
{ 
Repeated Measures 
and Related Designs 

In this chapter we take up repeated measures designs-designs that are widely used in the 
behavioral and life sciences. We begin by considering some basic elements of repeated 
measures designs. We then take up single-factor repeated measures designs, after which 
we consider two-factor experiments with repeated measures on both one factor and on two 
factors. We conclude this chapter with an introduction to split-plot designs, which include 
two-factor repeated measures designs with repeated measures on one factor. 

Elements of Repeated Measures Designs 

:bescription of Designs 
Repeated measures designs utilize the same subject (person, store, plant, test market, etc.) 
for each of the treatments under study. The subject therefore serves as a block, and the 
experimental units within a block may be viewed as the different occasions when a treatment 
is applied to the subject. A repeated measures study may involve several treatments or only 
a single treatment that is evaluated at different points in time. Subjects used in repeated 
measures studies in the behavioral and life sciences include persons, households, observers, 
and experimental animals. At other times the subjects in repeated measures designs are 
stores, test markets, cities, and plants. We shall refer to all of these study units used in 
repeated measures designs as subjects. 

Three examples of repeated measures designs follow. 

1. Fifteen test markets are to be used to study each of two different advertising campaigns. 
In each test market, the order of the two campaigns will be randomized, with a sufficient 
time lapse between the two campaigns so that the effects of the initial campaign will not 
carry over into the second campaign. The subjects in this study are the test markets. 

2. Tho hundred persons who have persistent migraine headaches are each to be given two 
different drugs and a placebo, for two weeks each, with the order of the drugs randomized 
for each person. The subjects in the study are the persons with migraine headaches. 

3. In a weight loss study, 100 overweight persons are to be given the same diet and their 
weights measured at the end of each week for 12 weeks to assess the weight loss over 

1127 
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time. Here the subjects are the overweight persons, who are observed repeatedly to Ii . 
., . bit" t" I ' P oVIde information a out t le e ,ects 0 a sing e treatmenr over tIme. 

Each of these studies involves a repeated mel/SUres design because the same sub' 
is measured repeatedly. This key characteristic distinguishes this type of design 
designs considered earlier. e 

Advantages and Disadvantages 
A principal advantage of repeated measures designs is that they provide good precisio 
for comparing treatments because all sources of variability between subjects are 
from the experimental error. Only variation within subjects enters the experimental error 
since any two treatments can be compared directly for each subject. Thus, one may view 
subjects as serving as their own controls. Another advantage of a repeated measures design 
is that it economizes on subjects. This is pm'ticularly important when only a few subjects 
(e.g., stores, plants, test markets) can be utilized for the experilnent. Also, when interest is in 
the effects of a treatment over time, as when the shape of the learning curve for a new process 
operation is to be studied, it is usually desirable to observe the same subject at different 
points in time rather than observing different subjects at the specified points in time. 

Repeated measures designs have a serious potential disadvantage, however, namely, that 
there may be several types of interference. One type ofinterference is an OIderiflect. whichis 
connected with the position in the treatment order. For instance, in evaluating five different 
advertisements, subjects may tend to give higher (or lower) ratings for advertisements 
shown toward the end of the sequence than at the beginning. Another type of interference 
is connected with the preceding treatment or treatments. For instance, in evaluating five 
different soup recipes, a bland recipe may get a higher (or lower) rating when preceded by 
a highly spiced recipe than when preceded by a blander recipe. This type of interference is 
called a cl/nyover effect. 

Various steps can be taken to minimize the danger of interference effects. Randomization 
of the treatment orders for each subject independently will make it more reasonable to 
analyze the data as if the elTor terms are independent. Allowing sufficient time between 
treatments is often an effective means of reducing calTyover effects. It may be desirable at 
times to balance the order of treatment presentations and sometimes even the number of 
times each treatlnent is preceded by any other treatment. Latin square designs and crOSsover 
designs (discussed in Chapter 28) are helpful to this end. 

How to Randomize 
The randomization of the order of the treatments assigned to a subject is straightfOlward. For 
each subject, a random permutation is used to define the treatment order, and indept!ndent 
permutations are selected for the different subjects. 

Comment 
Designs with repeated measures, discussed here, need to be distinguished from designs with repeated 
observations, discussed in Section 26.7. In repeated measures designs. several or all of the treatments 
are applied to the same sUbject. Designs with repeated observations, on the other hand, are designs 
where several observations on the response variable are made for a given treatment applied to an 
experimental unit. It is possible to develop a repeated measures design with repeated as 
when a given subject is exposed to each of the treatments under study and a number of observatlons 
are made at the end of each treatment application, • 
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Single-Factor Experiments with Repeated Measures 
on All Treatments 

Model 

FIGURE 27.1 
Layootfor 
Single-Factor 
Repeated 
Measures 
Design 
(s = 5, r = 4). 

We first consider repeated measures designs where the treatments are based on a single 
factor, as in the examples in Section 27.1. Almost always. the subjects in repeated measures 
designs (persons, stores, test markets, experimental animals) are viewed as a random sample 
from a population. Hence, in all of the models for repeated measures designs to be presented 
in this chapter, the effects of subjects will be viewed as random. 

Figure 27.1 contains the layout for a single-factor experiment with repeated measures on 
all treatments. Here, there are five subjects and four treatments, with the order oftreatments 
independently randomized for each subject. Notice that this layout corresponds to the one 
in Figure 21.1 for a randomized complete block design. Indeed, as we shall see next, the 
models for single-factor repeated measures designs are formally the same as the ones for 
randomized block designs, with blocks now considered to be subjects. 

When treatment effects are fixed, a model often appropriate for a single-factor repeated 
measures design is the following additive model: 

where: 

Ji, •. is a constant 
Pi areindependentlV(O,a;) 
Lj are constants subject to 2:::Lj = ° 
cij are independent lV (0, a 2) 

Pi and Cij are independent 
i = 1, .... s; j = 1, ... , r 

Treatment Order 

2 3 4 

Subject 1 T4 T3 T2 T1 

2 T3 T4 T1 T21 

3 T4 T3 T1 T21 

4 T2 T1 T4 T31 

5 T1 T2 T4 T3 I 

(27.1) 
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Note that repeated measures model (27.1) is identical to randomized block model (25 
with random block effects, except that nt> = s. .67) 

Hence. we know from Section 25.5 that repeated measures model (27 I) ass . urnes the 
following ahout the observations Yi ( 

E{Yi ;} = Ji, .. + Tj 

a{Yii' Yrj'} = 0 

j#-j' 

i #- if 

(27.2a) 

(27.2b) 

(27.2c) 

(27.2d) 
where w is the coefficient of correlation between any two observations for the same subject: 

(27.2e) 

Thus, repeated measures model (27.1) assumes that in advance of the random trials, any 
two treatment observations Yij and Yij , for a given subject are correlated in the same fashion 
for all subjects. This key assumption implies, as we saw in (25.71), that the variance-
covariance matrix of the observations Yii for any given subject has compound symmetry. 
Any two observations from different subjects in advance of the random trials are independent 
according to model (27.1). 

Equally important, we know from Chapter 25 that repeated measures model (27.1) 
assumes that, once the subjects have been selected, any two observations for a given subject 
are independent. Thus. model (27.1) assumes that there are no interference effects in the 
repeated measures study, such as order effects or carryover effects from one treatment to 
the next. 

Comment 
If interaction effects between subjects and tr'earments are present, interaction model (25.74) can be 
employed. As we noted in Chapter 25, both the additive and interaction models lead to the same 
procedures for making inferences about the treatment effects. • 

Analysis of Variance and Tests 
Since repeated measures model (27.1) is the same as randomized complete block model 
(25.67), the analysis of variance and the test for treatment effects will be the same (fS before. 

Analysis of Variance. The ANOVA sums of squares for repeated measures model (27.1) 
are the same as in (21.6). but the names of two of the sums of squares are usually changed 
for repeated measures applications. The sum of squares for blocks in (21.6a) will now 
be called the sum of squares for subjecTs, and the interaction sum of squares between 
blocks and treatments in (21.6c) will now be called the interaction sum of squares between 
treaTments lind subjecTs. These two sums of squares will be denoted, respectively, by SSSand 
SSTR.S. Thus, the analysis of variance decomposition for single-factor repeated measures 
model (27.1) is: 

SSTO = SSS + SSTR + SSTR.S (27.3) 
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TABLE 27.1 ANOVA Table for Single-Factor Repeated Measures Design-ANOVA 
Model (27.1) with Subject Effects Random and Treatment Effects Fixed. 

Source of 
Variation 
Subjects 

Treatments 

Error 

Total 

where: 

55 df 
SSS 5-1 

SSTR r-1 

SSTR.S (r -1)(5 -1) 

SSTO 5r-1 

SSS = r - y'.)2 

SSTR = s L(Y.j - y'.)2 
j 

M5 
MSS 

MSTR 

MSTR.S 

SSTR.S = LL(Yij - y.j + y'.)2 
j 

E{M5} 
(52 + r(52 p 

I)"? (52+5 __ 1 

r-1 
(52 

(27.3a) 

(27.3b) 

(27.3c) 

(27.3d) 

Note that no error sum of squares is present because there are no replications here. 
Table 27.1 contains the analysis of variance table for repeated measures model (27.1). It 

is the same as the ANOVA table in Table 25.8 for additive randomized block model (25.67), 
except for the change in notation. Note again that in the absence of interactions between 
treatments and subjects, the interaction mean square MSTR.S is an unbiased estimator of 
the error variance (52. 

Comment 
In repeated measures studies, SSTR and SSTR.S are sometimes combined into a within-subjects sum 
of squares ssw: 

SSw = SSTR + SSTR.S (27.4) 

which can be shown to equal: 

(27.4a) 

Hence, the ANOVA decomposition in (27.3) can also be expressed as follows: 

SSTO= SSS + SSW (27.5) 
""-v-" ""-v-" 

Between- Within-
subjects subjects 

variability variability • 
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Example 

TABLE 27.2 
Data-Wine-
Judging 
Example 
(ratings on a 
scale of 0 to 40). 

Test for Treatment Effects. A s the E {M SI col umn in Table 27. I indicates the ap' . . . . " PlOpnate statIstIc for the test on treatment effects: 

Ho: all Tj = 0 
HlI : not all TJ equal zero (27.6a) 

is: 

MSTR 
F* = ---

MSTR.S (27.6b) 

When Ho holds, F* follows the F distribution, and the decision mle for controlling the 
Type [ error at a is: 

If F* :s F[I - a;r - I, (r - I)(s - 1)1, conclude Ho 

If F* > F[I - a;r - I, (r - I)(s - I)], conclude HlI (27.6c) 

In a wine-judging competition, four Chardonnay wines of the same vintage were judged 
by six experienced jUdges. Each judge tasted the wines in a blind fashion, i.e., without 
knowing their identities. The order of the wine presentation was randomized independently 
for each judge. To reduce carryover and other interference effects, the judges did not drink 
the wines and rinsed their mouths thoroughly between tastings. Each wine was scored on 
a 40-point scale; the higher the score, the greater is the excellence of the wine. The data 
for this competition are presented in Table 27.2. A plor of {he wine scores for each judge 
is shown in Figure 27.2. We see that there are some distinct differences in ratings between 
judges but that the ratings for wines 3 and 4 are consistently best and for wine I generally 
worst. We also see that the rating curves for the judges do not appear to exhibit substantial 
departures from being parallel. Hence, an additive model appears to be appropriate. 

The six judges are considered to be a random sample from the population of possible 
judges, while the four wines tasted are of interest in themselves. Hence, single-factor re-
peated measures model (27.1) was expected to be appropriate, with the effects of subjects 
(judges) considered random and the effects of treatments (wines) considered fixed. As 

Judge Wine (j) 

2 3 4 Yi· 
20 24 28 28 25 

2 15 18 23 24 20 
3 18 19 24 23 21 
4 26 26 30 30 28 
5 22 24 28 26 25 
6 19 21 27 25 23 

Y. j 20.00 22.00 26.67 26.00 23.67 = Y.. 
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27.2 Yq 
Judge PiOtofWine 

Scores fur Each 30 
trtdge-Wine-
jUdging 

jj!;xarople. 

27.3 

Table 
'tor Single-
'Factor 
\Repeated 

_:' Measures 
;Design-Wine-
ij"udging 
(EXample. 

25 

20 

15 

234 
Wine 

Factor Type levels Values 
Judge random 6 1 2 3 4 5 6 
Wine fixed 4 2 3 4 

Analysis of Variance for Rating 
Source OF SS MS F P 
Judge 5 173.333 34.667 32.50 0.000 
Wine 3 184.000 61.333 57.50 0.000 
Error 15 16.000 1.067 
Total 23 373.333 

we shall see later, additional diagnostic analysis supports the appropriateness of ANOVA 
model (27.1). 

Figure 27.3 contains MINITAB ANOVA output for the wine-judging data in Table 27.2. 
To test for treatment effects: 

Ho:"i, ="i2 ="i3 ="i4 = 0 
Ha: not all "ij equal zero 

we use the results of Table 27.3: 

F* = MSTR = 61.333 = 57.5 
MSTR.S 1.067 

For level of significance ex = .01, we require F(.99;3, 15) = 5.42. Since F* = 57.5 > 
5.42, we conclude Ha> that the mean wine ratings for the four wines differ. The P-value for 
this test is 0+. 
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TABLE 27.3 Estimated Within-Subjects 
Variance-Covariance Matrix between Treatment 
Observations-Wine-Judging Example. 

j' 

2 3 4 

f14000 11.000 9.200 8.200] 
2 10.000 8.200 7.600 

j 
3 7.067 6.200 

4 6.800 

Comments 
I. As we noted in Chapter 25 (in Comment 2 on p. 1065), a conservative test for treatment effects 

should be used if the of compound symmetry in repeated measures model (27.1) are not 
met (i.e., if either the variances of the observations for different treatments for a given subject are not 
the same for all subjects or if the correlations between any two treatment observations for a given 
subject are not the same for all treatment pairs and for all SUbjects). In repeated measures studies, the 
compound symmetry assumption will be violated, for instance, if repeated responses over time are 
more highly cOITelated for observations closer together than for observations further apart in time. 

2. When the treatment effects are random, test statistic (27.6b) and decision rule (27.6c) are still 
appropriate for testing treatment effects. 

3. The efficiency of the repeated measures design in the wine-judging example, relative to a 
completely randomized design where each judge is used to assess a single wine, can be measured by 
means of (21.14). Using the results in Figure 27.3 with lib =.1", we obtain: 

A (s - I )MSS + .\·(r - I)MSTR.S 5(34.667) + 6(3)( 1.067) 
E = = = 7.85 

(sr - I )MSTR.S 23( 1.067) 

Thus. almost eight times as many replications per tfeatment would have been required with a com-
pletely randomized design in which each judge rates a single wine as in the repeated design 
to achieve the same precision for any estimated contrast. 

4. When a single-factor repeated measures design involves,. = 2 treatments, the F* statistic in 
(27.6b) is equivalent to the two-sided t test for paired observations based on test statistic (A.69). 

5. a formal test for subject is desired: 

Hu: = 0 

H,,: > 0 

Table 27.1 that the appropriate test statistic for repeated measures model (27.1) is f* = 
MSS/ MSTR.S. • 

Evaluation of Appropriateness of Repeated Measures Model 
Since r'epeated measures model (27.1) is equivalent to randomized block model (25.67), the 
eadier discussion on diagnostics for randomized block models is entirely applicable here. 
In par'ticular, a plot of the responses Yij by subject, as in Figure 27.2, can be examined for 
indications of ser'ious lack of par'allelism, which would suggest that additive model (27.1) 
may not be apPr'Opr'iate. 
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Residual sequence plots by subject can be helpful for studying constancy of the error 
variance and presence of interference effects. The residuals for repeated measures models 
(27.1) are the same as in (21.5): 

(27.7) 

A normal probability plot of the estimated residuals in (27.7) can be helpful for evaluating 
whether the residuals are normally distributed. 

In addition £0 these graphic diagnostics, the estimated within-subjects variance-
covariance and correlation matrices for the treatment observations Yij can be examined for 
appropriateness of the repeated measures model. A typical entry in the variance-covariance 
matrix is the estimated within-subjects covariance between observations for treatments j 
and j': 

L;=, (Yij - Yj )(Yij' - Yj ,) 

s - 1 
(27.8) 

The estimated within-subjects variance-covariance matrix should show variances of the 
same order of magnitude, and all of the covariances should be of similar magnitude. Of 
course, estimated variances and covariances tend to be subject to large sampling errors unless 
the sample sizes are very large. Hence, moderate differences in variances and covariances 
should be viewed as likely to be the result of sampling errors. 

The estimated correlation matrix should show approximately similar coefficients of 
correlation between pairs of treatment observations within a subject. 

Finally, the Tukey test described in Section 20.2 can be conducted to examine the ap-
propriateness of the additive model. This test will need to be interpreted here as conditional 
on the subjects actually used in the repeated measures study. 

For the wine-judging example, the residuals were obtained from (27.7), and are presented in 
Figure 27.4a in SAS/GRAPH aligned dot plots by wine. These plots support the assumption 
of constant error variance. Figure 27.4b presents residual sequence plots for each judge, 
where the residuals are plotted in the order in which the wines were tasted by the judge. 
These plots do not indicate any correlations of the error terms within a judge, and thus 
suggest that no interference effects are present. Finally, a normal probability plot of the 
residuals is presented in Figure 27.4c. This plot shows evidence of the effects of the rounded 
nature of the data, but does not suggest any major departure from normality. The correlation 
between the ordered residuals and their expected values under normality is .993, which also 
suggests that lack of normality is not a problem here. 

Table 27.3 presents the estimated within-subjects variance-covariance matrix for the 
treatment observations. The differences found there could easily arise from sampling errors. 

As we noted earlier, the plot of the responses by subject in Figure 27.2 also supports 
the appropriateness of model (27.1), since the plots for the judges are reasonably parallel. 
Thus, there is no indication of interactions between subjects and treatments. 

On the basis of these and other diagnostics, it was concluded that repeated measures 
model (27.1) is reasonably appropriate for the data in the wine-judging example. 
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L FIGURE 27.4 SASIGRAPH Diagnostic Residual Plots-Wine-Judging Example. j:' 
p (a) Residual Dot Plots 
1\ 

(c) Normal Probability Plot 
L: 2.0 ;\ 
l"'t 1.5 l-; ! .. .. .. 

I I I I I Wine 4 1.0 .. 
L; 

0.5 5 : rn 
L .. : .. ::J 

I I I I Wine 3 -0 0.0 4 
f:b ·in 

if! -0.5 8 : 
J.' : .. ;, " t .. -1.0 .. I I I Wine 2 3 -1.5 .. H. : .. .. .. -2.0 

I I I I I I I I Wine 1 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -2 -1 0 2 1 
Expected Value 

(b) Residual Sequence Plots 

Judge 1 Judge 2 Judge 3 
:1 2 2 2 i[ .. 

ii' 
.. .. rn rn rn 

::J ::J ::J 
-0 0 -0 0 -0 0 ·in ·in ·in 
if! if! .. Q) .. .. n ,it cr: 

-1 -1 -1 
:: .. .. 

. 
-2 -2 -2 

: j Judge 4 Judge 5 Judge 6 

j 
2 2 2 .. 

, ' • ->.:.; .. 
rn rn .. .. rn 
::J ::J ::J 

I -0 0 -0 0 -0 0 ·in ·in ·in 
Q) .. .. if! OJ .. .. i cr: 0:: 

i -1 .. -1 -1 I .. . I 
-2 -2 -2 ; J 

2 3 4 2 3 4 2 3 
Time Order Time Order Time Ofder 
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Analysis of Treatment Effects 

Example 

The analysis of treatment effects for single-factor repeated measures model (27.1) proceeds 
in exactly the same fashion as described in Section 21.5 for randomized block designs 
with fixed treatment effects. The multiples in (21.9) for setting up confidence intervals 
are applicable here as they stand. The mean square used in estimating the variance of the 
estimated contrast is still the interaction mean square, which is now denoted by MSTR.S. 
We shall illustrate the estimation procedures by an example. 

In the wine-judging example. it was desired to compare all treatment means /L.j pairwise. 
with a 95 percent family confidence coefficient. Here /L.j is the mean rating of wine j 
averaged over judges. The Tukey procedure was utilized for this purpose. Using (17.30) 
with MSE replaced by MSTR.S and the estimated pairwise difference denoted by t, we 
obtain using the results in Figure 27.3: 

S2{t} = + = = .3557 

Using (21.9b), we find for a 95 percent family confidence coefficient: 

1 1 
T = .J2q (.95;4, 15) = .J2(4.08) = 2.885 

Hence: 

Ts{t} = 2.885.J.3557 = 1.72 

Thus we obtain for the pairwise comparisons (see Table 27.2 for the Y.j ): 

-2.39 = (26.00 - 26.67) - 1.72 :':: /L.4 - /L.3 :':: (26.00 - 26.67) + 1.72 = 1.05 
2.28 = (26.00 - 22.00) - 1.72 ::::; /L.4 - /L.2 :s (26.00 - 22.00) + 1.72 = 5.72 

4.28 = (26.00 - 20.00) - 1.72::::; /L.4 - /L., :':: (26.00 - 20.00) + 1.72 = 7.72 
2.95 = (26.67 - 22.00) - 1.72 :':: /L.3 - /L.2 :':: (26.67 - 22.00) + 1.72 = 6.39 

4.95 = (26.67 - 20.00) - 1.72 ::::; /L.3 - /L., :':: (26.67 - 20.00) + 1.72 = 8.39 
.28 = (22.00 - 20.00) - 1.72:':: /L.2 - /L., :':: (22.00 - 20.00) + 1.72 = 3.72 

We display these results graphically as follows: 

Wine 
1 • 20 

Wine 
2 
• 

Taste Score 
25 

Wine Wine 
4 3 

! j 

We conclude from these pairwise comparisons that wines 3 and 4 are judged best, and do 
not differ significantly from each other. Wines 1 and 2 are judged to be inferior to wines 3 
and 4, with wine 1 receiving a mean rating significantly lower than that for wine 2. The 
family confidence coefficient of .95 applies to the entire set of comparisons. 
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TABLE 27.4 
RankooData 
for Coffee 
Sweeteners in 
a Repeated 
Measures 
Design-Coffee 
Sweeteners 
Example. 

Ranked Data 

Example 

Subject Sweetener (j) 

A B C 0 E 
5 1 2 4 3 

2 4 2 1 5 3 
3 3 2 1 4 5 
4 5 2 3 4 1 
5 4 1 2 3 5 
6 4 1 3 5 2 

R. j 4.17 1.50 2.00 4.17 3.17 

Comment 
When the treatments are time order positions, as when process rework is observed for a new manu-
facturing process at periodic intervals. the nature of the time effect may be analyzed by developing 
an appropriate regression model. • 

In repeated measures studies, the observations are frequently ranks, as when a number of 
tasters are each asked to rank recipes or when several university admissions officers are 
each asked to rank applicarUs for admission. When the data in a repeated measures study 
are ranks, the nonparametric rank F test described in Comment 3 on page 900 may be used 
for testing whether the treatment means are equal. No new principles are involved, so we 
shall proceed directly to an example. 

Six subjects were each asked to rank five coffee sweeteners according to their taste pref-
erences, with rank 5 assigned to the most preferred sweetener. The data are presented in 
Table 27.4 and suggest that a sweetener effect may be present. For example, no judge ranked 
sweetener B higher than 2 (not prefelTed). 

Test statistic (21.7b) for the ranked data here is: 

. 9.00 = - =7.5 
R 1.20 

For level of significance ex = .05, we need F(.95; 4,20) = 2.87. Since = 7.5 > 2.87, 
we conclude that the five sweeteners are not equally liked. The P-value of the test is .0007. 

Multiple Pairwise Testing Procedure 
Just as in the case of the rank F test for single-factor studies (Section 18.7), we can use 
a large-sample testing analog of the Bonferroni pairwise comparison procedure to obtain 
information about the comparative magnitudes ofthe treatment means for repeated measures 
designs when the rank F test (orthe Friedman test) indicates that the treatment 
Testing limits for all g = 1'(1' - 1)/2 pairwise comparisons using the mean ranks R.j are 
set up as follows for family level of significance ex: 

_ _ [r(r + I)] 1/1 
R.; - R./ ± B 

6s 
(27.9) 
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where: 

B = z(1 - a/2g) 
r(r - 1) 

g=---
2 

(27.9a) 

If the testing limits include zero, we conclude that the corresponding treatment means J.1,.j 
and J.1,.j' do not differ. If the testing limits do not include zero, we conclude that the two 
corresponding treatment means differ. We can then set up groups of treatments whose means 
do not differ according to this simultaneous testing procedure. 

We now wish to make all pairwise tests by means of (27.9) with family level of significance 
a = .20 for the coffee sweeteners example. Forr = 5, wehaveg = 5(4)/2 = lOandobtain: 

B = z[1 - .20/2(10)] = z(.99) = 2.326 
Thus, the right term in (27.9) for s = 6 and r = 5 is: 

[
r(r + 1)] 1/2 _ [5(6)] 1/2 _ B - 2.326 - - 2.12 

6s 6(6) 
We note from Table 27.4 that the pairs of mean ranks whose difference does not exceed 
2.12 are (B, C), (B, E), (C, E), (A, E), (D, E), and (A, D). Hence, we can set up two groups, 
within which the treatment means do not differ: 

Group 1 

Sweetener B 
SweetenerC 
Sweetener E 

R.2 = 1.50 
R.3 = 2.00 
R.s = 3.17 

Group 2 

Sweetener E 
Sweetener A 
Sweetener D 

R·s=3.17 
R., =4.17 
R·4=4.17 

Thus, we conclude with family level of significance of .20 that sweeteners A and D are 
preferred to sweeteners Band C, and that it is not clear whether sweetener E belongs in the 
preferred group or in the other group. 

Comments 
1. The rank F test can also be used for repeated measures designs where the observations are not 

ranked, in case the distribution of the error terms departs far from normality. Ranks of the observations 
are then assigned within each subject, and the rank F test is carried out in the usual manner. 
2. The test statistic is related to Kendall's coefficient of concordance W in the following way: 

F* W= R (27.10) 

The coefficient of concordance W is a measure of the agreement of the rankings of the s SUbjects. It 
equals 1 if there is perfect agreement, and equals 0 if there is no agreement, that is, if all treatments 
receive the same mean ranking. For the coffee sweeteners example in Table 27.4, the coefficient of 
concordance W is: 

7.5 
W= =.60 7.5 + 6 - I 

This measure indicates that a fair amount of agreement exists between the subjects. • 
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27.3 Two-Factor Experiments with Repeated Measures 
on One Factor 

Description of Design 

FIGURE 27.5 
Layout for 
Two-Factor 
Design with 
Random 
Assignments of 
Factor A Level 
to Subjects and 
Repeated 
Measures on 
Factor B. 

In many two-factor studies, repeated measures can only be made on one of the two factors 
Consider, for instance, an experimenter who wished to study the effects of two types of 
incentives (factor A) on a person's ability to solve problems. The researcher also wanted to 
study two types of problems (factor B)-abstract and concrete problems. Each experimental 
subject could be asked to do each type of problem, but could not be exposed to more than 
one type of incentive stimulus because of potential interference effects. Thus, the design 
the experimenter utilized may be represented schematically as shown in Figure 27.5. 

In a two-factor experiment with repeated measures on one factor, two randomizations 
generally need to be employed. First, the level of the nonrepeated factor (A, in Figure 27.5) 
needs to be randomly assigned to the subjects. Second, the order of the levels of the repeated 
factor (B, in Figure 27.5) needs to be randomized independently for all subjects. 

Since s subjects are randomly assigned incentive stimulus A 1 and s subjects are randomly 
assigned incentive stimulus A2 , as far as factor A is concerned the experiment is a completely 
randomized one. On the other hand, as far as factor B (type of problem) is concerned, each 
subject is a block. Thus, for factor B, the experiment is a randomized complete block design, 
with block effects random. We call this experimental design a two-factor experiment with 
repeated measures on factor B. 

In the experiment depicted in Figure 27.5, comparisons between factor A level means 
involve differences between groups of subjects as well as differences associated with the 
two factor A levels. On the other hand, comparisons between factor B level means at the 
same level of factor A are based on the same subject, and hence only involve differences 
associated with the two factor B levels. Thus, for these latter comparisons, each subject 
serves as its own control. The main effects of factor A are therefore said to be confounded 

Treatment 
Order 

Incentive Stimulus Subject 2 

AlBl AlB2 

Al 

5 AlB2 

5 + 1 A2B2 

A2 

25 A2Bl A2B2 



Model 
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with differences between groups of subjects, whereas the main effects of factor B are free 
of such confounding. It is for this reason that tests on factor B main effects will generally 
be more sensitive than tests on the main effects for factor A. 

Comments 
1. A two-factor experiment with repeated measures on one factor may be viewed as an incomplete 

block design. With reference to the repeated measures design in Figure 27.5, there are four treatments 
(AI B" AI B2, A2BI, and A2B2) and one-half of the blocks (subjects) contain treatments AI BI and 
A I B2 while the other half of the blocks contain treatments A2BI and A2B2. 

2. When the factor on which repeated measures are taken is time, randomization of the levels of the 
repeated factor is impossible. Consider, for instance, a study of two different advertising campaigns 
in which the effect on sales is to be measured in 10 test markets during four consecutive months. 
Here, the only randomization required is for assigning the advertising campaigns to the test markets. 
Similarly, when the nonrepeated factor is a characteristic of the subject, such as age of subject, no 
randomization is involved for that factor. • 

The development of a model for a two-factor experiment with repeated measures on one 
factor is only a little more complex than for earlier cases. As before, we shall develop the 
model for random subject effects and fixed factor A and factor B effects. Let, as usual, 
aj and fJk denote the factor A and factor B main effects, respectively, (afJ)jk the AB 
interaction effect, and p the subject (block) main effect. We do need to recognize, however, 
that the subject effect in this design is nested within factor A. Therefore, we will denote this 
effect by PiW. As before, we assume that there are no interactions between treatments and 
subjects, although this condition is not essential here. A model that incorporates the above 
specifications is as follows for a balanced study, where the number of subjects receiving 
each level of factor A is the same: 

where: 

fJ., ••• is a constant 
pi(j) are independent N (0, u;) 
a j are constants subject to La j = ° 
fJk are constants subject to LfJk = ° 

(27.11) 

(afJ)jk are constants subject to Lj(afJ)jk = ° for all k andLk(afJ)jk = ° for all j 
Cljk are independent N(O, ( 2 ) 

Pi(j) and Cijk are independent 
i = 1, ... , s; j = 1, ... , a;k = 1, ... , b 

The observations Yijk forrepeated measures model (27.11) have the following properties: 

E{Yijd = fJ., ••• +aj + fJk + (afJ)jk 
2{y} 2 2 2 U ijk = uy = Up + u 

u{Y1jk. Yijkl} = u; 

u{Yijk. Yi, j'k'l = ° 
k =1= k' 

i =1= i' and/or j =1= j' 

(27.12a) 

(27.12b) 

(27.12c) 

(27.12d) 
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Note that the observations Yijk have constant variance. In addition, in advance of the r d an om 
tlials any two observations for different levels of factor B for the same subject have COns 
covariance, for all subjects, while observations for different subjecIS are independent. 
all observations are assumed to be normally distributed. so, 

Once the subjects have been selected, repeated measures model (27.11) aSSumes that 
two observations for the same subject are independent, that is, that there are no 
effects. 

Analysis of Variance and Tests 
Analysis of. Variance. The ANaYA s.ums of for repeated measures model (27.11) 
can be obtawed by means of the rules w Appendix D. The sum of squares that is used for 
estimating the error variance turns out to be the interaction sum of squares SSB.S(A). The 
ANaYA sums of squares are shown in Table 27.5. Also shown there are the degrees of 
freedom for each sum of squares. 

Tests for Factor Effects. The expected mean squares for the analysis of variance in 
Table 27.5 are given in Table 27.6. These expected mean squares can be obtained by means 
of the rules in Appendix D. 

It is clear from the expected mean squares in Table 27.6 that the test for AB interaction 
effects: 

uses the test statistic: 

Ho: all (afJ) jk = 0 
Ha: not all (afJ)jk equal zero 

F* = _M_S_A_B_ 
MSB.S(A) 

(27.13a) 

(27. 13 b) 

TABLE 27.5 Analysis of Variance for Two-Factor Experiment with Repeated Measures on 
Factor B-Model (27.11). 

Source of Variation SS df 

Factor A SSA = bs L(Y.,. - y' •• )2 0-1 

Factor B SSB = as L(Y..k - Y..Y b-1 
k 

AB interactions SSAB = S L L(Y.jk - Y.j. - Y..k + y"')2 (0-1)(b-1) 
k 

Subjects (within factor A) O(s - 1) 

Error SSB.S(A) = L L L(Y;jk - Y.jk - Y;j- + y.j-)2 O(s -1)(b-1) 
k 

Total obs-1 



TABLE 27.6 
Mean 

squares for 
:-o-Factor 
" 

Repeated 

iactorB-
'Model (27.11) 
'(it, B fixed, 
;;mjects 
rlqldom). 
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MS' li:fMS} " 

. 
'(With 'el!/tbp:; 

'Err,or 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1 - a; (a - l)(b - 1), a(s - l)(b - 1)], conclude Ho 

If F* > F[1 - a; (a - l)(b - 1), a(s - l)(b - 1)], conclude Ha 

The test for factor A main effects: 

uses the test statistic: 

Ho: allaj = 0 

Ha: not all a j equal zero 

F* = _M---:-:-SA_ 
MSS(A) 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1- a;a - 1, a(s - 1)], conclude Ho 

If F* > F[1- a;a - 1, a(s - 1)], conclude Ha 

Finally, the test for factor B main effects: 

uses the test statistic: 

Ho: all fJk = 0 

Ha: not all fJk equal zero 

F* = ----,-M_S-,-'B_ 
MSB.S(A) 

and the decision rule for controlling the Type I error at a is: 

If F* S F[1 - a; b - 1, a(s - l)(b - 1)], conclude Ho 

If F* > F[1 - a; b - 1, a(s - l)(b - 1)], conclude Ha 

(27.13c) 

(27.14a) 

(27.14b) 

(27.14c) 

(27.15a) 

(27.15b) 

(27.15c) 
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Comments 
I. When the assumption of compound symmeIrY in repeated measures model en II) is -. . not met 

the conservative tcst discussed in Comment 2 on page 1065 should be employed. ' 
2. When the study is not balanced (i.e., when the number of subjects within each level of fact A' . , or \s 

not the same), the tests described here are no longer appropriate. Instcad, the methods forunbalan 
mixed and random models discussed in Section 25.7 can he employed. 

Evaluation of Appropriateness of Repeated Measures Model 
Our earlier discussion on evaluating the appropriateness of a repeated model 
applies here also. The residuals for repeated measures model (27.11) are: 

(27.16) 
A special feature of repeated measures model (27.11) also warrants attention. This model 

requires that the variance between subjects, be constant for all levels of factor A. This 
assumption can be examined by dot plots of the estimated subject effects Y;j. - Y. i. for each 
level of factor A. 

We can also conduct a formal test of the equality of the between-subjects variances by 
noting that the variation between subjects within factor A, SSS(A), can be decomposed into 
components for each factor A level: 

SSS(A) = SSS(Ar) + + '" + SSS(A lI ) (27.17) 

where: 

(27.17a) 

Each component sum of squares has il - I degrees of freedom associated with it. We can 
therefore test the equality of the between-subjects variances by means of the Hattley teSt 
statistic (18.8) or the Brown-Forsythe test statistic (18.12). For the latter test, d i ; in (18.11) 
is defined as the absolute difference between the estimated mean, YiJ ., and the median of 
the estimated means YIJ .. ... , Y,tj .. 

Similarly, the error variation, SSB.S(A), can be decomposed into components for each 
factor A level: 

SSB.S(A) = SSB.S(Ar) + + .. , + SSB.S(A lI ) (27.18) 

where: 

(27.18a) 

Each component has (s - I) (b - I) degrees of freedom with it. The Hattley or 
Brown-Forsythe tests can be conducted here also, this time to test for the equality of the 
error variance (52 for the different factor A levels. 

The Hartley test assumes normality and is sensitive to this assumption. Hence, the 
appropriateness of the normality assumption should be established first before the Hartley 
test is employed. Unlike the Hartley test, the Brown-Forsythe test is robust and relatively 
insensitive to departures from normality. 
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':Analysis of Factor Effects: Without Interaction 
.. When the two factors do not interact or the interactions are not important, the main effects 

may be analyzed in a straightforward fashion. The relevant mean square to be used in the 
estimated variance of an estimated contrast of factor A level means for repeated measures 
model (27.11) is MSS(A) because this mean square is the denominator of the appropriate 
F* statistic for testing factor A main effects. Similarly, the mean square for estimating 
contrasts of factor B level meanS is MSB.S(A). 

Example 1 

The multiples for the estimated standard deviation of an estimated contrast of factor A 
or factor B level means are as follows: 

Main A Effect Main B Effect 

Single comparison 
t[l - aj2; o(s - 1)] t[l -aj2;0(s-1)(b-1)] (27.19a) 

Tukey procedure (for pairwise comparisons) 
1 1 

T = .J2q[l - a; 0, o(s - 1)] T = .J2q[l - a; b, o(s - l)(b - 1)] (27.19b) 
Scheffe procedure 

52 = (o-l)F[l - a;o-l, o(s -1)] 
52 =(b-1)F[1-a;b-1,o(s-1)(b-1)] (27.19c) 

Bonferroni procedure 
B = t[l - aj2g; o(s - 1)] B = t[l - aj2g; o(s -l)(b - 1)] (27.19d) 

Note from Table 27.6 that the analysis of factor B effects can be carried out more precisely 
than that for factor A effects. The reason is that comparisons among factor A levels utilize 
MSS(A), which involves the variability among the subjects as well as the experimental 
error, while comparisons among factor B levels utilize MSB.S(A), which involves only 
experimental error. 

A national retail chain wanted to study the effects oftwo advertising campaigns (factor A) 
on the volume of sales of athletic shoes over time (factor B). Ten similar test markets (sub-
jects, S) were chosen at random to participate in this study. The two advertising campaigns 
(A I and A2 ) were similar in all respects except that a different national sports personality 
was used in each. Sales data were collected for three two-week periods (B\: two weeks 
prior to campaign; B2: two weeks during which campaign occurred; B3: two weeks after 
campaign was concluded). The experiment was conducted during a six-week period when 
sales of athletic shoes are usually quite stable. 

The data on sales (coded) are presented in Table 27.7, and are plotted in Figure 27.6 
by test market for each advertising campaign. There is no evidence in Figure 27.6 of any 
interactions between the test markets and the treatments. In general, sales tended to increase 
during each advertising campaign, and then tended to decline to previous or lower levels 
than just before the campaign. 



1146 

TABLE 27.7 
Data-Athletic 
Shoes Sales 
Example. 

FIGURE 27.6 
Plots of Sales 
Data by Test 
Market and 
Campaign-
Athletic Shoes 
Sales Example. 

Specialized Stll((V 

Advertising Test Time Period 

Campaign Market k=l k=2 k=3 
i = 1 958 1,047 933 
i = 2 1,005 1,122 986 

j=l i=3 351 436 339 
i = 4 549 632 512 
i = 5 730 784 707 
i = 1 780 897 718 
;'=2 229 275 202 

j=2 'i = 3 883 964 817 
i=4 624 695 599 
i=5 375 436 351 

(a) Campaign 1 (b) Campaign 2 

!ilk Yi2k 

900 900 ----------. 700 700 ----------. 
500 500 -----------. 
300 300 ----------0 0 

2 3 2 3 
Period Period 

From Figure 27.6 and other diagnostic analyses (not shown), it was concluded that 
repeated measures model (27.11) is appropriate here. Figure 27.7 contains the MINITAB 
output for the fit of this model. 

First we wish to test for campaign-time interaction effects: 

Ho: all (afJ) it = 0 

Ha: not all (afJ) jk equal zero 

We use the results from Figure 27.7 in test statistic (27.13b): 

* MSAB 196 
F"= = - = 55 

MSB.S(A) 358 . 



) 

jtURE27.7 
'mAD 

ootputfor 

AtbIetic Shoes 
Si!Ies Example. 

Factor Type Levels 
A fixed 2 
S(A) random 5 
B fixed 3 

Analysis of Variance for Y 
Source DF 
A 1 
S(A) 8 
B 2 

SS 
168151 

1833681 
67073 

A*B 2 391 
Error 16 5727 
Total 29 2075023 
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Values 
2 
2 3 
2 3 

MS 
168151 
229210 

33537 
196 
358 

71553 

4 5 

F P 
0.73 0.417 

640.31 0.000 
93.69 0.000 

0.55 0.589 

Source Variance Error Expected Mean Square 

1 A 
2 S(A) 
3B 
4A*B 
5 Error 

MEANS 
A N 
1 15 
2 15 

B N 
1 10 
2 10 
3 10 

Component 

76284.0 

358.0 

Y 
739.40 
589.67 

Y 
648.40 
728.80 
616.40 

Term 
2 
5 
5 
5 

(using restricted model) 
(5) + 3(2) + 15Q[1] 
(5) + 3(2) 
(5) + 10Q[3] 
(5) + 5Q[4] 
(5) 

Forlevel of significance a = .05, we require F(.95; 2, 16) = 3.63. Since F* = .55 3.63, 
we conclude Ho, that no significant interaction effects are present. The P-value for the test 
is .59. 

Next we wish to test for advertising campaign main effects: 

Ho: all aj = 0 

Ha: not all a j equal zero 

We use the results from Figure 27.7 in test statistic (27. 14b): 

* MSA 168,151 3 
F = MSS(A) = 229,210 = .7 

Forlevel of significance a = .05, we require F(.95; 1,8) = 5.32. Since F* = .73 5.32, 
we conclude Ho, that no advertising campaign main effects exist. The P-value for the test is 
.42. Thus, either of the two national sports personalities is equally effective in the advertising 
campaign. 
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Finally, we wish (() test for time period effects: 

H{f: alllh = 0 

H,,: not all f:3k equal zero 

Using the results from Figure 27.7 in (est statistic (27 .15b), we obtain: 

MSB 33,537 
F* = = -- =93.7 

MSB.S(A) 358 

Forlevelofsignificancea = .05, we require F(.95; 2, 16) = 3.63. Since F* = 93.7> 3.63 
we conclude H", that period main effects exist. The P-value for the test is 0+. ' 

To examine the nature of the time period effects, we shall conduct pairwise comparisons 
of mean sales for the three time periods: 

L = fl··k - fl··k' 

The Tukey procedure will be employed, with a 99 percent family confidence coefficient 
We require: 

I I 
T = J2 q (.99; 3, 16) = .)2(4.78) = 3.38 

o A 2MSB.S(A) 2(358) 
s-{L} = -- -- = -- = 71.60 

as 2(5) 

Hence, Ts{L} = 3.38)71.60 = 28.6. 
The point estimates of the changes in mean sales, based on the estimated factor B level 

means Y..k in Figure 27.7, are: 

LI = Y..2 - Y..I = 728.8 - 648.4 = 80.4 

L2 = Y..3 - VI = 616.4 - 648.4 = -32.0 

L3 = V3 - Y..2 = 616.4 - 728.8 = -112.4 

and the desired oonfidence intelvais therefore are: 

52 ::: fl .. 2 - fl·· I ::: 109 

-61 ::: fl··3 - fl .. 1 :::-3 

-141 ::: fl .. 3 - fl .. 2 ::: -84 

We conclude with family confidence coefficient. 99 that the two advertising campaigns lead 
to an immediate increase in mean sales of between 52 and 109 (8 to 17 percent), but that 
mean sales in the following period fall below those for the period preceding the campaign 
by somewhere between 3 and 61 (.5 to 9 percent). 

Analysis of Factor Effects: With Interaction 
When interactions exist between the two factors, the analysis of factor effects becomes con-
siderably more complex. As we saw in Chapter 19, page 848, when interaction effects are 
important, attention usually focuses on simple effects. To compare simple main effects of 
the repeated measure factor B, the appropriate error term for these pairwise comparis?ns 
remains MSB.S(A), the same as when there is no interaction. However, the appropnate 
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error term used for the pairwise comparisons of the simple main effects for factor A needs 
to be modified from that used without interaction in comparing main effects of factor A. For 
each level of factor B considered individually, the analysis reduces to a single-factor exper-
iment in which there are no repeated measures. Hence, the mean square within treatments 
is the appropriate error term to make pairwise comparisons among the treatment effects 
within each level of factor B. This mean square is a weighted average of MSB.S(A) and 
MSS(A) where the weights are the corresponding degrees of freedom: 

S( th
o a(b - 1)(s - I)MSB.S(A) + a(s - I)MSS(A) M Wi III Treatments) = --'------'-'---'------'---'----'------'--'-

ab(s - 1) 

Note that MS(Within Treatments) is a linear combination of mean squares whose expecta-
tions are not necessarily the same. Stated differently, MS(Within Treatments) represents a 
pooling of what will often be heterogeneous sources of variability. 

To employ this error term as a basis for pairwise comparisons among the simple main 
effects, we employ the Satterthwaite procedure. The correspondences to (25.26) for L = 
MS(Within Treatments) are: 

MSI = MSB.S(A) 
a(b - 1)(s - 1) 

C I = 
a(s - 1) 

C2= ----
ab(s - 1) 

MS2 = MSS(A) 
ab(s - 1) 

Substitution of these values into (25.28) leads to the Satterthwaite adjusted degrees of 
freedom: 

[SSB.S(A) + SSS(A)]2 
dfadj = -----------

[SSB.S(A)]2 [SSS(A)]2 ------ + ----
a(b - 1)(s - 1) a(s - 1) 

(27.20) 

We will now illustrate the analysis of factor effects in the presence of interactions with an 
example. 

During exercise, blood flow increases in some parts of the body in response to metabolic 
demand. Using radioactive micro spheres, an experiment was conducted to determine in 
which of five parts of the body (factor B) this occurs. Microspheres distribute in tissue 
as a function of blood flow; i.e., the greater the blood flow to a part of the body, the 
more microspheres (and radioactivity) it will contain. The experiment was designed to 
compare blood flow in five different parts of the body (factor B) between the resting control 
condition (factor A \) and during exercise (factor A2)' Tissues were examined in the following 
parts of the body: bone, brain, skin, muscle, and heart. The experiment was conducted by 
injecting a total of eight rats (subjects) intravenously with radioactive microspheres. After 
the micro spheres were injected, four rats were exercised on a treadmill for 15 minutes (factor 
A2) and the other four rats were placed on the treadmill, but the treadmill was not turned 
on (factor AI)' At the end of the IS-minute period, the rats were sacrificed and tissues in 
the five parts were harvested and the radioactivity in the tissues was measured. The data for 
this blood flow experiment are presented in Table 27.8 and plotted in Figure 27.8 by body 
part for each exercise condition. 

On the basis of Figure 27.8 and other diagnostic analyses (not shown), it was decided 
that repeated measure model (27.11) is appropriate here. Table 27.9 contains the analysis 
of variance table based on repeated measures model (27.11). 
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TABLE 27.8 
Data-Blood 
Flow during 
Exercise 
Example.* 

TABLE 27.9 
Analysis of 
Variance 
Table-Blood 
Flow during 
Exercise 
Example. 

Body Part 

Exercise k=l k=2 k=3 k=4 k=5 
Condition (Bone) (Brain) (Skin) (Muscle) (Heart) 

(No Exercise) i = 1 4 3 5 5 4 
i=2 1 3 6 3 8 

j = 1 i= 3 3 1 4 4 7 
i=4 1 4 3 2 7 

(Exercise) i = 1 3 6 12 22 11 
j = 2 3 5 8 18 12 

j=2 "!'= 3 4 7 10 20 14 
i=4 2 4 7 16 8 

>I< Adupted from FJ. Gordon. Alllliy,\'i,'i qrVmlallce: Deslglls. COIII;JUIClIioIlS. (lila Multiple COl1tpllri,mus. Department ofPharmaco\ogy. 
Emory University School of Medicine, 2003. 

Source of 
Variation SS df MS F* P-value 

A 324.9000 324.9000 44.104 .0006 
S(A) 44.2000 6 7.3667 
B 389.5000 4 97.3750 49.936 .0000 
AB 262.1000 4 65.5250 33.603 .0000 
B.S(A) 46.8000 24 1.9500 

Total 1067.5000 39 

FIGURE 27.8 Plot of Exercise Condition by Body Part for Each Rat-Blood Flow during Exercise Example. 
(a) No Exercise (A,) (b) Exercise (A2) 

25 25 

20 20 

15 15 0 0 
u:: u:: 
-0 -0 
0 0 
0 10 0 10 co co 

5 5 

0 0 
Bone Brain Skin Muscle Heart Bone Brain Skin Muscle Heart 

Body Part (B) Body Part (B) 
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First we wish to test for exercise by body part interaction effects: 

Ho: all (afJ)jk = 0 
Ha: not all (afJ)jk equal zero 

We use the results from Table 27.9 as the test statistic (27. 18a): 

* _ MSAB _ 65.5250 _ 33 03 F - - -.6 
MSB.S(A) 1.9500 

For level of significance a = .05, we require F(.95; 4,24) = 2.776. Since F* = 33.6 > 
2.776, we conclude Ha, suggesting that interaction effects are present. The P-value for the 
test is 0+. 

Next, because of the presence of a strong interaction effect, we wish to compare simple 
main effects of the repeated measures factor B (body part). We shall conduct pairwise 
comparisons of mean blood flows among body parts separately within the exercise and no 
exercise conditions; namely, 

No Exercise 

Dl = p.,.ll - p.,.12 

D2 = p.,.11 - p.,.13 

D3 = p.,.11 - p.,·14 

D4 = p.,·11 - p.,.15 

D5 = p.,.12 - p.,·13 

D6 = p.,.12 - p.,.14 

D7 = p.,.12 - p.,.15 

D8 = p.,·13 - p.,·14 

D9 = p.,·13 - p.,.15 

DlO = p.,.14 - p.,.15 

Exercise 

D11 = p.,.2l - p.,.22 

D12 = p.,·2l - p.,.23 

D 13 = p.,.2l - p.,.24 

D14 = p.,.2l - p.,·25 

D 15 = p.,·22 - p.,,z3 
D 16 = p.,.22 - p.,.24 

D17 = p.,.22 - p.,.25 

D 18 = p.,.23 - p.,·24 

D19 = p.,.23 - p.,.25 

D 20 = p.,.24 - p.,.25 

The Tukey procedure will be employed, with a 90 percent confidence coefficient, for each 
exercise condition. Then to combine these two Tukey procedures, a Bonferroni adjustment 
will be made for each exercise condition. Thus, we require 

1 4.17 
T = -j2q(.95;5,24) = -j2 = 2.95 

2{ A } _ 2MSB.S(A) _ 2(1.95) _ 9 5 sD- - -.7 
s 4 

where .95 is used in the T argument instead of .90 to incorporate the Bonferroni adjustment 
for the two conditions. Hence, Ts{D} = 2.95,J.975 = 2.91. Table 27.10 lists the cell 
means by exercise group and body part. 

Any means within an exercise group that differ by more than 2.91 units are concluded 
to be significantly different from one another at the .10 level of significance. Therefore, 
for the no exercise group, heart is significantly different from bone, brain, and muscle. For 
the exercise group: heart is significantly different from bone, brain, and muscle; muscle is 
significantly different from bone, brain, skin, and heart; and skin is significantly different 
from bone, brain, and muscle. 
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TABLE 27.10 Treatment Means by Exercise Group and Body Part-Blood Flow dUri 
Exercise Example. ng 

k=l k=2 k=3 k=4 -k=5 (Bone) (Brain) (Skin) (Musde) (Heart) 
i = 1 (No exercise) 2.25 2.75 4.50 3.50 6.50 i = 2 (Exercise) 3.00 5.50 9.25 19.00 11.25 

To examine simple main effects of the nonrepeated measure factor A (exercise) for each 
level of B (body pm'l). we shall conduct the five pairwise comparisons of mean blood flows 
between the two exercise gfOups within each body part; namely, 

DI = fl·11 -

= fl·1 -

D3 = fl.13 -

D4 = - fl·24 

D5 = fl·15 - fl·25 

The Tukey procedure will be employed using a 95 percent confidence coefficient for each 
body pal'l with a BonferfOni adjustment for the five body pm'ls. The within-treatment sum 
of squares is 

SS(Within Treatments) = SSB.S(A) + SSS(A) = 46.8000 + 44.2000 = 91.0000 

The approximate Satterthwaite adjusted degrees offreedom from (27.20) are: 

df"d,; = 146.8000 + 44.2000J2 8281.0000 = = 19.86 
416.8667 

2(4)(3) + 2(3) 

Being conservative, we use df"",; = 19 associated with MS(Within TI'eatments), where 

91.0000 
MS(Within Treatments) = = 3.033 

30 

Thus, we require 

I 4.05 
T = J2CJ(.99;2. 19) = J2 = 2.86 

= 2MS(Within Treatments) = 2(3.033) = 1.52 
s 4 

Hence. Ts{D} = = 3.53. Any means within body parts that differ by more than 
3.53 units are significantly different from one another at the .10 level of significance. There-
fOI'e, we conclude that average blood flow for skin, muscle, and hem'l diffeI' significantly 
between exeI'cise gcoups. 
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FIGURE 27.9 Treatment Order 
Layout for 2 
mocked 
Repeated Subject 1 A2B, A2B2 
l\1easures Block 1 

Design with Subject 2 A,B2 A,B, 

Random 
Assignments of Subject 3 A,B2 A,B, Factor A Level Block 2 to Subjects and Subject 4 A2B2 A2B, 
Repeated 
l\1easures on 
Factor B. 

Subject 2nb - 1 A,B, A,B2 
Block nb 

Subject 2nb A2B2 A2B, 

Blocking of Subjects in Repeated Measures Designs 
As already noted, comparisons among factor B effects can usually be carried out with 
greater precision than those for factor A effects because the latter involve between-subject 
variability as well as experimental error. To improve the preciSion of factor A comparisons, 
it is often helpful to block the subjects by some appropriate characteristic(s) so that the 
subjects within a block are homogeneous. Figure 27.9 illustrates the blocking of subjects 
in connection with the repeated measures design of Figure 27.5. Altogether, nb blocks 
are used, each consisting of two similar subjects. One subject in each block is assigned at 
random to factor level AI> the other is assigned to factor level A 2• In the second stage of 
randomization, each subject is randomly assigned the order of the two levels of factor B, 
namely, type of problem. Thus, the only difference between the repeated measures designs 
in Figures 27.9 and 27.5 is the blocking of the subjects for purposes of studying factor A 
effects more precisely. Note that for this layout, the number of subjects is s = 2nb. 

When there is a choice between which of the two factors should be the one on which 
repeated measures are taken (factor B), it should be the one for which more precise estimates 
are required. The reason is that even with blocking, the variability between subjects within 
a block will usually be greater than the variability within a subject. 

27.4 Two-Factor Experiments with Repeated Measures 
on Both Factors 

In Section 27.2 we considered single-factor repeated measures studies. The model for these 
designs can be extended when the treatments follow a factorial structure. For example, 
consider a study where four treatments are employed that represent two levels of each of 
two factors. Figure 27.10 depicts the layout for such a design when four subjects are utilized 
in the study. Note that the order of the treatments is randomized within each subject. When 
the treatments represent a factorial structure, we can explore as usual interaction effects as 
well as the main effects for the two factors. The design in Figure 27.10 is said to represent 
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FIGURE 27.10 
Layout for 
Two-Factor 
Repeated 
Measures 
Design with 
Repeated 
Measures on 
Both Factors 
(s =4,a =2, 
b=2). 

Model 

Speciali:ed SlIIdr /)('siK"s 

Treatment Order 

2 3 4 

Subject 1 A,B2 A2B2 A,B, A2B, 

2 A2B, A,B2 A2B2 A,B, 

3 A2B2 A,B, A2B, A,B2 

4 A,B, A2B, A,B2 A2B2 

repeated meOSllres 011 both factors because each subject receives all treatments defined by 
the factorial structure. 

When both fuclOr effects are fixed. the subjects constitute a fandom sample, and there are 
repeated measures on both factors. a model frequently appropriate is given by: 

YUk = fl··· + Pi + a j + + (a{3) ik + (pa)ij + (P{3)ik + Cijk (27.21) 
where: 

fl ... is a constant 
Pi are independent N (0, 
a j are constants subject to j = 0 

are constants subject to L!3k = 0 
(a{3) ik are constants subject to L/af:!) = 0 for all k and Lk (a{3)jk = 0 for all j 

(p!3h afe N (0. b: I subject to the restfictions Lk(P!3h = 0 for all i 

a{(p{3h. (p!-»id = - fOf k of- k' 

( a-I,) . '" " II' (pa);; are N O. --ap-a subject to the restnctions L- . (pa)ij = 0 lor a I a j 

a{(pa)ij. (pa);!') = for.i of- / 
a 

Pi, (pa)i; and (P!3)ik are pairwise indepelldent 
Cijk are independent N(O, ( 2 ) and independent of Pi, (pa)ij and (pf:!h 
i= l. ... ,s;j= l •... ,a:k= l. .... b 

Note that two of the interaction terms in the model are fandom since the factor Pi is a 
random effect and that all sums of effects over the fixed factor levels ure zero. 

The observations Yi;k for repeated meaSUfes model (27.21) have the following properties: 

E{Yijd = fl ... + aj + + (a{3)jk (27.22a) 

(27.22b) 
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Model (27.21) is an extension of the single-factorrepeated measures model (27.1), where 
the treatment effect Lj is now decomposed into factor A and factor B main effects and an 
AB interaction effect. However, separate first-order treatment-by-subject interaction terms 
are assumed to exist. 

Once the subjects have been selected, repeated measures model (27.21), like the earlier 
repeated measures model (27.1), assumes that all of the treatment observations for a given 
subject are independent-that is, that there are no interference effects. 

Analysis of Variance and Tests 
Analysis of Variance. The ANOVA sums of squares for model (27.21) and the expected 
mean squares can be obtained readily by following the rules in Appendix D. The sum of 
squares for estimating the error variance terms reflects the interactions between treatments 
and subjects. Table 27.11 presents the ANOVA decomposition, degrees of freedom, and 
expected mean squares for two-factor repeated measures model (27.21). 

Tests for Factor Effects. It is clear from the expected mean squares column in 
Table 27.11 a that the test for AB interaction effects: 

uses the test statistic: 

Ho: all (afJ)jk = 0 
Ha: not all (afJ)jk equal zero 

F* = MSAB 
MSABS 

and the decision rule for controlling the Type I error at a is: 

If F* ::s F[I - a; (a - I)(b - 1), (a - I)(b - I)(s - 1)], conclude Ho 
If F* > F[1 - a; (a - I)(b - 1), (a - I)(b - I)(s - 1)], conclude Ha 

The test for factor A main effects: 

uses the test statistic: 

Ho: all aj = 0 
Ha: not all aj equal zero 

F* = MSA 
MSAS 

and the decision rule for controlling the Type I error at a is: 

If F* ::s F[1 - a; a - 1, (a - I)(s - 1)], conclude Ho 
If F* > F[1- a;a - 1, (a - I)(s - 1)], conclude Ha 

Similarly, the test for factor B main effects: 

uses the test statistic: 

Ho: all fJk = 0 
Ha: not all fJk equal zero 

* MSB F =--
MSBS 

(27.23a) 

(27.23b) 

(27.23c) 

(27.24a) 

(27.24b) 

(27.24c) 

(27.25a) 

(27.25b) 
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TABLE 27.11 
ANOVA Table 
and Sums of 
Squares for 
Two-Factor 
Repeated 
Measures 
Design with 
Repeated 
Measures on 
Both Factors-
Subjects 
Random, 
Factors A and 
B Fixed. 

(a) ANOVA Table 

Source of 
Variation SS df 
Subjects(S) SSS s-l 

Factor A SSA 0-1 

Factor B SSB b-1 

AB interactions SSAB (a -1)(b-1) 

AS interactions SSAS (a - 1 )(s - 1) 
BS interactions SSBS (b - 1 )(s - 1) 
Error 
Total 

SSABS (a -1)(b-1)(s -1) 

ssm abs -1 

(b) Sums of Squares 

SSS = ab L(Y;" - y' .. )2 
j 

SSA = sb L(Y.;, - y' .. )2 
I 

SSB = so L(Y.'k - y' .. )2 
k 

SSAB = s L L(Y.;k - Y.;. - Y.'k + Y...i 
j k 

SSAS = b L L(}\' - Yj •• - Y.;. + y' .. )2 
; 

SSBS = a LL(Yi•k - Yj •• - Y" k + y ... )2 
i k 

MS 

MSS 

MSA 

MSB 

MSAB 

MSAS 

MSBS 

MSABS 

La2 

a 
2 + bu;, + bs----.!.-

0-1 

a 2 + aa2 + asb!!l 
f'fJ b-1 

2 LL(afJ)}k a 
(a -1)(b-1) 

a 2 + bu2 

"" a 2 + aa;{J 
a 2 

SSAB: = L LL(Yj;k - Y,i· - Yj'k - Y';k + Y, .. + Y.;. + Y..k - y' .. )2 
k 

and the decision rule for controlling the Type L eI"roI" at a is: 

Comments 

If F' :::: F[ I - a: b - I, (b - I)(s - I )]. conclude Ho 

If F* > FII - a;b - I, (b - I)(s - 1)1, conclude H" 
(27.2Sc) 

I. When the effects of either factor A or factor B are random, the expected mean squares can be 
found by employing the rules in Appendix D. In tum. thelie expected mean will identify the 
appropriate test statistics. 

2. Conservative F tests described in Section 25.5 should be used when the of com-
pound symmetry in repeated measures model (27.21) is not met. 
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3. Repeated measures model (27.21) assumes that treatments and subjects interact. If treatments 
and subjects do not interact, it can be shown that the treatment by subject interaction sum of squares 
is made up of three components: 

SSFR.S = SSAS + SSBS + SSABS 

Thus, it is possible to pool the first-order interactions in the model (the factor A by subject interactions 
and the factor B by sUbject interactions) with the second-order interactions (the factor A by factor B 
by subject interactions). When the repeated measures model does not allow for interactions between 
treatments and subjects, the analysis of factor effects becomes somewhat easier. However, in many 
cases, MSABS tends to be considerably smaller than either MSAS or MSBS, justifying the use of 
separate error terms. • 

Evaluation of Appropriateness of Repeated Measures Model 
Our earlier discussion on the evaluation of the appropriateness of repeated measures model 
(27.1) applies here as well. In particular, residual sequence plots by subject should be 
constructed to examine whether interference effects are present and whether the error vari-
ance is constant. Plots of the observations by subject should be utilized to see whether the 
assumption of no treatment by subject interactions is appropriate. 

Analysis of Factor Effects 
If factors A and B do not interact or interact only in an unimportant fashion, the analysis 
of factor A and factor B main effects proceeds as usual. For the analysis of either factor A 
or factor B main effects, either MSAS or MSBS, respectively, will be used in the estimated 
variance of the estimated contrast since this mean square is the denominator of the F* test 
statistic for testing factor A or factor B main effects. 

The multiples for the estimated standard deviation of an estimated contrast of factor A 
or factor B level means are as follows: 

Main A Effect Main B Effect 

Single comparison 
t[1-aj2;(0-1)(s-1)] t[1 - aj2; (b-1)(s -1)] (27.26a) 

Tukey procedure (for pairwise comparisons) 
1 1 

T= .J2q[l-a;o,(o-l)(S-l)] T= .J2q[1-a;b,(b-1)(s-1)] (27.26b) 
Scheffe procedure 

52 = (o-l)F[l - a; 0 - 1, (o-l)(s -1)] 
52 = (b-1)F[1 - a; b-1, (b-1)(s -1)] (27.26c) 

Bonferroni procedure 
B = t[1 - aj2g; (0 - l)(s -1)] B = t[l - aj2g; (b-1)(s - 1)] (27.26d) 

If strong interactions between factors A and B exist that cannot be made unimportant by 
some simple transformation, the analysis of the factor effects should be performed in terms 
of the treatment means f.L.jk. which are averaged over subjects. This analysis is similar 
to that in Section 27.3 for a two-factor study with interaction. The pooled mean square 
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Example 

TABLE 27.12 
Data-Blood 
Flow Example. 

MSTR.S will be used in estimating the variance of any estimated Contrast of the tre 
means. The degI"ees offreedom associated with MSTR.S will need to be estimated 
SarreI"thwaite pI"ocedure discussed befoI"e in ChapteI" 25, page 1043. g t 

A clinician studied the effects of two drugs used either alone OI" togetheI" on the blood fl 
in human Twelve healthy middle-aged males participated in the study and th

OW 

aJ"e viewed as a random sample fmm a I"elevant population of middle-aged males. The fo:' 
treatments used in the study aI"e defined as follows: 

A, B, placebo (neither drug) 
A, B2 drug B alone 
A2 B, drug A alone 
A2 B2 both drugs A and B 

The 12 subjects received each of the four treatments in independently I"andomized orders. 
The I"esponse vaI"iable is the increase in blood flow from before to shortly after the ad-
ministration of the treatment. The treatments were administered on successive days. This 
wash-out period prevented any caI"I"yover effects because the effect of each drug is short-
lived. The experiment was conducted in a double-blind fashion so that neither the physician 
nOI" the subject knew which treatment was administered when the change in blood flow was 
measured. 

Table 27.12 contains the data fOI" this study. A negative entry denotes a decrease in 
blood flow. Figure 27.11 contains the MINITAB output for the fit of repeated measures 
model (27.21). Included in the output aI"e the expected mean squares for the specified 
ANOYA model. As explained in Chapter 25, each term in an expected mean square is 
represented in the MINITAB output by (1) the numeric code, in parentheses. for the variance 
of the model term and (2) the preceding number, which is the numeI"ical multiple. When the 
model term is fixed, the letter Q is used in (he printout to show that the variance is replaced 
by the sum of squared effects divided by degrees of freedom. For example, the expected 
value of MSA as shown in Figure 27.1 I is: 

(7) + 2(5) + 24Q[2] = a 2 + 2a;a + 24 

which corresponds, 'of COUI"se, to the factor A expected mean squaJ"e shown in Table 27.1 la 

Subject Treatment 

A,B, A,B2 A2B, A2B2 
1 2 10 9 25 
2 -1 8 6 21 
3 0 11 8 24 

10 -2 10 10 28 
11 2 8 10 25 
12 -1 8 6 23 
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fiGURE 27.11 (a) MlNlTAB Output 

M1NI'D\B Analysis of VarIance for Flow 
f)utputfor 
ANOVA-
Blood flow 
Example. 

Source 
Subject 
A 
B 
A*B 
Subject*A 
Subject*B 
Error 
Total 

Source 

1 Subject 
2A 
3B 
4A*B 
5 Subject*A 
6 Subject*B 
7 Error 

Source 

a 

Error(a) 

Source 

b 

Error(b) 

Source 

a*b 

Error(a*b) 

a1b1 
a1b2 
a2b1 
a2b2 

OF 

1 

11 

OF 

1 

11 

OF 

1 

11 

N 

12 
12 
12 
12 

OF SS MS F P 
11 258.50 23.50 20.68 0.000 

1 1587.00 1587.00 775.87 0.000 
1 2028.00 2028.00 524.89 0.000 
1 147.00 147.00 129.36 0.000 

11 22.50 2.05 1.80 0.172 
11 42.50 3.86 3.40 0.027 
11 12.50 1.14 
47 4098.00 

Variance Error Expected Mean Square for Each Term 
Component Term (using restricted model) 

5.5909 7 (7) + 4(1) 
5 (7) + 2(5) + 24Q[2] 
6 (7) + 2(6) + 24Q[3] 
7 (7) + 12Q[4] 

0.4545 7 (7) + 2(5) 
1.3636 7 (7) + 2(6) 
1.1364 (7) 

(b) SAS Output 

Type III SS Mean Square F Value Pr> F 

1587.000000 1587.000000 775.87 <.0001 

22.500000 2.045455 

Type III SS Mean Square F Value Pr> F 

2028.000000 2028.000000 524.89 <.0001 

42.500000 3.863636 

Type III SS Mean Square F Value Pr> F 

147.0000000 147.0000000 129.36 <.0001 

12.5000000 1.1363636 

Mean Std Oev Minimum Maximum 

0.5000000 2.1105794 -2.0000000 4.0000000 
10.0000000 3.1908961 5.0000000 16.0000000 
8.5000000 2.0225996 6.0000000 12.0000000 

25.0000000 3.4377583 20.0000000 31.0000000 
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FIGURE 27.12 
Interaction 
Plot with 
Responses 
Superimposed-
Blood Flow 
Example. 

30 GI 

a 
25 B2 

20 
$: 

.2 15 
-0 
0 10 0 B, c:; 

5 

0 

-5 A, A2 

Vafi ous diagnostics were uti lized to see if repeated measures model (27.21) is appropriate 
for the data in Table 27.12. The fesults (not shown here) supported the appropriateness of 
this model. The clinician expected the two drugs to interact in increasing the blood flow. 
To test fOf interaction effects: 

Ho: all (afJ) jk = 0 

Ha: not all (afJ) jk equal zero 

we use test statistic (27.23b) and the results from Figure 27.11: 

MSAB 147.000 
F* = -- = = 129.36 

MSABS 1.1364 

FOI" level of significance a = .01, we require F(.99; 1, 11) = 9.65. Since F* = 129.36 > 
9.65, we conclude Ha, that intemction effects exist. The P-value for this test is O+. 

Figure 27.12 contains an interaction plot of the estimated treatment means, with the 
responses superimposed. Substantial interaction effects are evident. To study the nature of 
the interaction effects, the clinician wished to compare the joint use of the two drugs with 
the use of each drug alone, drug A with drug B, and each drug with no drug. Thus, the 
following pairwise comparisons are to be made: 

L, = /l·n - /l·21 

L2 = /l'22 - /l'12 

L3 = /l'21 - /l"2 

L4 = /l·21 - /l." 

Ls = /l'12 - /l'1I 

Point estimates of these pairwise comparisons are (Y.;k values are in Figufe 27.llb): 

[, = 25.0 - 8.5 = 16.5 

[2 = 25.0 - 10.0 = 15.0 

[3 = 8.5 - 10.0 = -1.5 

[4 = 8.5 - .5 = 8.0 

[5 = 10.0 - .5 = 9.5 
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The estimated variance of each estimate L is given in (17.22), with the relevant mean square 
here being MSABS. Hence, we have: 

and s{L} .435. Using the Bonferroni procedure with a 95 percent family confidence 
coefficient, we require B = t[1 - (.05)/2(5); 11] = t(.995; 11) = 3.106. Hence, 
t(.995; l1)s{L} = 3.106(.435) = 1.35 and the desired confidence intervals with a 95 per-
cent family confidence coefficient are: 

15.15:::: f-L.22 - f-L.21 :::: 17.85 

13.65 :::: f-L.22 - f-L.12 :::: 16.35 

-2.85 :::: f-L.21 - f-L'I2 :::: -.15 

6.65 :::: f-L·21 - f-L." :::: 9.35 

8.15 :::: f-L.12 - f-L'II :::: 10.85 

It is clear from these results thaI either drug A alone or drug B alone Leads to an increase 
in blood flow, and that the combination of the two drugs leads to a substantial additional 
increase in blood flow as compared to when either drug is used alone. Finally, a significant 
difference exists in the mean effects of the two drugs used alone. 

Comments 
1. Repeated measllres designs are discussed in more detail in References 27.1 and 27.2. 
2. In economics and econometrics, repeated measurement data over time are commonly referred 

to as panel data. The process of combining cross-sectional data and data over time to form a panel is 
called pooling. See References 27.3 and 27.4 for a discussion of these models and their analyses. 

3. Another area of application for repeated measurement data is referred to as growth curve model 
analyses. Here separate regression models are fit to each subject over time. See Reference 27.5 for a 
discussion of these models and their analyses. • 

27.5 Regression Approach to Repeated Measures Designs 
When the repeated measures study is balanced and the treatment effects are fixed, the 
analysis of variance model can be expressed in the form of a regression model with indicator 
variables for purposes of obtaining the various sums of squares and conducting tests for 
treatment effects. Repeated measures models (27.1) and (27.21) can be stated in the form 
of a regression model as explained in Section 23.4 for randomized block designs. Repeated 
measures model (27.11), which also involves nested effects, can be expressed in the form 
of a regression model by including suitable indicator variables as explained in Section 26.6 
on page 1105. 

When the repeated measures study is not balanced, as, for instance, when there are 
missing observations, the tests based on the expected mean squares in Tables 27.1, 27.6, 
and 27 .11 are no longer appropriate. Methods for analyzing unbalanced mixed and random 
effects models are discussed in Section 25.7. 
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27.6 Split- Plot 
designs are frequently used .laboratory, .industfIal, and social science 

expenments. The repeated measures desIgn In FlgllI'e 27.5 tor a study with repeated m _ 
sures on one is a type of design. We shall discuss split-plot designs only 
two-factor studIes, but these desIgn,; can be extended to apply when three or more factors 
are under investigation. 

Split-plot designs were originally developed for agricultural experiments. Consider an 
investigation to study the effects of two irrigation methods (factor A) and two fertilizers 
(factol B) on yield ofacrop, using four available fields asexperimenral units. In acompletel 
randomized design, four treatments (A, B" A, B2 , A 2 B" A 2 8 2 ) would then be assigned 
random to the four fields. Since thele are four treatments and just four expelimental units 
there will be no degrees of freedom for estimation of eITOI, as shown in the 
abbreviated ANOYA table, listing source of valiation and degrees of freedom only: 

Source of Variation 

Factor A (irrigation methods) 
Factor B (fertilizer types) 
AB interactions 
Error 

Total 

Degrees 
of Freedom 

o 
3 

If the fields could be subdivided into smaller experimental units, replicates of each 
factor-level combination could be obtained and the error variance could then be estimated. 
Unfortunately, in this investigation it is not possible to apply different irrigation methods 
(factor A) in areas smaller than a field, although different fertilizer types (factor B) could 
be applied in relatively small areas. A split-plot design can accommodate this situation. 

In a split-plot design, each of the two irrigation methods is landomly assigned to two 
of the four fields, which ale usually called whole plots. In turn, each whole plot is then 
subdivided into two or more smaller aleas called split plots. and the two fertilizers are 
then mndomly. assigned to the split plots within each whole plot. The key feature of split-
plot designs is the use of two (or more) distillCt levels of randomization. At the first level 
of randomization, the whole-plot treatments are randomly assigned to whole plots; at the 
second level, the split-plot treatments are randomly assigned to split plots. 

The layout for the agricultural experiment example is shown in Figure 27.13. Note 
this layout is conceptually identical to the layout for the two-factor repeated measures design 
in Figure 27.5. The fields in Figure 27.13 correspond to the subjects in Figure 27.5, and 
the split plots correspond to the occasions on which treatments can be applied to a subject 
Consequently. the split-plot model hele is the same as in (27.11): 

Yijk = fl··· + Pilj) + ai + {3k + (a{3)ik + Cijk (27.27) 

For the split-plot agricultural experiment example, a i denores the main effect of the jth 
irrigation method (jth whole-plot tIeatment) and 13k denotes the main effect of the kth 



TABLE 27.13 
ANOVA Table 
fur Two-Factor 
Split-Plot 
'Experiment. 
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FIG URE 27.13 Layout for Two-Factor Split-Plot Experiment-Agricultural Experiment 
Example (factor A is whole-plot treatment and factor B is split-plot treatment). 

Fields (Whole Plots) 
I 

i i i 

Split Plots { A2B2 A,B, A,B2 A2B, 

A2B, A,B2 A,B, A2B2 

t t t t 
A2 A, A, A2 

Whole-Plot Treatments 

Source of Variation 55 df M5 
Whole plots 

Factor A SSA a-l MSA 
Whole-plot error SSW(A) a(s -1) MSW(A) 

Split plots 
Factor B SSB b-l MSB 
AB interactions SSAB (a-,--l)(b-l) MSAB 
Split-plot error SSB.W(A) a(s-l)(b-l) MSB.W(A) 

Total ssm abs -'-1 

fertilizer type (kth split-plot treatment). Also, PiU) denotes the effect of the ith whole plot, 
nested within the jth level of factor A (irrigation method). 

Some computer packages produce special ANOVA tables that list the whole-plot effects 
and split-plot effects separately. Table 27.13 illustrates such a table. These tables serve as 
a reminder that the denominator of the F test for the whole-plot treatments is given by the 
error mean square for whole plots and that the denominator of the F test for the split-plot 
treatments and for the interactions between the whole-plot and split-plot treatments is given 
by the split-plot error mean square, as shown in Table 27.13. Note that this table is simply 
a rearrangement of the ANOVA table in Table 27.5 for a two-factor study with repeated 
measures on one factor. SSS(A) is now denoted by SSW(A) and SSB.S(A) is now denoted 
by SSE. W(A). The expected mean squares are the same as in Table 27.6. 

Comments 
1. Whenever subjects can receive all treatments in a two-factor study without interference effects, 

a repeated measures design with repeated measures on both factors might be preferable, because the 
factor effects for both factors may be estimated more precisely than in a split-plot design. 

2. Split-plot designs are useful in industrial experiments when one factor requires larger experi-
mental units than another. Consider, for instance, a study of the effects of two additives (factor A) and 
two different containers (factor B) for prolonging the shelf life of a milk product. Here, it is easier to 
make larger batches of the milk product with a given additive, whereas the different containers can 
be used with smaller batches. 
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27.1. A serious potential problem with repeated designs is associated with carryover 
effects. Describe some steps that can be taken to minimize this problem. 

27.2. In designing a two-factor repeated measures study with repeated measures on one factor, does 
it matter which of the two factors is included as the repeated measures factor? Explain fully. 

27.3. Blood pressure. The relationship between the dose of a drug that increases blood pressure and 
the actual amount of increase in mean diastolic blood pressure was investigated in a laboratory 
experiment. Twelve rabbits received in random order six different dose levels ofthe drug, with 
a suitable interval between each drug administration. The increase in blood presslu'e was used 
as the response variable. The data on blood pressure increase follow. 

Rabbit 
Dose (j) 

Rabbit 
Dose (j) 

.1 .3 .5 1.0 1.5 3.0 .1 .3 .5 1.0 1.5 3.0 

21 21 23 35 36 48 7 9 12 17 22 33 40 
2 19 24 27 36 36 46 8 20 20 30 30 38 41 
3 12 25 27 26 33 40 9 18 18 27 31 42 49 
4 9 17 18 27 34 39 10 8 12 II 24 26 31 
5 7 10 19 25 31 38 II 18 22 25 32 38 38 
6 18 26 26 29 39 44 12 17 23 26 28 34 35 

a. Obtain the residuals for repeated measures model (27.1) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.1)? 

b. Prepare aligned residual dot plots by dose leveL Do these plots support the assumption of 
constancy of the error variance? Discuss. 

c. Plot the observations Yij for each rabbit in the format of Figure 27.2. Does the assumption 
of no interactions between subjects (rabbits) and treatments appear to be reasonable here? 
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d. Conduct the Thkey test for additivity, conditional on the rabbits actually selected; use 
a = .005. State the alternatives, decision rule, and conclusion. What is the P-value of the 
test? 

27.4. Refer to Blood pressure Problem 27.3. Assume that repeated measures model (27.1) is 
appropriate. 
a. Obtain the analysis of variance table. 
b. Test whether or not the mean increase in blood pressure differs for the various dose levels; 

use a = .01. State the alternatives, decision rule, and conclusion. What is the P-value of 
the test? 

c. Analyze the effects of the six dose levels by comparing the means for successive dose levels 
using the Bonferroni procedure with a 95 percent family confidence coefficient. State your 
findings and summarize them by a suitable line plot. 

d. According to the estimated efficiency measure (21.14), how effective was the repeated 
measures design here as compared to a completely randomized design? 

27.5. Refer to Blood pressure Problems 27.3 and 27.4-
a. Develop a regression model in which the subject effects are represented by 1, -1, 0 

indicator variables and the dose effect is represented by linear, quadratic, and cubic terms 
in x = X - X, where X is the dose leveL For instance, the x value for the first dose level 
(X = .1) is x = .1 - 1.07 = -.97. 

b. Fit the regression model to the data. 
c. Obtain the residuals and plot them against the fitted values. Does the model utilized appear 

to provide a reasonable fit? 
d. Test whether or not the cubic effect is required in the model; use a = .05. State the 

alternatives, decision rule, and conclusion. What is the P-value of the test? 

27.6. Grapefruit sales. A supermarket chain studied the relationship between grapefruit sales and 
the price at which grapefruits are offered. Three price levels were studied; (1) the chief 
competitor's price, (2) a price slightly higher than the chief competitor's price, and (3) a price 
moderately higher than the chief competitor's price. Eight stores of comparable size were 
randomly selected for the study. Sales data were collected for three one-week periods, with 
the order of the three price levels randomly assigned for each store. The experiment was 
conducted during a time period when sales of grapefruits are usually quite stable, and no 
carryover effects were anticipated for this product. Data on store sales of grapefruits during 
the study period follow (data coded). 

Store Price level (j) 

2 3 

1 62.1 61.3 60.8 
2 58.2 57.9 55.1 

7 46.8 43.2 41.5 
8 51.2 49.8 47.9 

a. Obtain the residuals for repeated measures model (27.1) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
aboutthe appropriateness of model (27.1)? 

b. Prepare aligned residual dot plots by price leveL Do these plots support the assumption of 
constancy of the error variance? Discuss. 



1166 Part Six Specialized Slud.l· Designs 

c. Plot the observations Yij for each store in the format of Figure 27.2. Does the assum . 
t·· . b b' (d b ption o no mteractIOns etween su stores) an treatments appear to e rea.;onable hete? 

d. Conduct the Tukey test for additivity, conditional on the stores actually selected' 
a = .0 I. State the alternatives. decision rule, and conclusion. What is the P-value 
test? 

*27.7. Refer Grapefruit sales Problem 27.6. Assume that repeated measures model (27.1) is 
approprIate. 
a. Obtain the analysis of variance table. 
b. Test whether or not the mean sales of grapefruits differ for the three price levels; u 

a = .05. State the altematives. decision rule. and conclusion. What is the P-value 
test? 

c. Analyze the effects of the three price levels by estimating all pairwise comparisons of 
the price level means. Use the mOst efficient multiple comparison procedLU'e with a 95 
percent family confidence coefficient. State your findings and summarize them by a suitable 
line plot. 

d. According to the estimated efficiency measure (21.14), how effective was the repeated 
design compared to a completely randomized design? 

27.8. Refer to Blood pressure Problem 27.3. A consultant is concerned about the validity of the 
model assumptions and suggests that the study should be analyzed by means of the nonpara-
metric rank F test. Rank the data within each rabbit and perform the rank F use a = .01. 
State the alternatives. decision rule. and conclusion. Comment on the consultant's concern 
here. 

*27.9. Refer to Grapefruit sales Problem 27.6. It has been suggested that the nonparametric rank 
F test should be used here. Rank the data within each store and perform the rank F test; use 
a = .05. State the alternatives, decision rule, and conclusion. Is your conclusion the same as 
that obtained in Problem 27.7b? 

27.10. Truth in advertising. A consumer research organization showed five different advertisements 
to 10 subjects and asked each to rank them in order of truthfulness. A rank of I denotes the 
most truthfuL The results were: 

Subject Advertisement (j) Subject Advertisement (j) 

A B C D E A B C D E 

3 2 5 4 6 4 2 1 3 5 
2 4 2 1 3 5 7 4 1 2 3 5 
3 4 2 3 1 5 8 5 1 3 2 4 
4 3 2 5 4 9 4 2 3 1 5 
5 4 2 5 3 10 5 1 2 3 4 

a. Do the subjects perceive the five advertisements as having equal truthfulness? Conduct 
the non parametric rank F test using level of significance a = .05. State the altematives, 
decision rule. and conclusion. What is the P-value of the test? 

b. Use the multiple pairwise testing procedure (27.9) to group the five different advertisements 
according to mean perceived truthfulness: employ family significance level a = .10. 
Summarize your findings. 

c. Obtain the coefficient of concordance (27.10) and interpret this measure. 
27.1 L Incentive stimulus. Refer to the example in Section 27.3 about the effects of twO types 

of incentives (factor A) on a person's ability to solve two types of problems (factor B); 
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the repeated measures design is illustrated in Figure 27.5. Twelve persons were randomly 
selected and assigned in equal numbers to the two incentive groups. The order of the two 
types of problems was then randomized independently for each person. The problem-solving 
ability scores follow (the higher the score, the greater the ability to solve problems). 

Incentive 
Stimulus 

j = 1 

j=2 

Subject 
1=1 
i=2 
1=3 
i=4 
i=5 
i=6 
1=1 
i=2 
1=3 
i=4 
i=5 
i=6 

Problem Type 
Abstract Concrete 
(k = 1) (k= 2) 

10 18 
14 19 
17 18 
8 12 

12 14 
15 20 
16 35 
19 32 
22 37 
20 33 
24 39 
21 32 

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.ll)? 

b. Plot the problem-solving ability scores by incentive stimulus and problem type, in the 
format of Figure 27.6. What do you conclude about the appropriateness of model (27.11)? 
Discuss. 

12. Refer to Incentive stimulus Problem 27.11. Assume that repeated measures model (27.11) 
is appropriate. 
a Obtain the analysis of variance table. 
b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 

appear that interaction effects are present? That main effects are present? 
c. Test whether or not the two factors interact; use a = .05. State the alternatives, decision 

rule, and conclusion. What is the P-value of the test? 
d. The following comparisons between problem types are of interest: 

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure 
with a 90 percent family confidence coefficient for each problem type. Then combine these 
two Tukey procedures with a Bonferroni adjustment for each problem type. State your 
findings. 

e. The following comparisons between incentive stimuli are of interest 

Estimate these comparisons by means of confidence intervals. Use the Tukey procedure 
with a 90 percent family confidence coefficient for each incentive stimulus. Then combine 
these two Tukey procedures with a Bonferroni adjustment for each incentive stimulus. 
State your findings. 
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*27.13. displays •. A measures study was to examine the effects of tw 
dIfferent store dIsplays for a household product (factor A) on sales in four succes' . 0 .. . . ' Stve tIme 
penods (factor B). EIght stores were randomly selected, and four were assiuned at ra d 
each display. The sales data (coded) follow. 

Type of 
Display 

i = 1 

i=2 

Store 
i=l 
i =2 
i = 3 
i=4 

i = 1 
i=2 
i=3 
i=4 

k=l 

956 
1,008 

350 
412 
769 
880 
176 
209 

• b n omto 

Time Period 

k=2 k=3 k=4 
953 938 1,049 

1,032 1,025 1,123 
352 338 438 
449 385 532 
766 739 859 
875 860 915 
185 168 280 
223 217 301 

a. Obtain the residuals for repeated measures model (27.11) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.11)? 

b. Plot the sales data by type of display and time period, in the format of Figure 27.6. What 
do you conclude about the appropriateness of model (27.1 I)? Discuss. 

*27.14. Refer to Store displays Problem 27.13. The experimenter wished to explore further the 
appropriateness of repeated measures model (27.1 I). 
a. Conduct a formal test of the constancy of the between-subjects variances. Use (27.17) and 

perform the Hmtley test. with a = .0 I. State the alternatives, decision rule, and conclusion. 
b. Decompose the en-or variation SSB.S(A) into components using (27.18), and perform the 

Hartley test for the constancy of the error variance a 2 for the different factor A levels; use 
a = .01. State the alternatives, decision rule, and conclusion. 

*27.15. Refer to Store displays Problem 27.13. Assume that repeated model (27.11) is 
appropriate. 
a. Obtain the analysis of variance table. 
b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 

appear that interaction effects are present? That main effects are present? 
c. Test whether or not the two factors interact; use a = .025. State the altematives, decision 

rule, and conclusion. What is the P-value for the test? 
d. Test separately whether or not display and time main effects are present; use a = .025 

for each test. State the alternatives, decision rule, and conclusion for each test. What is the 
P-value for each test? 

e. To study the nature of the factor A and factor B main effects, estimate the follow.lng 
pairwise comparisons: 

LI = fl·l. - fl·2· 

L2 = fl"1 - fl .. 2 

L3 = fl--2 - fl .. 3 

L4 = fl··] - fl"4 

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 
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27.16. Calculator efficiency. To test the efficiency of its new programmable calculator, a computer 
company selected at random six engineers who were proficient in the use of both this calculator 
and an earlier model and asked them to work out two problems on both calculators. One of 
the problems was statistical in nature, the other was an engineering problem. The order of 
the four calculations was randomized independently for each engineer. The length of time (in 
minutes) required to solve each problem was observed. The results follow (type of problem 
is factor A and calculator model is factor B): 

j=l j=2 
Statistical Engineering 
Problem Problem 

k=l k=2 k=l k=2 
Engineer New Earlier New Earlier 

Model Model Model Model 
1 Jones 3.1 7.5 2.5 5.1 
2 Williams 3.8 8.1 2.8 5.3 
3 Adams 3.0 7.6 2.0 4.9 
4 Dixon 3.4 7.8 2.7 5.5 
5 Erickson 3.3 6.9 2.5 5.4 
6 Maynes 3.6 7.8 2.4 4.8 

a Obtain the residuals for repeated measures model (27.21) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.21)? 

b. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the treat-
ments. Do these plots support the assumption of constancy of the error variance? Discuss. 

27.17. Refer to Calculator efficiency Problem 27.16. Assume that repeated measures model (27.21) 
is appropriate. 
a. Obtain the analysis of variance table. 
b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 

appear that treatment interaction effects are present? 
c. Test whether or not the two treatment factors interact; use a = .01. State the alternatives, 

decision rule, and conclusion. What is the P-value of the test? 
d. It is desired to study the nature of the interaction effects by considering the three compar-

isons: 

LI = p.,·I2 - p.,'I1 

L2 = p.,·22 - p.,'2I 

Obtain confidence intervals for these comparisons; use the Bonferroni procedure with a 
95 percent family confidence coefficient. State your findings. 

*27.18. Migraine headaches. Two experimental pain killer drugs for relief of migraine headaches 
were studied at a major medical center. Ten persistent migraine sufferers were randomly 
selected for a pilot study and received in random order each of the four treatment combina-
tions, with a suitable interval between drug administrations. The decrease in pain intensity 
was used as the response variable. The four treatments used in the study are defined as fol-
lows: AI BI = low dose of both drugs; AI B2 = low dose of drug A, high dose of drug B; 
A2BI = high dose of drug A, low dose of drug B; A2B2 = high dose of both drugs. The data 
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on reduction in pain intensity follow (the higher the score, the greater the reduction in 
pain). 

Person A, (j = 1) A2 (j = 2) 

B,(k = 1) B2 (k= 2) B,(k=l) B2 (k = 2) 
1.6 3.4 2.7 4.3 

2 2.3 5.1 4.2 6.5 
3 4.2 5.3 4.6 6.0 

8 6.0 7.2 6.3 7.3 
9 1.2 1.4 1.3 1.7 

10 2.7 3.0 3.0 3.1 

a. Obtain the residuals for repeated measures model (27.21) and plot them against the fitted 
values. Also prepare a normal probability plot of the residuals. What do you conclude 
about the appropriateness of model (27.21)? 

b. Prepare aligned residual dot plots by treatment ignoring the factorial nature of the 
Do these plots support the of constancy of the error varianCe? 

Discuss. 
*27.19. Refer to Migraine headaches Problem 27.18. Assume that repeated measures model (27.21) 

is appropriate. 
a. Obtain the analysis of variance table. 
b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 

appear that treatment interaction effects are present? That main effects are present? 
c. Test whether or not the two treatment factors interact; use a = .005. State the alternatives, 

decision rule, and conclusion. What is the P-value of the test? 
d. Test separately whether or not factor A and factor B main effects are present; use a = .05 

for each test. State the alternatives, decision rule, and conclusion for each test. What is the 
P-value for each test? 

e. Estimate the following comparisons by means of confidence intervals: 

LI = fl·21 - fl·11 

L2 = fl·12 - fl·11 

L3 = fl·21 - fl·12 

L4 = fl·22 - fl·11 

Use the BonfelToni procedure and family confidence coefficient .95. Summarize your 
findings. 

27.20. Wheat yield. Refer to the split-plot agricultural experiment of Section 27.6, for which the 
layout is shown in Figure 27.13. The results of this experiment to investigate the effects of 
two irrigation methods (factor A) and two fertilizers (factor B) on wheat yield follow for the 
10 fields used in the study. 

Irrigation Method j: 
Field i: 

Fertilizer k = 1: 
k= 2: 

2 
43 40 
48 43 

3 4 

31 27 
36 30 

5 

36 
39 

2 
2 3 4 5 

63 52 45 47 54 
70 53 48 51 57 



Exercise 

Projects 
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a. Obtain the residuals for split-plot model (27.27) and plot them against the fitted values. 
Also prepare a normal probability plot of the residuals. What do you conclude about the 
appropriateness of model (27.27)? 

b. Plot the wheat yield data by irrigation method and type of fertilizer in the format of 
Figure 27.6. What do you conclude about the appropriateness of model (27.27)? Discuss. 

27.21. Refer to Wheat yield Problem 27.20. Assume that split-plot model (27.27) is appropriate. 
a. Obtain the analysis of variance table. 
b. Plot the data and the estimated treatment means in the format of Figure 27.12. Does it 

appear that interaction effects are present? That main effects are present? 
c. Test whether or not the two factors interact; use a = .05. State the alternatives, decision 

rule, and conclusion. What is the P-value for the test? 
d. Test separately whether or not factor A and factor B main effects are present; use a = .05. 

State the alternatives, decision rule, and conclusion for each test. What is the P-value for 
each test? 

e. To study the nature of the factor A and factor B main effects, estimate the following 
pairwise comparisons: 

L2 = !J""I - f-I.,··2 

Use the Bonferroni procedure with a 90 percent family confidence coefficient. State your 
findings. 

27.22. Derive the total sum of squares breakdown in (27.5). 

27.23. Refer to Blood pressure Problem 27.3. Obtain the estimated within-subjects variance-
covariance matrix using (27.8). Are the estimated variances and covariances of the same 
orders of magnitude? Is the compound symmetry assumption reasonable here? 

27.24. Refer to Grapefruit sales Problem 27.6. Obtain the estimated within-subjects variance-
covariance matrix using (27.8). Are the variances and covariances roughly of the same order 
of magnitude? Is the compound symmetry assumption reasonably satisfied here? 

27.25. Refer to the Drug effect experiment data set in Appendix C.12. Consider only Part I of the 
study and observation unit 1 for each drug dosage level; Le., include only observations for 
which variable 2 equals I and variable 6 equals 1. Treat the 12 rats as subjects and ignore the 
classification of the rats into the three initial lever press rate groups. Assume that the subjects 
(rats) have random effects and that the treatments (dosage levels) have fixed effects. 
a. State the additive repeated measures model for this study. 
b. Obtain the residuals and plot them against the fitted values. Also prepare a normal proba-

bility plot of the residuals. What do you conclude about the appropriateness of the model 
employed? 

c. Plot the responses for each rat in the format of Figure 27.2. Does the assumption of no 
interactions between subjects (rats) and treatments appear to be appropriate? 

27.26. Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.25. 
a. Obtain the analysis of variance table. 
b. Test whether or not the drug dosage level affects the mean lever press rate; use a = .05. 

State the alternatives, decision rule, and conclusion. What is the P-value of the test? 
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c. Analyze the effects of the four dosage levels by comparing the mean responses for ea 
pair of successive dosage levels: use the BonfeIToni procedure with a 90 percent 
confidence coefficient. State your findings. y 

d. Fit a regression model in which the subject effects are represented by I -I 0 indo . , (cator 
variables and the dosage effect is represented by linear and quadratic terms in x == X _ X 
where X is the dosage leveL Assume that there are no interactions between subjects and 
treatments. 

e. Obtain the residuals and plot them against the fitted values. Does the regression model 
appear to provide a good fit? Discuss. 

f. Test whether or not the quadratic term can be dropped from the regression model; use 
a = .0 I. State the alternatives, decision rule, and conclusion. 

27.27. Refer to the Drug effect experiment data set in Appendix C.12. Consider the combined 
study. Assume that subjects (rats) and observation units have random effects, and that factor 
A (initial lever press rate), factor B (dosage level), and factor C (reinforcement schedule) have 
fixed effects. Also assume that there are no interactions between subjects and treatments. 
a. Use rules (0.1) and (0.6) in Appendix 0 to develop the model for this experiment 
b. Fit the model in patt (a), obtain the residuals, and plot them against the fitted values. 

Also prepare a normal probability plot of the residuals. What do you conclude about the 
appropriateness of your model? 

27.28. Refer to the Drug effect experiment data set in Appendix C.12 and Project 27.27. Assume 
that the model in Project 27.27a is appropriate. 
a. Use an appropriate statistical package to obtain the analysis of variance table and the 

expected mean squares. 
b. Test whether or not ABC interactions are present; use a = .01. State the alternatives, 

decision rule, and conclusion. What is the P-value of the test? 
c. For each reinforcement schedule, plot the estimated treatment means against dosage level 

with different curves for the three initial lever press rate groups, in the format of Figure 24.5. 
Examine your plots for the nature of the interaction effects and report your findings. 

27.29. Consider a repeated design study with s = 3 and r = 3, where each subject ranks 
all treatments (with no ties allowed). 
a. Develop the exact sampling distribution of F'R when Ho holds. [Hillt: All ranking per-

mutations for a subject are equally likely under Hu and all subjects are assumed to act 
independently. ] 

b. How does the 90th percentile of the exact sampling distribution obtained in part (a) compare 
with FC90; 2. 4)? What is the implication of this? 


