reference 27.5 for a
discussion of these models and their analyses. |

27.5 Regression Approach to Repeated Measures Designs

When the repeated measures study is balanced and the treatment effects are fixed, the
analysis of variance model can be expressed in the form of a regression model with indicator
variables for purposes of obtaining the various sums of squares and conducting tests for
treatment effects. Repeated measures models (27.1) and (27.21) can be stated in the form
of aregression model as explained in Section 23.4 for randomized block designs. Repeated
measures model (27.11), which also involves nested effects, can be expressed in the form
of a regression model by including suitable indicator variables as explained in Section 26.6
on page 1105.

When the repeated measures study is not balanced, as, for instance, when there are
missing observations, the tests based on the expected mean squares in Tables 27.1, 27.6,
and 27.11 are no longer appropriate. Methods for analyzing unbalanced mixed and random
effects models are discussed in Section 25.7.
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27.6  Split-Plot Designs

Split-plot designs are frequently used in field, laboratory, industiial, and social science
experiments. The repeated measures design in Figure 27.5 for a study with repeated mea-
sures on one factor is a type of split-plot design. We shall discuss split-plot designs only for
two-factor studies, but these designs can be extended to apply when three or more factors
are under investigation.

Split-plot designs were originally developed for agricultural experiments. Consider an
investigation to study the effects of two irrigation methods (factor A) and two fertilizers
(factor B) onyield of a crop, using four available fields asexperimental units. In acompletely
randomized design, four treatments (A, By, A Ba, A;B|, A3 B5) would then be assigned at
random to the four fields. Since there are four treatments and just four experimental units,
there will be no degrees of freedom for estimation of error, as shown in the following
abbreviated ANOVA table, listing source of variation and degrees of freedom only:

Degrees
Source of Variation of Freedom
Factor A (irrigation methods) 1
Factor B (fertilizer types) 1
AB interactions 1
Error 0
Total 3

If the fields could be subdivided into smaller experimental units, replicates of each
factor-level combination could be obtained and the error variance could then be estimated.
Unfortunately, in this investigation it is not possible to apply different irrigation methods
(factor A) in areas smaller than a field, although different fertilizer types (factor B) could
be applied in relatively small areas. A split-plot design can accommodate this situation.

In a split-plot design, each of the two irrigation methods is randomly assigned to two
of the four fields, which are usually called whole plots. In turn, each whole plot is then
subdivided into two or more smaller areas called split plots, and the two fertilizers are
then randomly, assigned to the split plots within each whole plot. The key feature of split-
plot designs is the use of two (or more) distinct levels of randomization. At the first level
of randomization, the whole-plot treatments are randomly assigned to whole plots; at the
second level, the split-plot treatments are randomly assigned to split plots.

The layout for the agricultural experiment example is shown in Figure 27.13. Note that
this layout is conceptually identical to the layout for the two-factor repeated measures design
in Figure 27.5. The fields in Figure 27.13 correspond to the subjects in Figure 27.5, and
the split plots correspond to the occasions on which treatments can be applied to subject.
Consequently, the split-plot model here is the same as in (27.11):

Yijk =t + picpy + o5 + B + (@B j + &ije (27.27)

For the split-plot agricultural experiment example, «; denotes the main effect of the jth
irrigation method (jth whole-plot treatment) and g, denotes the main effect of the kth



TABLE 27.13
ANOVA Table
for Two-Factor
Split-Plot
Experiment.
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FIGURE 27.13 Layout for Two-Factor Split-Plot Experiment—Agricultural Experiment
Example (factor A is whole-plot treatment and factor B is split-plot treatment).

Fields (Whole Plots)
l
! | | ]
4B, AqB, AB, AzB,
Split Plots {
AzB, AB, AB, A;B,
A A A Ay

Whole-Plot Treatments

 Source of Variation S df MS
Whole:plots
Factor A $SA a—1 MSA
Whole-plot error SSW(A) a(s—1) MSW(A)
Split plots
Factor B SSB b—1 MSB
AB interactions SsAB (a=1b-—1) MSAB
Split-plot error SSB.W(A) a(s —1)(b—1) MSB.W(A)
Total SSFO abs =1

fertilizer type (kth split-plot treatment). Also, p;(;, denotes the effect of the ith whole plot,
nested within the jth level of factor A (irrigation method).

Some computer packages produce special ANOVA tables that list the whole-plot effects
and split-plot effects separately. Table 27.13 illustrates such a table. These tables serve as
a reminder that the denominator of the F test for the whole-plot treatments is given by the
error mean square for whole plots and that the denominator of the F test for the split-plot
treatments and for the interactions between the whole-plot and split-plot treatments is given
by the split-plot error mean square, as shown in Table 27.13. Note that this table is simply
a rearrangement of the ANOVA table in Table 27.5 for a two-factor study with repeated
measures on one factor. SSS(A) is now denoted by SSW(A) and SSB.S(A) is now denoted
by SSB.W(A). The expected mean squares are the same as in Table 27.6.

Comments

1. Whenever subjects can recejve all treatments in a two-factor study without interference effects,
a repeated measures design with repeated meastires on both factors might be preferable, because the
factor effects for both factors may be estimated more precisely than in a split-plot design.

2. Split-plot designs are useful in industrial experiments when one factor requires larger experi-
mental units than another. Consider, for instance, a study of the effects of two additives (factor A) and
two different containers (factor B) for prolonging the shelf life of a milk product. Here, it is easier to
make larger batches of the milk product with a given additive, whereas the different containers can
be used with smaller batches.
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3. Splir-plot designs may be viewed as a type of incomplete block design where the whol
considered to be the blocks, with each whole plot being given only some of the full se| of
Incomplete block designs are discussed in Chapter 28.

le plots are
reatmengg,

4. A wide variety of split-plot designs has been developed. For instance, split-plot designs ¢
involve more than two stages of randomization. In a split-split-plot experiment, three stages of r;,l_l
domization are generally involved. Whole plots are divided into split plots and split plots are further
divided into split split plots. Three treatments are then assigned to the various levels of €xperimenta]
units, using three distinct stages of randomization. References 27.2 and 27.6 provide further informg.

tion about these designs. »
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Problems

27.1. A serious potential problem with repeated measures designs is associated with carryover
effects. Describe some steps that can be taken to minimize this problem.

27.2. In designing a two-factor repeated measures study with repeated measures on one factor, does
it matter which of the two factors is included as the repeated measures factor? Explain fully.

27.3. Blood pressure. The relationship between the dose of a drug that increases blood pressure and
the actual amount of increase in mean diastolic blood pressure was investigated in a laboratory
experiment. Twelve rabbits received in random order six different dose levels of the drug, with
a suitable interval between each drug administration. The increase in blood pressure was used
as the response variable. The data on blood pressure increase follow.

Rabbit Dose (/) Rabbit Dose (/)

i1 3 5 1.0 15 30 i 1 3 5 10 15 30
I 21 21 23 35 36 48 7 9 12 17 22 33 40
2 19 24 27 36 36 46 8 20 20 30 30 38 4l
312 25 27 26 33 40 9 18 18 27 31 42 49
4 9 17 18 27 34 39 10 8 12 11 24 26 31
5 7 10 19 25 31 38 1118 22 25 32 38 38
6 18 26 26 29 39 44 12 17 23 26 28 34 35

a. Obtain the residuals for repeated measures model (27.1) and plot them against the fitted
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.1)?

b. Prepare aligned residual dot plots by dose level. Do these plots support the assumption of
constancy of the error variance? Discuss.

c. Plotthe observations Y;; for each rabbit in the format of Figure 27.2. Does the assumption
of no interactions between subjects (rabbits) and treatments appear o be reasonable here?
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Conduct the Tukey test for additivity, conditional on the rabbits actually selected; use
o = .005. State the alternatives, decision rule, and conclusion. What is the P-value of the
test?

27.4. Refer to Blood pressure Problem 27.3. Assume that repeated measures model (27.1) is
appropriate.

21.5.

27.6.

a
b.

Obtain the analysis of variance table.

Test whether or not the mean increase in blood pressure differs for the various dose levels;
use o = .01. State the alternatives, decision rule, and conclusion. What is the P-value of
the test?

. Analyzethe effects of the six dose levels by comparing the means for successive dose levels

using the Bonferroni procedure with a 95 percent family confidence coefficient. State your
findings and summarize them by a suitable line plot.

. According to the estimated efficiency measure (21.14), how effective was the repeated

measures design here as compared to a completely randomized design?

Refer to Blood pressure Problems 27.3 and 27.4.

a.

Develop a regression model in which the subject effects are represented by 1, —1, O
mdicator variables and the dose effect is represented by linear, quadratic, and cubic terms
inx = X — X, where X is the dose level. For instance, the x value for the first dose level
X=1isx=1-107=-97.

. Fit the regression model to the data.
. Obtain the residuals and plot them against the fitted values. Does the model utilized appear

to provide a reasonable fit?

. Test whether or not the cubic effect is required in the model; use o = .05. State the

alternatives, decision rule, and conclusion. What is the P-value of the test?

Grapefruit sales. A supermarket chain studied the relationship between grapefruit sales and
the price at which grapefruits are offered. Three price levels were studied: (1) the chief
competitor’s price, (2) a price slightly higher than the chief competitor’s price, and (3) a price
moderately higher than the chief competitor’s price. Eight stores of comparable size were
randomly selected for the study. Sales data were collected for three one-week periods, with
the order of the three price levels randomly assigned for each store. The experiment was
conducted during a time period when sales of grapefruits are usually quite stable, and no
carryover effects were anticipated for this product. Data on store sales of grapefruits during
the study period follow (data coded).

a.

b.

Price level (j)

Store
i 1 2 3
1 62.1 61.3 60.8
2 58.2 579 55.1
7 46.8 43.2 41.5
8 51.2 498 47.9

Obtain the residuals for repeated measures model (27.1) and plot them against the fitted
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.1)?

Prepare aligned residual dot plots by price level. Do these plots support the assumption of
constancy of the error variance? Discuss.
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%27.7.

27.8.

%27.9.

27.10.

27.11.

c. Plot the observations Y;; for each store in the format of Figure 27.2. Does the assumpyig,
of no interactions between subjects (stores) and treatments appear to be reasonaple bered

d. Conduct the Tukey test for additivity, conditional on the stores actually selected, use
« = .01. State the alternatives. decision rule, and conclusion. What is the P-valye of the
test?

Refer to Grapefruit sales Problem 27.6. Assume that repeated measures mode] @7.1) i

appropriate,

a. Obtain the analysis of variance table,

b. Test whether or not the mean sales of grapefruits differ for the three price levels; use
« = .05. State the alternatives. decision rule, and conclusion. What is the P-value of g
test?

c. Analyze the effects of the three price levels by estimating all pairwise comparisong of
the price level means. Use the most efficient multiple comparison procedure with » 95
percent family confidence coefficient. State your findings and summarize them by a suitaple
line plot.

d. According to the estimated efficiency measure (21.14), how effective was the repeated
measures design compared to a completely randomized design?

Refer to Blood pressure Problem 27.3. A consultant is concerned about the validity of the
model assumptions and suggests that the study should be analyzed by means of the nonpara-
metric rank F test. Rank the data within each rabbit and perform the rank F test; use o = 0.
State the alternatives, decision rule, and conclusion. Comment on the consultant’s concern
here.

Refer to Grapefruit sales Problem 27.6. It has been suggested that the nonparametric rank
F test should be used here. Rank the data within each store and perform the rank F test; use
o = .05. State the alternatives, decision rule, and conclusion. Is your conclusion the same as
that obtained in Problem 27.7b?

Truthin advertising. A consumer research organization showed five different advertisements
to 10 subjects and asked each to rank them in order of truthfulness. A rank of 1 denotes the
most truthful. The results were:

Advertisement () Advertisement (j)

Subject Subject
i A B C D E i A B C D E
1 3 1 2 5 4 6 4 2 1 3 5
2 4 2 1 3 5 7 4 1 2 3 5
3 4 2 3 1 5 8 51 3 2 4
4 31 2 5 4 9 4 2 3 1 5
5 4 1 2 5 3 10 51 2 3 4

a. Do the subjects perceive the five advertisements as having equal truthfulness? Conduct
the nonparametric rank F test using level of significance o = .05. State the altematives,
decision rule. and conclusion. What is the P-value of the test?

b. Use the multiple pairwise testing procedure (27.9) to group the five different advertisements
according to mean perceived truthfulness: employ family significance level ¢ = 10.
Summarize your findings.

c. Obtain the coefficient of concordance (27.10) and interpret this measure.

Incentive stimulus. Refer to the example in Section 27.3 about the effects of two types
of incentives (factor A) on a person’s ability to solve two types of problems (factor B);
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the repeated measures design is illustrated in Figure 27.5. Twelve persons were randomly
selected and assigned in equal numbers to the two incentive groups. The order of the two
types of problems was then randomized independently for each person. The problem-solving
ability scores follow (the higher the score, the greater the ability to solve problems).

Problem Type
Incentive Abstract Concrete
Stimulus Subject k=1) (k=2)
i=1 10 18
i=2 14 19
j=1 i=3 17 18
i=4 8 12
i=5 12 14
i=6 15 20
i= 16 35
i=2 19 32
j=2 i= 22 37
i=4 20 33
i=5 24 39
i=6 21 32

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.11)?

b. Plot the problem-solving ability scores by incentive stimulus and problem type, in the
format of Figure 27.6. What do you conclude about the appropriateness of model (27.11)?
Discuss.

Refer to Incentive stimulus Problem 27.11. Assume that repeated measures model (27.11)

1S appropriate.

a. Obtain the analysis of variance table.

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it
appear that interaction effects are present? That main effects are present?

c. Test whether or not the two factors interact; use o¢ = .05. State the alternatives, decision
rule, and conclusion. What is the P-value of the test?

d. The following comparisons between problem types are of interest:

Ly =pqr — perz Ly = proy — pooz2

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure
with a 90 percent family confidence coefficient for each problem type. Then combine these
two Tukey procedures with a Bonferroni adjustment for each problem type. State your
findings.

e. The following comparisons between incentive stimuli are of interest:

L3 = plurs — o2t Ly=prora — phom2

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure
with a 90 percent family confidence coefficient for each incentive stimulus. Then combine
these two Tukey procedures with a Bonferroni adjustment for each incentive stimulus.
State your findings.
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*27.13. Store displays. A repeated measures study was conducted to examine the effect.
different store displays for a household product (factor A) on sales in four succes
periods (factor B). Eight stores were randomly selected, and four were assigned at .
each display. The sales data (coded) follow.

s of two
Sive time
andom to

Time Period

Type of

Display Store k=1 k=2 k=3 k=4
i=1 956 953 938 1,049

i=1 i=2 1,008 1,032 1,025 1,123
i=3 350 352 338 438
i=4 412 449 385 532
i=1 769 766 739 859

=2 =2 880 875 860 915
i=3 176 185 168 280
=4 209 223 217 301

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.11)?

b. Plot the sales data by type of display and time period, in the format of Figure 27.6. What
do you conclude about the appropriateness of model (27.11)? Discuss.

*27.14. Refer to Store displays Problem 27.13. The experimenter wished to explore further the

appropriateness of repeated measures model (27.11).

a. Conduct a formal test of the constancy of the between-subjects variances. Use (27.17) and
perform the Hartley test. with @ = .01. State the alternatives, decision rule, and conclusion.

b. Decompose the error variation SSB.S(A) into components using (27.18), and perform the
Hartley test for the constancy of the error variance o* for the different factor A levels; use
o« = .0l. State the alternatives, decision rule, and conclusion.

#27.15. Refer to Store displays Problem 27.13. Assume that repeated measures model (27.11) is
appropriate.

a. Obtain the analysis of variance table.

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it
appear that interaction effects are present? That main effects are present?

c. Test whether or not the two factors interact; use @ = .025. State the alternatives, decision
rule, and conclusion. What is the P-value for the test?

d. Test separately whether or not display and time main effects are present; use o = .025
for each test. State the alternatives, decision rule, and conclusion for each test. What is the
P-value for each test?

e. To study the nature of the factor A and factor B main effects, estimate the following
pairwise contparisons:

Use the Bonferroni procedure with 2 90 percent family confidence coefficient. State your
findings.
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Calculator efficiency. To test the efficiency of its new programmable calculator, a computer
company selected at random six engineers who were proficientin the use of both this calculator
and an earlier model and asked them to work out two problems on both calculators. One of
the problems was statistical in nature, the other was an engineering problem. The order of
the four calculations was randomized independently for each engineer. The length of time (in
minutes) required to solve each problem was observed. The results follow (type of problem
1s factor A and calculator model is factor B):

j=1 j=2
Statistical Engineering
Problem Problem
k=1 k=2 k=1 k=2
Engineer New Earlier New Earlier
i Model Model Model Model
1 jones 3.1 7.5 2.5 5.1
2 Williams 3.8 8.1 2.8 53
3  Adams 3.0 7.6 20 4.9
4 Dixon 34 7.8 2.7 55
5  Erickson 33 6.9 2.5 54
6 Maynes 36 7.8 24 4.8

a. Obtain the residuals for repeated measures model (27.21) and plot them against the fitted
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.21)?

b. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the treat-
ments. Do these plots support the assumption of constancy of the error variance? Discuss.

Refer to Calculator efficiency Problem 27.16. Assume that repeated measures model (27.21)

1s appropriate.

a. Obtain the analysis of variance table.

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it
appear that treatment interaction effects are present?

c. Test whether or not the two treatment factors interact; use o = .0l. State the alternatives,
decision rule, and conclusion. What is the P-value of the test?

d. It is desired to study the nature of the interaction effects by considering the three compar-
isons:

Ly = py2 —~ pent Ly=1L;— L,
Ly = pgs — [

Obtain confidence intervals for these comparisons; use the Bonferroni procedure with a
95 percent family confidence coefficient. State your findings.

Migraine headaches. Two experimental pain killer drugs for relief of migraine headaches
were studied at a major medical center. Ten persistent migraine sufferers were randomly
selected for a pilot study and received in random order each of the four treatment combina-
tions, with a suitable interval between drug administrations. The decrease in pain intensity
was used as the response variable. The four treatments used in the study are defined as fol-
lows: A;B; = low dose of both drugs; A; B, = low dose of drug A, high dose of drug B;
A, By = high dose of drug A, low dose of drug B; A, B == high dose of both drugs. The daia
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%27.19.

27.20.

on reduction in pain intensity follow (the higher the score, the greater the reduction j
. n
pain).

a.

Person M= A (=2

j Bik=1)  B(k=2)  Bi(k=1) B, (k=7
1 1.6 3.4 2.7 43

2 2.3 5.1 4.2 65

3 4.2 53 4.6 6.0

8 6.0 7.2 6.3 73

9 1.2 1.4 1.3 1.7

10 2.7 3.0 3.0 3.1

Obtain the residuals for repeated measures model (27.21) and plot them against the fitteq
values. Also prepare a normal probability plot of the residuals. What do you conclude
about the appropriateness of model (27.21)?

. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the

treatments. Do these plots support the assumption of constancy of the error variance?
Discuss.

Refer to Migraine headaches Problem 27.18. Assume that repeated measures model (27.21
IS appropriate.

a.
b.

Obtain the analysis of variance table.

Plot the data and the estimated treatment means in the format of Figure 27.12. Does it
appear that treatment interaction effects are present? That main effects are present?

. Test whether or not the two treatment factors interact; use & = .005. State the alternatives,

decision rule, and conclusion. What is the P-value of the test?

. Test separately whether or not factor A and factor B main effects are present; use o = .05

for each test. State the alternatives, decision rule, and conclusion for each test. What is the
P-value for each test?

Estimate the following comparisons by means of confidence intervals:

Ly = poyr —peny Ly =p.o) — pn
Ly = prag — peny Ly=pm—

Use the Bonferroni procedure and family confidence coefficient .95. Summarize your
findings.

Wheat yield. Refer to the split-plot agricultural experiment of Section 27.6, for which the
layout is shown in Figure 27.13. The results of this experiment to investigate the effects of
two irrigation methods (factor A) and two fertilizers (factor B) on wheat yield follow for the
10 fields used in the study.

Irrigation Method j: 1 2
Field i: 1 2 3 4 5 1 2 3 4 5
Fertilizer k = 1: 43 40 31 27 36 63 52 45 47 54
k=2 48 43 36 30 39 70 53 48 51 57
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a. Obtain the residuals for split-plot model (27.27) and plot them against the fitted values.
Also prepare a normal probability plot of the residuals. What do you conclude about the
appropriateness of model (27.27)7

b. Plot the wheat yield data by irrigation method and type of fertilizer in the format of
Figure 27.6. What do you conclude about the appropriateness of model (27.27)? Discuss.

Refer to Wheat yield Problem 27.20. Assume that split-plot model (27.27) is appropriate.

a. Obtain the analysis of variance table.

b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it
appear that interaction effects are present? That main effects are present?

c. Test whether or not the two factors interact; use o« = .05. State the alternatives, decision
rule, and conclusion. What is the P-value for the test?

d. Test separately whether or not factor A and factor B main effects are present; use o = .05.
State the alternatives, decision rule, and conclusion for each test. What is the P-value for
each test?

e. To study the nature of the factor A and factor B main effects, estimate the following
pairwise comparisons:

Ly=pg- — pa Ly = ptee) — oz

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your
findings.

Exercise

27.22.

Derive the total sum of squares breakdown in (27.5).

Projects

27.23.

27.24.

27.25.

27.26.

Refer to Blood pressure Problem 27.3. Obtain the estimated within-subjects variance-
covariance matrix using (27.8). Are the estimated variances and covariances of the same
orders of magnitude? Is the compound symmetry assumption reasonable here?

Refer to Grapefruit sales Problem 27.6. Obtain the estimated within-subjects variance-
covariance matrix using (27.8). Are the variances and covariances roughly of the same order
of magnitude? Is the compound symmetry assumption reasonably satisfied here?

Refer to the Drug effect experiment data set in Appendix C.12. Consider only Part I of the
study and observation unit 1 for each drug dosage level; i.e., include only observations for
which variable 2 equals 1 and variable 6 equals 1. Treat the 12 rats as subjects and ignore the
classification of the rats into the three initial lever press rate groups. Assume that the subjects
(rats) have random effects and that the treatments (dosage levels) have fixed effects.

a. State the additive repeated measures model for this study.

b. Obtain the residuals and plot them against the fitted values. Also prepare a normal proba-
bility plot of the residuals. What do you conclude about the appropriateness of the model
employed?

c. Plot the responses for each rat in the format of Figure 27.2. Does the assumption of no
interactions between subjects (rats) and treatments appear to be appropriate?

Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.25.

a. Obtain the analysis of variance table.

b. Test whether or not the drug dosage level affects the mean lever press rate; use o = .05.
State the alternatives, decision rule, and conclusion. What is the P-value of the test?
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27.27.

2728

27.29.

c. Analyze the effects of the four dosage levels by comparing the mean Tesponses for each
pair of successive dosage levels: use the Bonferroni procedure with a 90 percent fam;j
confidence coefficient. State your findings. Y

d. Fit a regression model in which the subject effects are represented by 1, —|, indicator
variables and the dosage effect is represented by linear and quadratic terms in x ~ x _
where X is the dosage level. Assume that there are no interactions between subjects
treatments.

X,

and

€. Obtain the residuals and plot them against the fitted values. Does the regression mode]
appear to provide a good fit? Discuss.

f. Test whether or not the quadratic term can be dropped from the regression model; use
o = .01. State the alternatives, decision rule, and conclusion.

Refer to the Drug effect experiment data set in Appendix C.12. Consider the combined

study. Assume that subjects (rats) and observation units have random effects, and that factor

A (initial lever press rate), factor B (dosage level), and factor C (reinforcement schedule) have

fixed effects. Also assume that there are no interactions between subjects and treatments,

a. Use rules (D.1) and (D.6) in Appendix D to develop the model for this experiment,

b. Fit the model in part (2), obtain the residuals, and plot them against the fitted values,
Also prepare a normal probability plot of the residuals. What do you conclude about the
appropriateness of your model?

Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.27. Assume

that the model in Project 27.27a is appropriate.

a. Use an appropriate statistical package to obtain the analysis of variance table and the
expected mean squares.

b. Test whether or not ABC interactions are present; use o = .01. State the alternatives,
decision rule, and conclusion. What 1s the P-value of the test?

c. For each reinforcement schedule, plot the estimated treatment means against dosage level
with different curves for the three initial lever press rate groups, in the format of Figure 24.5.
Examine your plots for the nature of the interaction effects and report your findings.

Consider a repeated measures design study with s = 3 and r = 3, where each subject ranks

all reatments (with no ties allowed).

a. Develop the exact sampling distribution of Fj; when Hy holds. [Hint: All ranking per-
mutations for a subject are equally likely under Hy and all subjects are assumed to act
independently.]

b. How does the 90th percentile of the exact sampling distribution obtained in part (a) compare
with F(.90: 2, 4)? What is the implication of this?



