
CHAPTER 14

Repeated-Measures
Designs

Object ives

To discuss the analysis of variance by considering experimental designs
in which the same subject is measured under all levels of one or more
independent variables.

Contents

14.1 The Structural Model
14.2 F Ratios
14.3 The Covariance Matrix
14.4 Analysis of Variance Applied to Relaxation Therapy
14.5 Contrasts and Effect Sizes in Repeated Measures Designs
14.6 Writing Up the Results
14.7 One Between-Subjects Variable and One Within-Subjects Variable
14.8 Two Between-Subjects Variables and One Within-Subjects Variable
14.9 Two Within-Subjects Variables and One Between-Subjects Variable
14.10 Intraclass Correlation
14.11 Other Considerations
14.12 Mixed Models for Repeated-Measures Designs

461



IN OUR DISCUSSION OF THE ANALYSIS OF VARIANCE, we have concerned ourselves with exper-
imental designs that have different subjects in the different cells. More precisely, we have
been concerned with designs in which the cells are independent, or uncorrelated. (Under
the assumptions of the analysis of variance, independent and uncorrelated are synonymous
in this context.) In this chapter we are going to be concerned with the problem of analyzing
data where some or all of the cells are not independent. Such designs are somewhat more
complicated to analyze, and the formulae become more complex. Most, or perhaps even
all, readers will approach the problem using computer software such as SPSS or SAS.
However, to understand what you are seeing, you need to know something about how you
would approach the problem by hand; and that leads to lots and lots of formulae. I urge you
to treat the formulae lightly, and not feel that you have to memorize any of them. This
chapter needs to be complete, and that means we have to go into the analysis at some depth,
but remember that you can always come back to the formulae when you need them, and
don’t worry about the calculations too much until you do need them.

If you think of a typical one-way analysis of variance with different subjects serving
under the different treatments, you would probably be willing to concede that the correla-
tions between treatments 1 and 2, 1 and 3, and 2 and 3 have an expectation of zero.

Treatment 1 Treatment 2 Treatment 3

However, suppose that in the design diagrammed here the same subjects were used in
all three treatments. Thus, instead of 3n subjects measured once, we have n subjects meas-
ured three times. In this case, we would be hard put to believe that the intercorrelations of
the three treatments would have expectancies of zero. On the contrary, the better subjects
under treatment 1 would probably also perform well under treatments 2 and 3, and the
poorer subjects under treatment 1 would probably perform poorly under the other condi-
tions, leading to significant correlations among treatments.

This lack of independence among the treatments would cause a serious problem if it
were not for the fact that we can separate out, or partition, and remove the dependence im-
posed by repeated measurements on the same subjects. (To use a term that will become
much more familiar in Chapter 15, we can say that we are partialling out effects that cause
the dependence.) In fact, one of the main advantages of repeated-measures designs is that
they allow us to reduce overall variability by using a common subject pool for all treat-
ments, and at the same time allow us to remove subject differences from our error term,
leaving the error components independent from treatment to treatment or cell to cell.

As an illustration, consider the highly exaggerated set of data on four subjects over
three treatments presented in Table 14.1. Here the dependent variable is the number of tri-
als to criterion on some task. If you look first at the treatment means, you will see some
slight differences, but nothing to get too excited about. There is so much variability within
each treatment that it would at first appear that the means differ only by chance. But look
at the subject means. It is apparent that subject 1 learns quickly under all conditions, and
that subjects 3 and 4 learn remarkably slowly. These differences among the subjects are
producing most of the differences within treatments, and yet they have nothing to do with
the treatment effect. If we could remove these subject differences we would have a better
(and smaller) estimate of error. At the same time, it is the subject differences that are creat-
ing the high positive intercorrelations among the treatments, and these too we will partial
out by forming a separate term for subjects.

X3nX2nX1n

ÁÁÁ
X32X22X12

X31X21X11
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One laborious way to do this would be to put all the subjects’ contributions on a com-
mon footing by equating subject means without altering the relationships among the scores
obtained by that particular subject. Thus, we could set , where is the
mean of the ith subject. Now subjects would all have the same means ( ), and any
remaining differences among the scores could be attributable only to error or to treatments.
Although this approach would work, it is not practical. An alternative, and easier, approach
is to calculate a sum of squares between subjects (denoted as either or ) and
remove this from before we begin. This can be shown to be algebraically equivalent
to the first procedure and is essentially the approach we will adopt.

The solution is represented diagrammatically in Figure 14.1. Here we partition the
overall variation into variation between subjects and variation within subjects. We do the
same with the degrees of freedom. Some of the variation within a subject is attributable to
the fact that his scores come from different treatments, and some is attributable to error;
this further partitioning of variation is shown in the third line of the figure. We will always
think of a repeated-measures analysis as first partitioning the into and

. Depending on the complexity of the design, one or both of these partitions may
then be further partitioned.

The following discussion of repeated-measures designs can only begin to explore the
area. For historical reasons, the statistical literature has underemphasized the importance
of these designs. As a result, they have been developed mostly by social scientists, particu-
larly psychologists. By far the most complete coverage of these designs is found in Winer,
Brown, and Michels (1991). Their treatment of repeated-measures designs is excellent and
extensive, and much of this chapter reflects the influence of Winer’s work.

SSwithin subj

SSbetween subjSStotal

SStotal

SSsSSbetween adj
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Table 14.1 Hypothetical data for simple repeated-measures designs

Treatment

Subject 1 2 3 Mean

1 2 4 7 4.33
2 10 12 13 11.67
3 22 29 30 27.00
4 30 31 34 31.67

Mean 16 19 21 18.67

Figure 14.1 Partition of sums of squares and degrees of freedom

Partition of Sums of Squares Partition of Degrees of Freedom

Total variation

Between subjects

Between treatments Error

Within subjects
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14.1 The Structural Model

First, some theory to keep me happy. Two structural models could underlie the analysis of
data like those shown in Table 14.1. The simplest model is

where
the grand mean
a constant associated with the ith person or subject, representing how much
that person differs from the average person
a constant associated with the jth treatment, representing how much that
treatment mean differs from the average treatment mean
the experimental error associated with the ith subject under the jth treatment

The variables are assumed to be independently and normally distributed around zero
within each treatment. Their variances, and , are assumed to be homogeneous across
treatments. (In presenting expected means square, I am using the notation developed in the
preceding chapters. The error term and subject factor are considered to be random, so
those variances are presented as and . (Subjects are always treated as random.) How-
ever, the treatment factor is generally a fixed factor, so its variation is denoted as ) With these
assumptions it is possible to derive the expected mean squares shown in Model I of Table 14.2.

An alternative and probably more realistic model is given by

Here we have added a Subject 3 Treatment interaction term to the model, which allows
different subjects to change differently over treatments. The assumptions of the first model
will continue to hold, and we will also assume the to be distributed around zero inde-
pendently of the other elements of the model. This second model gives rise to the expected
mean squares shown in Model II of Table 14.2.

The discussion of these two models and their expected mean squares may look as if it is
designed to bury the solution to a practical problem (comparing a set of means) under a
mountain of statistical theory. However, it is important to an explanation of how we will run
our analyses and where our tests come from. You’ll need to bear with me only a little longer.

14.2 F Ratios

The expected mean squares in Table 14.2 indicate that the model we adopt influences the F
ratios we employ. If we are willing to assume that there is no Subject 3 Treatment interac-
tion, we can form the following ratios:
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Table 14.2 Expected mean squares for simple repeated-measures designs

Model I Model II

Source E(MS) Source E(MS)

Subjects Subjects
Treatments Treatments
Error Error s2
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and

Given an additional assumption about sphericity, which we will discuss in the next
section, both of these lead to respectable F ratios that can be used to test the relevant null
hypotheses.

Usually, however, we are cautious about assuming that there is no Subject 3 Treatment
interaction. In much of our research it seems more reasonable to assume that different sub-
jects will respond differently to different treatments, especially when those “treatments”
correspond to phases of an ongoing experiment. As a result we usually prefer to work with
the more complete model.

The full model (which includes the interaction term) leads to the following ratios:

and

Although the resulting F for treatments is appropriate, the F for subjects is biased. If
we did form this latter ratio and obtained a significant F, we would be fairly confident that
subject differences really did exist. However, if the F were not significant, the interpreta-
tion would be ambiguous. A nonsignificant F could mean either that or that

. Because we usually prefer this second model, and hate ambiguity,
we seldom test the effect due to Subjects. This represents no great loss, however, since we
have little to gain by testing the Subject effect. The main reason for obtaining 
in the first place is to absorb the correlations between treatments and thereby remove sub-
ject differences from the error term. A test on the Subject effect, if it were significant,
would merely indicate that people are different—hardly a momentous finding. The impor-
tant thing is that both underlying models show that we can use as the denominator
to test the effect of treatments.

14.3 The Covariance Matrix

A very important assumption that is required for any F ratio in a repeated-measures design
to be distributed as the central (tabled) F is that of compound symmetry of the covariance
matrix.1 To understand what this means, consider a matrix ( ) representing the covariances
among the three treatments for the data given in Table 14.1.

aN =

A1 A2 A3

A1 154.67 160.00 160.00
A2 160.00 176.67 170.67
A3 160.00 170.67 170.00
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1 This assumption is overly stringent and will shortly be relaxed somewhat. It is nonetheless a sufficient assumption,
and it is made often.



On the main diagonal of this matrix are the variances within each treatment ( ).
Notice that they are all more or less equal, indicating that we have met the assumption
of homogeneity of variance. The off-diagonal elements represent the covariances among
the treatments ( ). Notice that these are also more or less equal. (The
fact that they are also of the same magnitude as the variances is irrelevant, reflecting
merely the very high intercorrelations among treatments.) A pattern of constant variances
on the diagonal and constant covariances off the diagonal is referred to as compound
symmetry. (Again, the relationship between the variances and covariances is irrelevant.)
The assumption of compound symmetry of the (population) covariance matrix ( ), of
which is an estimate, represents a sufficient condition underlying a repeated-measures
analysis of variance. The more general condition is known as sphericity, and you will often
see references to that broader assumption. If we have compound symmetry we will meet the
sphericity assumption, but it is possible, though not likely in practice, to have sphericity with-
out compound symmetry. (Older textbooks generally make reference to compound symmetry,
even though that is too strict an assumption. In recent years the trend has been toward refer-
ence to “sphericity,” and that is how we will generally refer to it here, though we will return to
compound symmetry when we consider mixed models at the end of this chapter.) Without this
sphericity assumption, the F ratios may not have a distribution given by the distribution of F in
the tables. Although this assumption applies to any analysis of variance design, when the cells
are independent the covariances are always zero, and there is no problem—we merely need to
assume homogeneity of variance. With repeated-measures designs, however, the covariances
will not be zero and we need to assume that they are all equal. This has led some people (e.g.,
Hays, 1981) to omit serious consideration of repeated-measures designs. However, when we
do have sphericity, the Fs are valid; and when we do not, we can use either very good approxi-
mation procedures (to be discussed later in this chapter) or alternative methods that do not
depend on assumptions about . One alternative procedure that does not require any assump-
tions about the covariance matrix is multivariate analysis of variance (MANOVA). This is a
multivariate procedure, which is essentially one that deals with multiple dependent variables
simultaneously. This procedure, however, requires complete data and is now commonly being
replaced by analyses of mixed models, which are introduced in Section 14.12.

Many people have trouble thinking in terms of covariances because they don’t have a
simple intuitive meaning. There is little to be lost by thinking in terms of correlations. If
we truly have homogeneity of variance, compound symmetry reduces to constant correla-
tions between trials.

14.4 Analysis of Variance Applied 
to Relaxation Therapy

As an example of a simple repeated-measures design, we will consider a study of the
effectiveness of relaxation techniques in controlling migraine headaches. The data described
here are fictitious, but they are in general agreement with data collected by Blanchard,
Theobald, Williamson, Silver, and Brown (1978), who ran a similar, although more
complex, study.

In this experiment we have recruited nine migraine sufferers and have asked them to
record the frequency and duration of their migraine headaches. After 4 weeks of baseline
recording during which no training was given, we had a 6-week period of relaxation train-
ing. (Each experimental subject participated in the program at a different time, so such
things as changes in climate and holiday events should not systematically influence the
data.) For our example we will analyze the data for the last 2 weeks of baseline and the last
3 weeks of training. The dependent variable is the duration (hours/week) of headaches in

g

gN g

cov12, cov13, and cov23

uN2
Aj
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Table 14.3 Analysis of data on migraine headaches

(a) Data

Baseline Training
Subject

Subject Week 1 Week 2 Week 3 Week 4 Week 5 Means

1 21 22 8 6 6 12.6
2 20 19 10 4 4 11.4
3 17 15 5 4 5 9.2
4 25 30 13 12 17 19.4
5 30 27 13 8 6 16.8
6 19 27 8 7 4 13.0
7 26 16 5 2 5 10.8
8 17 18 8 1 5 9.8
9 26 24 14 8 9 16.2

Week 22.333 22.000 9.333 5.778 6.778 13.244
Means

(b) Calculations

(c) Summary table

Source df SS MS F

Between subjects 8 486.71
Within subjects 36 2679.60 85
Weeks 4 2449.20 612.30
Error 32 230.40 7.20

Total 44 3166.31

*p , .05

SSerror = SStotal 2 SSsubjects 2 SSweeks = 3166.31 2 486.71 2 2449.20 = 230.40

SSweeks = na (XW 2 X..)
2 = 93(22.333 2 13.244)2 1 Á 1 (6.778 2 13.244)24 = 2449.20

SSsubjects = wa (XS 2 X..)
2 = 53(12.6 2 13.244)2 1 Á 1 (16.2 2 13.244)24 = 486.71

SStotal = a (X 2 X..)
2 = (21 2 13.244)2 1 Á 1 (9 2 13.244)2 = 3166.31

2 Because I have rounded the means to three decimal places, there is rounding error in the answers. The answers
given here have been based on more decimal places.

each of those 5 weeks. The data and the calculations are shown in Table 14.3.2 It is impor-
tant to note that I have identified the means with a subscript naming the variable. Thus in-
stead of using the standard “dot notation” (e.g., for the Week means), I have used the
letter indicating the variable name as the subscript (e.g., the means for Weeks are denoted

and the means for Subjects are denoted ). As usual, the grand mean is denoted ,
and X represents the individual observations.

Look first at the data in Table 14.3a. Notice that there is a great deal of variability, but much
of that variability comes from the fact that some people have more and/or longer-duration
headaches than do others, which really has very little to do with the intervention program. As I
have said, what we are able to do with a repeated-measures design but were not able to do with
between-subjects designs is to remove this variability from , producing a smaller 
than we would otherwise have.

MSerrorSSerror

X..XSXW

Xi.



From Table 14.3b you can see that is calculated in the usual manner. Similarly,
and are calculated just as main effects always are (take the sum of the

squared deviations from the grand mean and multiply by the appropriate constant [i.e., the
number of observations contributing to each mean]). Finally, the error term is obtained by
subtracting and from .

The summary table is shown in Table 14.3c and looks a bit different from ones you
have seen before. In this table I have made a deliberate split into Between-Subject factors
and Within-Subject factors. The terms for Weeks and Error are parts of the Within-Subject
term, and so are indented under it. (In this design the Between-Subject factor is not further
broken down, which is why nothing is indented under it. But wait a few pages and you will
see that happen too.) Notice that I have computed an F for Weeks but not for subjects, for
the reasons given earlier. The F value for Weeks is based on 4 and 32 degrees of freedom,
and . We can therefore reject H0: and conclude
that the relaxation program led to a reduction in the duration per week of headaches
reported by subjects. Examination of the means in Table 14.3 reveals that during the last
three weeks of training, the amount of time per week involving headaches was about one-
third of what it was during baseline.

You may have noticed that no Subject 3 Weeks interaction is shown in the summary
table. With only one score per cell, the interaction term is the error term, and in fact some
people prefer to label it S 3 W instead of error. To put this differently, in the design discussed
here it is impossible to separate error from any possible Subject 3 Weeks interaction, because
they are completely confounded. As we saw in the discussion of structural models, both of
these effects, if present, are combined in the expected mean square for error.

I spoke earlier of the assumption of sphericity, or compound symmetry. For the data in
the example, the variance-covariance matrix follows, represented by the notation , where
the is used to indicate that this is an estimate of the population variance-covariance 
matrix .

21.000 11.750 9.250 7.833 7.333
11.750 28.500 13.750 16.375 13.375
9.250 13.750 11.500 8.583 8.208
7.833 16.375 8.583 11.694 10.819
7.333 13.375 8.208 10.819 16.945

Visual inspection of this matrix suggests that the assumption of sphericity is reason-
able. The variances on the diagonal range from 11.5 to 28.5, whereas the covariances off
the diagonal range from 7.333 to 16.375. Considering that we have only nine subjects,
these values represent an acceptable level of constancy. (Keep in mind that the variances
do not need to be equal to the covariances; in fact, they seldom are.) A statistical test of this
assumption of sphericity was developed by Mauchly (1940) and is given in Winer (1971,
p. 596). It would in fact show that we have no basis for rejecting the sphericity hypothesis.
Box (1954b), however, showed that regardless of the form of , a conservative test on null
hypotheses in the repeated-measures analysis of variance is given by comparing 
against —that is, by acting as though we had only two treatment levels. This
test is exceedingly conservative, however, and for most situations you will be better ad-
vised to evaluate F in the usual way. We will return to this problem later when we consider
a much better solution found in Greenhouse and Geisser’s (1959) extension of Box’s work.

As already mentioned, one of the major advantages of the repeated-measures design is
that it allows us to reduce the error term by using the same subject for all treatments. Sup-
pose for a moment that the data illustrated in Table 14.3 had actually been produced by five
independent groups of subjects. For such an analysis, would equal 717.11. In this
case, we would not be able to pull out a subject term because would beSSbetween subj

SSerror

F.05(1, n 2 1)
Fobt

g

aN =

g
N

gN

m1 =  m2 = Á = m5F.05(4,32) = 2.68

SStotalSSweeksSSsubjects
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synonymous with . (A subject total and an individual score are identical.) As a result,
differences among subjects would be inseparable from error, and in fact would be
the sum of what, for the repeated-measures design, are and (5 230.4 1
486.71 5 717.11 on 32 1 8 5 40 df ). This would lead to

which, although still significant, is less than one-half of what it was in Table 14.3.
To put it succinctly, subjects differ. When subjects are observed only once, these sub-

ject differences contribute to the error term. When subjects are observed repeatedly, we can
obtain an estimate of the degree of subject differences and partial these differences out of
the error term. In general, the greater the differences among subjects, the higher the corre-
lations between pairs of treatments. The higher the correlations among treatments, the
greater the relative power of repeated-measures designs.

We have been speaking of the simple case in which we have one independent variable
(other than subjects) and test each subject on every level of that variable. In actual practice,
there are many different ways in which we could design a study using repeated measures.
For example, we could set up an experiment using two independent variables and test each
subject under all combinations of both variables. Alternatively, each subject might serve
under only one level of one of the variables, but under all levels of the other. If we had three
variables, the possibilities are even greater. In this chapter we will discuss only a few of the
possible designs. If you understand the designs discussed here, you should have no diffi-
culty generalizing to even the most complex problems.

14.5 Contrasts and Effect Sizes in 
Repeated Measures Designs

As we did in the case of one-way and factorial designs, we need to consider how to run
contrasts among means of repeated measures variables. Fortunately there is not really
much that is new here. We will again be comparing the mean of a condition or set of condi-
tions against the mean of another condition or set of conditions, and we will be using the
same kinds of coefficients that we have used all along.

In our example the first two weeks were Baseline measures, and the last three weeks
were Training measures. Our omnibus F told us that there were statistically significant dif-
ferences among the five Weeks, but not where those differences lie. Now I would like to
contrast the means of the set of Baseline weeks with the mean of the set of Training weeks.
The coefficients that will do this are shown below, along with the means.

Week 1 Week 2 Week 3 Week 4 Week 5

Coefficient 1/2 1/2 21/3 21/3 21/3
Mean 22.333 22.000 9.333 5.778 6.778

Just as we have been doing, we will define our contrast as

= 22.166 2 7.296 = 14.870

= 22.333 1 22.000
2

2
9.333 1 5.778 1 6.778

3
= 44.333

2
2

21.889
3

= a1
2
b(22.333) 1 a1

2
b(22.000) 1 a21

3
b (9.333) 1 a21

3
b(5.778) 1 a21

3
b (6.778)

cN = aaiXi

F =
MSweeks

MSerror
= 612.30

17.93
= 34.15
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We can test this contrast with either a t or an F, but I will use t here. (F is just the square of t.)

This is a t on dferror 532 df, and is clearly statistically significant.
Notice that in calculating my t, I used the MSerror from the overall analysis. And this

was the same error term that was used to test the Weeks effect. I point that out only because
when we come to more complex analyses we will have multiple error terms, and the one to
use for a specific contrast is the one that was used to test the main effect of that independ-
ent variable.

Effect Sizes

Although there was a direct translation from one-way designs to repeated measures designs
in terms of testing contrasts among means, the situation is a bit more complicated when it
comes to estimating effect sizes. We will continue to define our effect size as

There should be no problem with , because it is the same contrast that we computed
above—the difference between the mean of the baseline weeks and the mean of the train-
ing weeks. But there are several choices for serror. Kline (2004) gives 3 possible choices
for our denominator, but points out that two of these are unsatisfactory either because
they ignore the correlation between weeks or because they standardize by a standard
deviation that is not particularly meaningful. What we will actually do is create an error
term that is unique to the particular contrast. We will form a contrast for each subject.
That means that for each subject we will calculate the difference between his mean on
the baseline weeks and his mean on the training weeks. These are difference scores,
which are analogous to the difference scores we computed for a paired sample t test. The
standard deviation of these difference scores is analogous to the denominator we dis-
cussed for computing effect size with paired data when we just had two repeated meas-
ures with the t test. It is important to note that there is room for argument about the
proper term to use to standardize contrasts with repeated measures. See Kline (2004) and
Olejnik and Algina (2000).

For our migraine example the first subject would have a difference score of
(21 1 22)/2 2 (8 1 6 1 6)/3 5 21.5 2 6.667 5 14.833. The complete set of difference
scores would be

[14.833, 13.500, 11.333, 13.500, 19.500, 16.667, 17.000, 12.833, 14.667]

The mean of these difference scores is 14.879, which is . The standard deviation of these
difference scores is 2.49. Then our effect size measure is

This tells us that the severity of headaches during baseline is nearly 6 standard devia-
tions greater than the severity of head aches during training. That is a very large difference,
and we can see that just by looking at the data. Remember, in calculating this effect size
we have eliminated the variability between participants (subjects) in terms of headache
severity. We are in a real sense comparing each individual to himself or herself.

dN =
cN

serror
= 14.87

2.49
= 5.97.

cN

cN

cN

dN =
cN

s
error

t =
cNB(aa2
i )MSerror

n

= 14.870B0.833(7.20)
9

= 14.87010.667
= 14.870

0.816
= 18.21
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14.6 Writing Up the Results

In writing up the results of this experiment we could simply say:

To investigate the effects of relaxation therapy on the severity of migraine headaches,
9 participants rated the severity of headaches on each of two weeks before receiving
relaxation therapy and for three weeks while receiving therapy. An overall analysis
of variance for repeated measures showed a significant difference between weeks
(F(4,32) 5 85.04, p , .05). The mean severity rating during baseline weeks was 22.166,
which dropped to a mean of 7.296 during training, for a difference of 14.87. A contrast
on this difference was significant (t(32) 5 18.21, p , .05). Using the standard deviation
of contrast differences for each participant produced an effect size measure of d 5 5.97,
documenting the importance of relaxation therapy in treating migraine headaches.

14.7 One Between-Subjects Variable and One 
Within-Subjects Variable

Consider the data presented in Table 14.4. These are actual data from a study by King
(1986). This study in some ways resembles the one on morphine tolerance by Siegel (1975)
that we examined in Chapter 12. King investigated motor activity in rats following injection
of the drug midazolam. The first time that this drug is injected, it typically leads to a distinct
decrease in motor activity. Like morphine, however, a tolerance for midazolam develops
rapidly. King wished to know whether that acquired tolerance could be explained on the
basis of a conditioned tolerance related to the physical context in which the drug was ad-
ministered, as in Siegel’s work. He used three groups, collecting the crucial data (presented
in Table 14.4) on only the last day, which was the test day. During pretesting, two groups of
animals were repeatedly injected with midazolam over several days, whereas the Control
group was injected with physiological saline. On the test day, one group—the “Same”
group—was injected with midazolam in the same environment in which it had earlier been
injected. The “Different” group was also injected with midazolam, but in a different envi-
ronment. Finally, the Control group was injected with midazolam for the first time. This
Control group should thus show the typical initial response to the drug (decreased ambula-
tory behavior), whereas the Same group should show the normal tolerance effect—that is,
they should decrease their activity little or not at all in response to the drug on the last trial.
If King is correct, however, the Different group should respond similarly to the Control
group, because although they have had several exposures to the drug, they are receiving it in
a novel context and any conditioned tolerance that might have developed will not have the
necessary cues required for its elicitation. The dependent variable in Table 14.4 is a measure
of ambulatory behavior, in arbitrary units. Again, the first letter of the name of a variable is
used as a subscript to indicate what set of means we are referring to.

Because the drug is known to be metabolized over a period of approximately 1 hour,
King recorded his data in 5-minute blocks, or Intervals. We would expect to see the effect
of the drug increase for the first few intervals and then slowly taper off. Our analysis uses
the first six blocks of data. The design of this study can then be represented diagrammati-
cally as shown in next page.

Here we have distinguished those effects that represent differences between subjects from
those that represent differences within subjects. When we consider the between-subjects
term, we can partition it into differences between groups of subjects (G) and differences
between subjects in the same group (Ss w/in groups). The within-subject term can similarly
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Table 14.4 Ambulatory behavior by Group and Trial

(a) Data

Interval

1 2 3 4 5 6 Mean

Control 150 44 71 59 132 74 88.333
335 270 156 160 118 230 211.500
149 52 91 115 43 154 100.667
159 31 127 212 71 224 137.333
159 0 35 75 71 34 62.333
292 125 184 246 225 170 207.000
297 187 66 96 209 74 154.833
170 37 42 66 114 81 85.000

Mean 213.875 93.250 96.500 128.625 122.875 130.125 130.875

Same 346 175 177 192 239 140 211.500
426 329 236 76 102 232 233.500
359 238 183 123 183 30 186.000
272 60 82 85 101 98 116.333
200 271 263 216 241 227 236.333
366 291 263 144 220 180 244.000
371 364 270 308 219 267 299.833
497 402 294 216 284 255 324.667

Mean 354.625 266.250 221.000 170.000 198.625 178.625 231.521

Different 282 186 225 134 189 169 197.500
317 31 85 120 131 205 148.167
362 104 144 114 115 127 161.000
338 132 91 77 108 169 152.500
263 94 141 142 120 195 159.167
138 38 16 95 39 55 63.500
329 62 62 6 93 67 103.167

(continues)

Total variation

Between subjects

G
(Groups)

Ss w/in
Groups 

Within subjects

I 3 Ss w/in
Groups

I 
(Intervals)

I 3 G



be subdivided into three components—the main effect of Intervals (the repeated measure)
and its interactions with the two partitions of the between-subject variation. You will see this
partitioning represented in the summary table when we come to it.

Partitioning the Between-Subjects Effects

Let us first consider the partition of the between-subjects term in more detail. From the de-
sign of the experiment, we know that this term can be partitioned into two parts. One of
these parts is the main effect of Groups (G), since the treatments (Control, Same, and Dif-
ferent) involve different groups of subjects. This is not the only source of differences
among subjects, however. We have eight different subjects within the control group, and
differences among them are certainly between-subjects differences. The same holds for the
subjects within the other groups. Here we are speaking of differences among subjects in
the same group—that is, Ss within groups.

Section 14.7 One Between-Subjects Variable and One Within-Subjects Variable 473

Table 14.4 (continued)

Interval

1 2 3 4 5 6 Mean

292 139 104 184 193 122 172.333

Mean 290.125 98.250 108.500 109.000 123.500 138.625 144.667

Interval 286.208 152.583 142.000 135.875 148.333 149.125 169.021
mean

(b) Calculations

(c) Summary Table

Source df SS MS F

Between subjects 23 670,537.1
Groups 2 285,815.0 142,907.5 7.80*
Ss w/in groups** 21 384,722.0 18,320.1

Within subjects** 120 761,755.8
Intervals 5 399,736.5 79,947.3 29.85*
I 3 G 10 80,820.0 8,082.0 3.02*
I 3 Ss w/in groups** 105 281,199.3 2,678.1

Total 143 1,432,292.9

* p , .05
** Calculated by subtraction

SSI3G = SScells 2 SSinterval 2 SSgroups = 766,371.5 2 285,815.0 2 399.736.5 = 80,820.0

SScells = na (XGI 2 X...)
2 = 83(213.875 2 169.021)2 1 Á 1 (138.625 2 169.021)24 = 766,371.5

SSintervals = nga (XI 2 X...)
2 = 8 3 33(286.208 2 169.021)2 1 Á 1 (149.125 2 169.021)24 = 399,736.5

SSgroups = nia (XG 2 X...)
2 = 8 3 63(130.875 2 169.021)2 1 Á 1 (144.667 2 169.021)24 = 285,815.0

SSsubj = ia (XS 2 X...)
2 = 6[(88.333 2 169.021)2 1 Á 1 (172.333 2 169.021)2] = 670,537.1

SStotal = a (X 2 X...)
2 = (150 2 169.021)2 1 Á 1 (122 2 169.021)2 = 1,432,292.9



If we temporarily ignore intervals entirely (e.g., we simply collect our data over the en-
tire session rather than breaking it down into 5-minute intervals), we can think of the study
as producing the following data:
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Control Same Different

88.333 211.500 197.500
211.500 233.500 148.167
100.667 186.000 161.000
137.333 116.333 152.500
62.333 236.333 159.167

207.000 244.000 63.500
154.833 299.833 103.167
85.000 324.667 172.333

130.875 231.521 144.667

where the “raw scores” in this table are the subject means from Table 14.4. Because each sub-
ject is represented only once in these totals, the analysis we will apply here is the same as a
one-way analysis of variance on independent groups. Indeed, except for a constant represent-
ing the number of scores per subject (which cancels out in the end), the sums of squares for
the simple one-way on these data would be the same as those in the actual analysis. The F that
tests the main effect of Groups if this were a simple one-way on subject totals would be equal
to the one that we will obtain from the full analysis. Thus, the between-subjects partition of
the total variation can be seen as essentially a separate analysis of variance, with its own error
term (sometimes referred to as errorbetween) independent of the within-subjects effects.

Partitioning the Within-Subjects Effects

Next consider the within-subjects element of the partition of . As we have already seen,
this is itself partitioned into three terms. A comparison of the six intervals involves compar-
isons of scores from the same subject, and thus Intervals is a within-subjects term—it depends
on differences within each subject. Since Intervals is a within-subjects term, the interaction of
Intervals with Groups is also a within-subjects effect. The third term (Intervals 3 Ss within
groups) is sometimes referred to as since it is the error term for the within-subjects
effects. The term is actually the sum of the sums of squares for the
I 3 S interactions calculated separately for each group. Thus, it can be seen as logically equiv-
alent to the error term used in the previous design.

The Analysis

Before considering the analysis in detail, it is instructive to look at the general pattern of re-
sults. Although there are not enough observations in each cell to examine the distributions
in any serious way, it is apparent that on any given interval there is substantial variability
within groups. For example, for the second interval in the control group, scores range from
0 to 270. There do not appear to be any extreme outliers, however, as often happens in this
kind of research, and the variances within cells, although large, are approximately equal.
You can also see that there are large individual differences, with some of the animals consis-
tently showing relatively little ambulatory behavior and some showing a great deal. These
are the kinds of differences that will be partialled out by our analysis. Looking at the Interval
means, you will see that, as expected, behavior decreased substantially after the first 
5-minute interval and then increased slightly during the rest of the session. Finally, looking
at the difference between the means for the Control and Same groups, you will see the

SSIntervals 3  Ss w/in groups

errorwithin

SStotal

errorbetween

errorwithin



anticipated tolerance effect, and looking at the Different group, you see that it is much more
like the Control group than it is like the Same group. This is the result that King predicted.

Very little needs to be said about the actual calculations in Table 14.4b, since they are
really no different from the usual calculations of main and interaction effects. Whether a
factor is a between-subjects or within-subjects factor has no bearing on the calculation of
its sum of squares, although it does affect its placement in the summary table and the ulti-
mate calculation of the corresponding F.

In the summary table in Table 14.4c, the source column reflects the design of the ex-
periment, with first partitioned into and . Each of these sums
of squares is further subdivided. The double asterisks next to the three terms show we cal-
culate these by subtraction ( , , and ), based on the
fact that sums of squares are additive and the whole must be equal to the sum of its parts.
This simplifies our work considerably. Thus

These last two terms will become error terms for the analysis.
The degrees of freedom are obtained in a relatively straightforward manner. For each

of the main effects, the number of degrees of freedom is equal to the number of levels
of the variable minus 1. Thus, for Subjects there are 24 2 1 5 23 df, for Groups there are
3 2 1 5 2 df, and for Intervals there are 6 2 1 5 5 df. As for all interactions, the df for I 3 G
is equal to the product of the df for the component terms. Thus, .
The easiest way to obtain the remaining degrees of freedom is by subtraction, just as we
did with the corresponding sums of squares.

These df can also be obtained directly by considering what these terms represent. Within
each subject, we have 6 2 1 5 5 df. With 24 subjects, this amounts to 
Within each level of the Groups factor, we have 8 2 1 5 7 df between subjects, and with three
Groups we have . I 3 Ss w/in groups is really an interaction term, and
as such its df is simply the product of and .

Skipping over the mean squares, which are merely the sums of squares divided by their
degrees of freedom, we come to F. From the column of F it is apparent that, as we anticipated,
Groups and Intervals are significant. The interaction is also significant, reflecting, in part, the
fact that the Different group was at first intermediate between the Same and the Control group,
but that by the second 5-minute interval it had come down to be equal to the Control group.
This finding can be explained by a theory of conditioned tolerance. The really interesting find-
ing is that, at least for the later intervals, simply injecting an animal in an environment different
from the one in which it had been receiving the drug was sufficient to overcome the tolerance
that had developed. These animals respond almost exactly as do animals that had never experi-
enced midazolam. We will return to the comparison of Groups at individual Intervals later.

Assumptions

For the F ratios actually to follow the F distribution, we must invoke the usual assumptions
of normality, homogeneity of variance, and sphericity of . For the between-subjects term(s),
this means that we must assume that the variance of subject means within any one level of

gN

(5)(21) = 105dfSs w/in groups 5dfI
(7)(3) = 21 dfw/in groups

120 dfw/in subj.(5)(24) 5

dfI3Ss w/in groups = dfw/in subj 2 dfintervals 2 dfIG

dfSs w/in groups = dfbetween subj 2 dfgroups

dfw/in subj = dftotal 2 dfbetween subj

dfIG = (6–1)(3–1) = 10

SSI3Ss w/in groups = SSw/in subj 2 SSintervals 2 SSIG

SSSs w/in groups = SSbetween subj 2 SSgroups

SSw/in subj = SStotal 2 SSbetween subj

SSI3Ss w/in groupsSSSs w/in groupsSSw/in subj

SSw/in subjSSbetween subjSStotal
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Group is the same as the variance of subject means within every other level of Group. If
necessary, this assumption can be tested by calculating each of the variances and testing 
using either or, preferably, the test proposed by Levene (1960) or
O’Brien (1981), which were referred to in Chapter 7. In practice, however, the analysis of
variance is relatively robust against reasonable violations of this assumption (see Collier,
Baker, and Mandeville, 1967; and Collier, Baker, Mandeville, and Hayes, 1967). Because the
groups are independent, compound symmetry, and thus sphericity, of the covariance matrix is
assured if we have homogeneity of variance, since all off-diagonal entries will be zero.

For the within-subjects terms we must also consider the usual assumptions of homo-
geneity of variance and normality. The homogeneity of variance assumption in this case is
that the I 3 S interactions are constant across the Groups, and here again this can be tested
using . (You would simply calculate an I 3 S interaction
for each group—equivalent to the error term in Table 14.3—and test the largest against the
smallest.) For the within-subjects effects, we must also make assumptions concerning the
covariance matrix.

There are two assumptions on the covariance matrix (or matrices). Again, we will let
represent the matrix of variances and covariances among the levels of I (Intervals). Thus

with six intervals,

I1 I2 I3 I4 I5 I6

5

For each Group we would have a separate population variance-covariance matrix .
( and are estimated by and , respectively.) For to be an appro-
priate error term, we will first assume that the individual variance–covariance matrices ( )
are the same for all levels of G. This can be thought of as an extension (to covariances) of
the common assumption of homogeneity of variance.

The second assumption concerning covariances deals with the overall matrix , where
is the pooled average of the . (For equal sample sizes in each group, an entry in will

be the average of the corresponding entries in the individual matrices.) A common and
sufficient, but not necessary, assumption is that the matrix exhibits compound symmetry—
meaning, as I said earlier, that all the variances on the main diagonal are equal, and all the co-
variances off the main diagonal are equal. Again, the variances do not have to equal the
covariances, and usually will not. This assumption is in fact more stringent than necessary.
All that we really need to assume is that the standard errors of the differences between pairs
of Interval means are constant—in other words, that is constant for all i and j ( j i).

This sphericity requirement is met automatically if exhibits compound symmetry, but other
patterns of will also have this property. For a more extensive discussion of the covariance
assumptions, see Huynh and Feldt (1970) and Huynh and Mandeville (1979); a particularly
good discussion can be found in Edwards (1985, pp. 327–329, 336–339).

Adjusting the Degrees of Freedom

Box (1954a) and Greenhouse and Geisser (1959) considered the effects of departure from this
sphericity assumption on . They showed that regardless of the form of , the F ratio from thegg

g g
±sIi2Ij

2

gGi

ggGig g

gGi

MSI3Ss w/in groupsgN GigNgGig
gGi

sN 66sN 65sN 64sN 63sN 62sN 61

sN 56sN 55sN 54sN 53sN 52sN 51

sN 46sN 45sN 44sN 43sN 42sN 41

sN 36sN 35sN 34sN 33sN 32sN 31gN
sN 26sN 25sN 24sN 23sN 22sN 21

sN 16sN 15sN 14sN 13sN 12sN 11

gN

Fmax on g and (n 2 1)(i 2 1)df

Fmax on (g, n 2 1)df
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within-subjects portion of the analysis of variance will be approximately distributed as F on

(i 2 1) , g(n 2 1)(i 2 1)

df for the Interval effect and

(g 2 1)(i 2 1) , g(n 2 1)(i 2 1)

df for the I 3 G interaction, where i 5 the number of intervals and is estimated by

Here,

the mean of the entries on the main diagonal of 

the mean of all entries in 
the jkth entry in 

the mean of all entries in the jth row of 

The effect of using is to decrease both and from what they would nor-
mally be. Thus is simply the proportion by which we reduce them. Greenhouse and
Geisser recommended that we adjust our degrees of freedom using . They further showed
that when the sphericity assumptions are met, 5 1, and as we depart more and more from
sphericity, approaches 1/(i 2 1) as a minimum.

There is some suggestion that for large values of , even using to adjust the degrees of
freedom can lead to a conservative test. Huynh and Feldt (1976) investigated this correction
and recommended a modification of when there is reason to believe that the true value of

lies near or above 0.75. Huynh and Feldt, as later corrected by Lecoutre (1991), defined

where N 5 n 3 g. (Chen and Dunlap [1994] later confirmed Lecoutre’s correction to
the original Huynh and Feldt formula.3) We then use or , depending on our estimate
of the true value of . (Under certain circumstances, will exceed 1, at which point it is
set to 1.)

A test on the assumption of sphericity has been developed by Mauchly (1940) and eval-
uated by Huynh and Mandeville (1979) and by Keselman, Rogan, Mendoza, and Breen
(1980), who point to its extreme lack of robustness. This test is available on SPSS, SAS,
and other software, and is routinely printed out. Because tests of sphericity are likely to
have serious problems when we need them the most, it has been suggested that we always
use the correction to our degrees of freedom afforded by or , whichever is appropriate,
or use a multivariate procedure to be discussed later. This is a reasonable suggestion and
one worth adopting.

For our data, the F value for Intervals (F 5 29.85) is such that its interpretation would
be the same regardless of the value of , since the Interval effect will be significant even
for the lowest possible df. If the assumption of sphericity is found to be invalid, however,
alternative treatments would lead to different conclusions with respect to the I 3 G interac-
tion. For King’s data, the Mauchly’s sphericity test, as found from SPSS, indicates that the
assumption has been violated, and therefore it is necessary to deal with the problem resulting
from this violation.

´
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We can calculate and and evaluate F on the appropriate df. The pooled variance-
covariance matrix (averaged across the separate matrices) is presented in Table 14.5. 
(I have not presented the variance–covariance matrices for the several groups because they
are roughly equivalent and because each of the elements of the matrix is based on only
eight observations.)

From Table 14.5 we can see that our values of and are .6569 and .8674, respec-
tively. Since these are in the neighborhood of .75, we will follow Huynh and Feldt’s sug-
gestion and use . In this case, the degrees of freedom for the interaction are

(g 2 1)(i 2 1)(0.7508) 5 7.508

and

g(n 2 1)(i 2 1)(0.7508) 5 78.834

The exact critical value of , which means that we will reject the
null hypothesis for the interaction. Thus, regardless of any problems with sphericity, all

F.05(7.508, 78.834) is2.09

~́

~́´N

~́´N
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Table 14.5 Variance-covariance matrix and calculation of and 

Interval

1 2 3 4 5 6 Mean

6388.173 4696.226 2240.143 681.649 2017.726 1924.066 2991.330
4696.226 7863.644 4181.476 2461.702 2891.524 3531.869 4271.074
2240.143 4181.476 3912.380 2696.690 2161.690 3297.762 3081.690
681.649 2461.702 2696.690 4601.327 2248.600 3084.589 2629.093

2017.726 2891.524 2161.690 2248.600 3717.369 989.310 2337.703
1924.066 3531.869 3297.762 3084.589 989.310 5227.649 3009.208

=
(24 2 3 1 1)(5)(0.6569) 2 2

5325 2 3 2 5(0.6569)4 = 70.259
5322 2 5(0.6569)4 = 0.7508

~́ =
(N 2 g 1 1)(i 2 1)´N 2 2

(i 2 1)3N 2 g 2 (i 2 1)´N 4
=

179,303,883
53416,392,330 2 697,431,120 1 335,626,0644 = 0.6569

=
36(5285.090 2 3053.350)2

(6 2 1)3416,392,330 2 (2)(6)(58,119,260) 1 (36)(3053.3502)4
´N =

i2(sjj 2 s)2

(i 2 1)(gs2
jk 2 2igs2

j 1 i2s2)

a s2
j = 2991.3302 1 Á 1 3009.2082 = 58,119,260

a s2
jk = 6388.1732 1 4696.2262 1 Á 1 5227.6492 = 416,392,330

s = 6388.173 1 4696.226 1 Á 1 989.310 1 5227.649
36

= 3053.350

sjj = 6388.173 1 7863.644 1 Á 1 5227.649
6

= 5285.090

~́´N
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the effects in this analysis are significant. (They would also be significant if we used 
instead of .)

Simple Effects

The Interval 3 Group interaction is plotted in Figure 14.2; the interpretation of the data is
relatively clear. It is apparent that the Same group consistently performs above the level of
the other two groups—that is, the conditioned tolerance to midazolam leads to greater ac-
tivity in that group than in the other groups. It is also clear that activity decreases notice-
ably after the first 5-minute interval (during which the drug is having its greatest effect).
The interaction appears to be produced by the fact that the Different group is intermediate
between the other two groups during the first interval, but it is virtually indistinguishable
from the Control group thereafter. In addition, the Same group continues declining until at
least the fourth interval, whereas the other two groups drop precipitously and then level off.
Simple effects will prove useful in interpreting these results, especially in terms of examin-
ing group differences during the first and the last intervals. Simple effects will also be used
to test for differences between intervals within the Control group, but only for purposes of
illustration—it should be clear that Interval differences exist within each group.

As I have suggested earlier, the Greenhouse and Geisser and the Huynh and Feldt ad-
justments to degrees of freedom appear to do an adequate job of correcting for problems
with the sphericity assumption when testing for overall main effects or interactions. How-
ever, a serious question about the adequacy of the adjustment arises when we consider
within-subjects simple effects (Boik, 1981; Harris, 1985). The traditional approach to test-
ing simple effects (see Howell, 1987) involves testing individual within-subjects contrasts
against a pooled error term ( ). If there are problems with the underlying as-
sumption, this error term will sometimes underestimate and sometimes overestimate what
would be the proper denominator for F, playing havoc with the probability of a Type I error.
For that reason we are going to adopt a different, and in some ways simpler, approach.

The approach we will take follows the advice of Boik that a separate error term be de-
rived for each tested effect. Thus, when we look at the simple effect of Intervals for the
Control condition, for example, the error term will speak specifically to that effect and will
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not pool other error terms that apply to other simple effects. In other words, it will be based
solely on the Control group. We can test the Interval simple effects quite easily by running
separate repeated-measures analyses of variance for each of the groups. For example, we
can run a one-way repeated-measures analysis on Intervals for the Control group, as dis-
cussed in Section 14.4. We can then turn around and perform similar analyses on Intervals
for the Same and Different groups separately. These results are shown in Table 14.6. In
each case the Interval differences are significant, even after we correct the degrees of free-
dom using or , whichever is appropriate.

If you look at the within-subject analyses in Table 14.6, you will see that the average
is (2685.669 1 3477.571 1 1871.026)/3 5 2678.089, which is 

from the overall analysis found on page 473. Here these denominators for the F ratios are
noticeably different from what they would have been had we used the pooled term, which
is the traditional approach. You can also verify with a little work that the terms
for each analysis are the same as those that we would compute if we followed the usual
procedures for obtaining simple effects mean squares.

For the between-subjects simple effects (e.g., Groups at Interval 1) the procedure is
more complicated. Although we could follow the within-subject example and perform sep-
arate analyses at each Interval, we would lose considerable degrees of freedom unnecessarily.
Here it is usually legitimate to pool error terms, and it is generally wise to do so.

MSInterval

MSI3Ss w/in groupsMSerror

~́´N
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Table 14.6 Calculation of within-subjects simple effects for data from King (1986)

(a) Interval at Control

Source df SS MS F

Between subjects 7 134,615.58
Interval 5 76,447.25 15,289.45 5.69*
Error 35 93,998.42 2685.67

Total 47 305,061.25

*p , .05; 5 .404; 5 .570

(b) Interval at Same

Source df SS MS F

Between subjects 7 175,600.15
Interval 5 193,090.85 38,618.17 11.10*
Error 35 121,714.98 3477.57

Total 47 490,405.98

*p , .05; 5 .578; 5 1.00

(c) Interval at Different

Source df SS MS F

Between subjects 7 74,506.33
Interval 5 211,018.42 42,203.68 22.56*
Error 35 65,485.92 1871.03

Total 47 351,010.67

*p , .05; 5 .598; 5 1.00~́´N

~́´N

~́´N



For this example we will examine the simple effects of Group at Interval 1 and Group
at Interval 6. The original data can be found in Table 14.4 on page 472. The sums of
squares for these effects are

Testing the simple effects of between-subjects terms is a little trickier. Consider for a
moment the simple effect of Group at Interval 1. This is essentially a one-way analysis of
variance with no repeated measures, since the Group means now represent the average of
single—rather than repeated—observations on subjects. Thus, subject differences are con-
founded with experimental error. In this case, the appropriate error sum of squares is

, where, from Table 14.4,

and

It may be easier for you to understand why we need this special error term if
you think about what it really represents. If you were presented with only the data for In-
terval 1 in Table 14.4 and wished to test the differences among the three groups, you would
run a standard one-way analysis of variance, and the would be the average of the
variances within each of the three groups. Similarly, if you had only the data from Interval 2,
Interval 3, and so on, you would again average the variances within the three treatment
groups. The that we have just finished calculating is in reality the average of the
error terms for these six different sets (Intervals) of data. As such, it is the average of the
variance within each of the 18 cells.

We can now proceed to form our F ratios.

A further difficulty arises in the evaluation of F. Since also represents the
sum of two heterogeneous sources of error [as can be seen by examination of the E(MS)
for Ss w/in groups and I 3 Ss w/in groups], our F will not be distributed on 2 and 126 df.
We will get ourselves out of this difficulty in the same way we did when we faced a simi-
lar problem concerning t in Chapter 7. We will simply calculate the relevant df against
which to evaluate F—more precisely; we will calculate a statistic denoted as and evaluatef ¿

MSw/in cell

FG at Int. 6 =
MSG at Int. 6

MSw/in cell
=

10,732>2
5285.09

= 1.02

FG at Int. 1 =
MSG at Int. 1

MSw/in cell
=

79,426.33>2
5285.09

= 7.51

MSw/in cell

MSerror

MSw/in cell

=
665,921.37
21 1 105

= 5285.09

MSw/in cell =
SSw/in cell

dfSs w/in group 1 dfI3Ss w/in group

= 384,722.03 1 281,199.34 = 665,921.37

SSw/in cell = SSSs w/in group 1 SSI3Ss w/in groups

SSw/in cell

= 10,732.00

1 (138.625 2 149.125)24SSG at Int. 6 = 83(130.125 2 149.125)2 1 (178.625 2 149.125)2

= 79,426.33

1 (290.125 2 286.208)24SSG at Int. 1 = 83(213.875 2 286.208)2 1 (354.625 2 286.208)2
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against . In this case, the value of is given by Welch (1938) and
Satterthwaite (1946) as

where

and are the corresponding degrees of freedom. For our example,

Rounding to the nearest integer gives 5 57. Thus, our F is distributed on (g 2 1, ) 5
(2, 57) df under . For 2 and 57 df, F.05 5 3.16. Only the difference at Interval 1 is signif-
icant. By the end of 30 minutes, the three groups were performing at equivalent levels. It is
logical to conclude that somewhere between the first and the sixth interval the three groups
become nonsignificantly different, and many people test at each interval to find that point.
However, I strongly recommend against this practice as a general rule. We have already run
a number of significance tests, and running more of them serves only to increase the error
rate. Unless there is an important theoretical reason to determine the point at which the
group differences become nonsignificant—and I suspect that there are very few such
cases—then there is nothing to be gained by testing each interval. Tests should be carried
out to answer important questions, not to address idle curiosity or to make the analysis look
“complete.”

Multiple Comparisons

Several studies have investigated the robustness of multiple-comparison procedures for
testing differences among means on the within-subjects variable. Maxwell (1980) studied a
simple repeated-measures design with no between-subject component and advised adopt-
ing multiple-comparison procedures that do not use a pooled error term. We discussed such
a procedure (the Games-Howell procedure) in Chapter 12. (I did use a pooled error term in
the analysis of the migraine study, but there it was reasonable to assume homogeneity of
variance and I was using all of the weeks. If I had only been running a contrast involving
three of the weeks, I would seriously consider calculating an error term based on just the
data from those weeks.)

Keselman and Keselman (1988) extended Maxwell’s work to designs having one be-
tween-subject component and made a similar recommendation. In fact, they showed that
when the Groups are of different sizes and sphericity is violated, familywise error rates can
become very badly distorted. In the simple effects procedures that we have just considered,
I recommended using separate error terms by running one-way repeated-measures analy-
ses for each of the groups. For subsequent multiple-comparison procedures exploring those
simple effects, especially with unequal sample sizes, it would probably be wise to employ

H0

f ¿f ¿

f ¿ =
(384,722.03 1 281,199.34)2

384,722.032

21
1

281,199.342

105

= 56.84

dfv = 105v = 281,199.34

dfu = 21u = 384,722.03

dfu and dfv

v = SSI3Ss w/in groups

u = SSSs w/in groups

f ¿ =
(u 1 v)2

u2

dfu
1

v2

dfv

f ¿F.05(a 2 1, f ¿)Fobt
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the Games-Howell procedure using those separate covariance matrices. In other words, to
compare Intervals 3 and 4 for the Control group, you would generate your error term using
only the Intervals 3 and 4 data from just the Control group.

Myers (1979) has suggested making post hoc tests on a repeated measure using paired
t-tests and a Bonferroni correction. (This is essentially what I did for the migraine exam-
ple, though a Bonferroni correction was not necessary because I ran only one contrast.)
Maxwell (1980) showed that this approach does a good job of controlling the familywise
error rate, and Baker and Lew (1987) showed that it generally compared well against
Tukey’s test in terms of power. Baker proposed a simple modification of the Bonferroni
(roughly in line with that of Holm) that had even greater power.

14.8 Two Between-Subjects Variables and 
One Within-Subjects Variable

The basic theory of repeated-measures analysis of variance has already been described in
the discussion of the previous designs. However, experimenters commonly plan experi-
ments with three or more variables, some or all of which represent repeated measures on
the same subjects. We will briefly discuss the analysis of these designs. The calculations
are straight forward, because the sums of squares for main effects and interactions are ob-
tained in the usual way and the error terms are obtained by subtraction.

We will not consider the theory behind these designs at any length. Essentially, it
amounts to the extrapolation of what has already been said about the two-variable case. For
an excellent discussion of the underlying statistical theory see Winer (1971) or Maxwell
and Delaney (2004).

I will take as an example a study by St. Lawrence, Brasfield, Shirley, Jefferson, Alleyne,
and O’Bannon (1995) on an intervention program to reduce the risk of HIV infection among
African-American adolescents. The study involved a comparison of two approaches, one of
which was a standard 2-hour educational program used as a control condition (EC) and the
other was an 8-week behavioral skills training program (BST). Subjects were Male and
Female adolescents, and measures were taken at Pretest, Posttest, and 6 and 12 months
follow-up (FU6 and FU12). There were multiple dependent variables in the study, but the
one that we will consider is log(freq 1 1), where freq is the frequency of condom-protected
intercourse.4 This is a 2 3 2 3 4 repeated-measures design, with Intervention and Sex as
between-subjects factors and Time as the within-subjects factor. This design may be dia-
grammed as follows, where represents the ith group of subjects. 

Behavioral Skills Training Educational Control

Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12

Male
Female

The raw data and the necessary summary tables of cell totals are presented in Table 14.7a.
(These data have been generated to closely mimic the data reported by St. Lawrence et al.,
though they had many more subjects. Decimal points have been omitted.) In Table 14.7b are
the calculations for the main effects and interactions. Here, as elsewhere, the calculations are
carried out exactly as they are for any main effects and interactions.

G4G4G4G4G3G3G3G3

G2G2G2G2G1G1G1G1

Gi
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4 The authors used a logarithmic transformation here because the original data were very positively skewed. They
took the log of (X 1 1) instead of X because log(0) is not defined.
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Table 14.7 Data and analysis of study by St. Lawrence et al. (1995)

(a) Data

Male Female

Pretest Posttest FU6 FU12 Pretest Posttest FU6 FU12

7 22 13 14 0 6 22 26
25 10 17 24 0 16 12 15

Behavioral 50 36 49 23 0 8 0 0
Skill 16 38 34 24 15 14 22 8
Training 33 25 24 25 27 18 24 37

10 7 23 26 0 0 0 0
13 33 27 24 4 27 21 3
22 20 21 11 26 9 9 12
4 0 12 0 0 0 14 1

17 16 20 10 0 0 12 0

0 0 0 0 15 28 26 15
69 56 14 36 0 0 0 0
5 0 0 5 6 0 23 0
4 24 0 0 0 0 0 0

Educational 35 8 0 0 25 28 0 16
Control 7 0 9 37 36 22 14 48

51 53 8 26 19 22 29 2
25 0 0 15 0 0 5 14
59 45 11 16 0 0 0 0
40 2 33 16 0 0 0 0

Group 3 Sex 3 Time means

Pretest Posttest FU6 FU12 Mean

BST Male 19.7 20.7 24.0 18.1 20.625
BST Female 7.2 9.8 13.6 10.2 10.200
EC Male 29.5 18.8 7.5 15.1 17.725
EC Female 10.1 10.0 9.7 9.5 9.825
Mean 16.625 14.825 13.700 13.225 14.594

Group 3 Sex means

Male Female Mean

BST 20.625 10.200 15.412
EC 17.725 9.825 13.775
Mean 19.175 10.012 14.594

(b) Calculations

SSSex = ntga (XSex 2 X )2 = 10 3 4 3 23(19.175 2 14.594)2 1 (10.012 2 14.594)24 = 3358.056

SSgroup = ntsa (XG 2 X )2 = 10 3 4 3 23(15.412 2 14.594)2 1 (13.775 2 14.594)24 = 107.256

SSsubj = ta (XSubj 2 X )2 = 43(14 2 14.594)2 1 Á 1 (0 2 14.594)24 = 21490.344

SStotal = a (X 2 X )2 = (7 2 14.594)2 1 Á 1 (0 2 14.594)2 = 35404.594

(continues)
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Table 14.7 (continued)

(c) Summary Table

Source df SS MS F

Between subjects 39 21,490.344
Group (Condition) 1 107.256 107.256 0.21
Sex 1 3358.056 3358.056 6.73*
G 3 S 1 63.757 63.757 0.13
Ss win groups** 36 17,961.275 498.924

Within subjects** 120 13,914.250
Time 3 274.069 91.356 0.90
T 3 G 3 1377.819 459.273 4.51*
T 3 S 3 779.919 259.973 2.55
T 3 G 3 S 3 476.419 158.806 1.56
T 3 Ss w/in groups** 108 11,006.025 101.908

Total 159 35,404.594

*p , .05
** Obtained by subtraction

= 6437.294 2 107.256 2 274.069 2 3358.056 2 1377.819 2 63.757 2 779.919 = 476.419

SSGTS = SScells GTS 2 SSG 2 SST 2 SSS 2 SSGT 2 SSGS 2 SSTS

SScells GTS = na (Xcells GTS 2 X )2 = 103(19.7–14.594)2 1 Á 1 (9.50–14.594)24 = 6437.294

SSTS = SScells TS 2 SST 2 SSS = 4412.044 2 274.069 2 3358.056 = 779.919

SScells TS = nga (Xcells TS 2 X )2 = 10 3 23(24.60 2 14.594)2 1 Á 1 (9.85 2 14.594)24 = 4412.044

SSTG = SScells TG 2 SST 2 SSG = 1759.144 2 274.069 2 107.256 = 1377.819

SScells TG = nsa (Xcells TG 2 X )2 = 10 3 23(13.45 2 14.594)2 1 Á 1 (12.300 2 14.594)24 = 1759.144

SStime = ngsa (XT 2 X )2 = 10 3 2 3 23(16.625 2 14.594)2 1 Á 1 (13.225 2 14.594)24 = 274.069

SSGS = SScells GS 2 SSG 2 SSS = 3529.069 2 107.256 2 3358.056 = 63.757

SScells GS = nta (Xcells GS 2 X )2 = 10 3 43(20.625 2 14.594)2 1 Á 1 (9.825 2 14.594)24 = 3529.069

The summary table for the analysis of variance is presented in Table 14.7c. In this table,
the ** indicate terms that were obtained by subtraction. Specifically,

These last two terms are the error terms for between-subjects and within-subjects effects,
respectively. That these error terms are appropriate is shown by examining the expected
mean squares presented in Table 14.8 on page 486.5 For the expected mean squares of ran-
dom and mixed models, see Kirk (1968) or Winer (1971).

SST3Ss w/in groups = SSw/in subj 2 SST 2 SSTG 2 SSTS 2 SSTGS

SSSs w/in groups = SSbetween subj 2 SSG 2 SSS 2 SSGS

SSw/in subj = SStotal 2 SSbetween subj

5 As in earlier tables of expected mean squares, we use the to refer to the variance of random terms and to
refer to the variability of fixed terms. Subjects are always treated as random, whereas in this study the two main
independent variables are fixed.
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From the column of F in the summary table of Table 14.7c, we see that the main effect of
Sex is significant, as is the Time 3 Group interaction. Both of these results are meaningful.
As you will recall, the dependent variable is a measure of the frequency of use of condoms
(log(freq 1 1)). Examination of the means reveals adolescent girls report a lower frequency
of use than adolescent boys. That could mean either that they have a lower frequency of in-
tercourse, or that they use condoms a lower percentage of the time. Supplementary data
supplied by St. Lawrence et al. show that females do report using condoms a lower percent-
age of the time than males, but not enough to account for the difference that we see here.
Apparently what we are seeing is a reflection of the reported frequency of intercourse.

The most important result in this summary table is the Time 3 Group interaction. This
is precisely what we would be looking for. We don’t really care about a Group effect, be-
cause we would like the groups to be equal at pretest, and that equality would dilute any
overall group difference. Nor do we particularly care about a main effect of Time, because
we expect the Control group not to show appreciable change over time, and that would
dilute any Time effect. What we really want to see is that the BST group increases their use
over time, whereas the EC group remains constant. That is an interaction, and that is what
we found.

Simple Effects for Complex Repeated-Measures Designs

In the previous example we saw that tests on within-subjects effects were occasionally dis-
rupted by violations of the sphericity assumption, and we took steps to work around this
problem. We will have much the same problem with this example.

The cell means plotted in Figure 14.3 reveal the way in which frequency of condom
use changes over time for the two treatment conditions and for males and females sepa-
rately. It is clear from this figure that the data do not tell a simple story.

We are again going to have to distinguish between simple effects on between-subject
factors and simple effects on within-subject factors. We will start with between-subject
simple effects. We have three different between-subjects simple effects that we could
examine—namely: the simple main effects of Condition and Sex at each Time, and the
Sex 3 Condition simple interaction effect at each Time. For example, we might wish to
check that the two Conditions (BST and EC) do not differ at pretest. Again, we might also
want to test that they do differ at FU6 and/or at FU12. Here we are really dissecting the
Condition 3 Time interaction effect, which we know from Table 14.7 to be significant.
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Table 14.8 Expected mean squares with A, B, and C fixed

Source df SS

Between subjects abn 2 1
A a 2 1
B b 2 1
AB (a 2 1)(b 2 1)
Ss w/in groups ab(n 2 1)

Within subjects abn(c 2 1)
C c 2 1
AC (a 2 1)(c 2 1)
BC (b 2 1)(c 2 1)
ABC (a 2 1) (b 2 1)(c 2 1)
C 3 Ss w/in groups ab(n 2 1)(c 2 1)

Total N 2 1
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By far the easiest way to test these between-subjects effects is to run separate two-way
(Condition 3 Sex) analyses at each level of the Time variable. These four analyses will
give you all three simple effects at each Time with only minor effort. You can then accept
the F values from these analyses, as I have done here for convenience, or you can pool the
error terms from the four separate analyses and use that pooled error term in testing the
mean square for the relevant effect. If these terms are heterogeneous, you would be wise
not to pool them. On the other hand, if they represent homogeneous sources of variance,
they may be pooled, giving you more degrees of freedom for error. For these effects you
don’t need to worry about sphericity because each simple effect is calculated on only one
level of the repeated-measures variable.

The within-subjects simple effects are handled in much the same way. For example,
there is some reason to look at the simple effects of Time for each Condition separately to
see whether the EC condition shows changes over time in the absence of a complete inter-
vention. Similarly, we would like to see how the BST condition changes with time. How-
ever, we want to include Sex as an effect in both of these analyses so as not to inflate the
error term unnecessarily. We also want to use a separate error term for each analysis, rather
than pooling these across Conditions.

The relevant analyses are presented in Table 14.9 for simple effects at one level of the
other variable. Tests at the other levels would be carried out in the same way. Although this
table has more simple effects than we care about, they are presented to illustrate the way in
which tests were constructed. You would probably be foolish to consider all of the tests that
result from this approach, because you would seriously inflate the familywise error rate.
Decide what you want to look at before you run the analyses, and then stick to that deci-
sion. If you really want to look at a large number of simple effects, consider adopting one
of the Bonferroni approaches discussed in Chapter 12.

From the between-subjects analysis in Table14.9a we see that at Time 1 (Pretest) there
was a significant difference between males and females (females show a lower frequency
of use). But there were no Condition effects nor was there a Condition 3 Sex interaction.
Males exceed females by just about the same amount in each Condition. The fact that there
is no Condition effect is reassuring, because it would not be comforting to find that our two
conditions differed before we had applied any treatment.

From the results in Table 14.9b we see that for the BST condition there is again a signif-
icant difference due to Sex, but there is no Time effect, nor a Time 3 Sex interaction. This
is discouraging: It tells us that when we average across Sex there is no change in frequency
of condom use as a result of our intervention. This runs counter to the conclusion that we
might have drawn from the overall analysis where we saw a significant Condition by Time
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interaction, and speaks to the value of examining simple effects. The fact that an effect we
seek is significant does not necessarily mean that it is significant in the direction we desire.

14.9 Two Within-Subjects Variables and 
One Between-Subjects Variable

The design we just considered can be seen as a straightforward extension of the case of one
between- and one within-subjects variable. All that we needed to add to the summary table
was another main effect and the corresponding interactions. However, when we examine a
design with two within-subjects main effects, the problem becomes slightly more compli-
cated because of the presence of additional error terms. To use a more generic notation, we
will label the independent variables as A, B, and C.

Suppose that as a variation on the previous study we continued to use different subjects
for the two levels of variable A (Gender), but we ran each subject under all combinations
of variables B (Condition) and C (Trials). This design can be diagrammed as

A1 A2

C1 C2 C3 C1 C2 C3

B1 G1 G1 G1 G2 G2 G2
B2 G1 G1 G1 G2 G2 G2
B3 G1 G1 G1 G2 G2 G2
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Table 14.9 Analysis of simple effects

(a) Between-subjects effects (Condition, Sex, and Condition 3 Sex) at Pretest

Source df SS MS F

Condition 1 403.225 403.225 1.45
Sex 1 2544.025 2544.025 9.13*
Condition 3 Sex 1 119.025 119.025 0.43
Error 36 10027.100 278.530

Total 39 13093.375

(b) Within-subject effects (Sex, Time, Time 3 Sex) at BST

Source df SS MS F

Between subjects 19 7849.13
Sex 1 2173.61 2173.61 6.89*
Error (between) 18 5675.52 315.30

Within subjects 60 3646.26
Time 3 338.94 112.98 1.88
T 3 S 3 54.54 18.18 0.30
Error (within) 54 3252.78 60.24

Total 79 11495.39

*p , .05
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Table 14.10 Expected mean squares

Source df E(MS)

Between subjects an 2 1
A (groups) a 2 1
Ss w/in groups a(n 2 1)

Within subjects na(bc 2 1)
B b 2 1
AB (a 2 1)(b 2 1)
B 3 Ss w/in groups a(b 2 1)(n 2 1)
C c 2 1
AC (a 2 1)(c 2 1)
C 3 Ss w/in groups a(c 2 1)(n 2 1)
BC (b 2 1)(c 2 1)
ABC (a 2 1) (b 2 1)(c 2 1)
BC 3 Ss w/in groups a(b 2 1)(c 2 1)(n 2 1)

Total N 2 1
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Before we consider an example, we will examine the expected mean squares for this
design. These are presented in Table 14.10 for the case of the model in which all factors
other than subjects are fixed. (subjects are treated as a random factor.) From the expected
mean squares it is evident that we will have four error terms for this design. As before, the

is used to test the between-subjects effect. When it comes to the within-
subjects terms, however, B and the interaction of B with A are tested by B 3 Ss within
groups; C and its interaction with A are tested by C 3 Ss within groups; and BC and its in-
teraction with A are tested by BC 3 Ss within groups. Why this is necessary is apparent
from the expected mean squares.

An Analysis of Data on Conditioned Suppression

Assume that a tiny “click” on your clock radio always slightly precedes your loud and intru-
sive alarm going off. Over time that click (psychologists would call it a “CS”) could come
to elicit the responses normally produced by the alarm (the “US”). Moreover, it is possible
that simply presenting the click might lead to the suppression of an ongoing behavior, even
if that click is not accompanied by the alarm. (If you were lying there reading, you might
pause in your reading.) In a laboratory investigation of how the click affects (suppresses)
ongoing behavior, Bouton and Swartzentruber (1985) investigated the degree to which a
tone, which had previously been paired with shock, would suppress the rate of an ongoing
bar-pressing response in rats. Suppression was measured by taking the ratio of the number
of bar presses during a 1-minute test period following the tone to the total number of bar
presses during both a baseline period and the test period. For all groups, behavior was
assessed in two Phases—a Shock Phase (shock accompanied the tone) and a No-shock Phase
(shock did not accompany the tone) repeated over a series of four Cycles of the experiment.

It may be easier to understand the design of the study if you first glance at the layout of
Table 14.11. During Phase I, Group A-B was placed in Box A. After a 1-minute baseline inter-
val, during which the animal bar-pressed for food, a tone was presented for 1 minute and was
followed by a mild shock. The degree of suppression of the bar-pressing response when the
tone was present (a normal fear response) was recorded. The animal was then placed in Box B

MSSs w/in groups



for Phase II of the cycle, where, after 1 minute of baseline bar-pressing, only the tone stimulus
was presented. Since the tone was previously paired with shock, it should suppress bar-pressing
behavior to some extent. Over a series of A-B cycles, however, the subject should learn that
shock is never administered in Phase II and that Box B is therefore a “safe” box. Thus, for later
cycles there should be less suppression on the no-shock trials.

Group L-A-B was treated in the same way as Group A-B except that these animals pre-
viously had had experience with a situation in which a light, rather than a tone, had been
paired with shock. Because of this previous experience, the authors expected the animals
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Table 14.11 Analysis of conditioned suppression (Lower scores represent greater suppression.)

(a1) Data

Cycle

1 2 3 4

Phase Phase Phase Phase
Subject

Group I II I II I II I II Mean

A-B 1* 28 22 48 22 50 14 48 29.125
21 21 16 40 15 39 11 56 27.375
15 17 13 35 22 45 1 43 23.875
30 34 55 54 37 57 57 68 49.000
11 23 12 33 10 50 8 53 25.000
16 11 18 34 11 40 5 40 21.875
7 26 29 40 25 50 14 56 30.875
0 22 23 45 18 38 15 50 26.375

MeanAB 12.625 22.750 23.500 41.125 20.000 46.125 15.625 51.750 29.188

A-A 1 6 16 8 9 14 11 33 12.250
37 59 28 36 34 32 26 37 36.125
18 43 38 50 39 15 29 18 31.250
1 2 9 8 6 5 5 15 6.375

44 25 28 42 47 46 33 35 37.500
15 14 22 32 16 23 32 26 22.500
0 3 7 17 6 9 10 15 8.375

26 15 31 32 28 22 16 15 23.125

MeanAA 17.750 20.875 22.375 28.125 23.125 20.750 20.250 24.250 22.188

L-A-B 33 43 40 52 39 52 38 48 43.125
4 35 9 42 4 46 23 51 26.750

32 39 38 47 24 44 16 40 35.000
17 34 21 41 27 50 13 40 30.375
44 52 37 48 33 53 33 43 42.875
12 16 9 39 9 59 13 45 25.250
18 42 3 62 45 49 60 57 42.000
13 29 14 44 9 50 15 48 27.750

MeanLAB 21.625 36.250 21.375 46.875 23.750 50.375 26.375 46.500 34.141

Total 17.333 26.625 22.417 38.708 22.292 39.083 20.750 40.833 28.505

* Decimal points have been omitted in the table, but included in the calculations.
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6 For those who want to see the calculations, the corresponding pages from the previous edition can be found at
www.uvm.edu/~dhowell/method7/More_Stuff/Table14-11Analysis.html.

to perform slightly better (less suppression during Phase II) than did the other group, espe-
cially on the first cycle or two.

Group A-A was also treated in the same way as Group A-B except that both Phases were
carried out in the same box—Box A. Because there were no differences in the test boxes to
serve as cues (i.e., animals had no way to distinguish the no-shock from the Shock Phases),
this group would be expected to show the most suppression during the No-shock Phases.

Bouton and Swartzentruber predicted that overall there would be a main effect due to
Phase (i.e., a difference between shock and No-shock Phases), a main effect due to Groups
(A-B and L-A-B showing less suppression than A-A), and a main effect due to Cycles (ani-
mals tested in Box B would learn over time that it was a safe location). They also predicted
that each of the interactions would be significant. (One reason I chose to use this example,
even though it is difficult to describe concisely, is that it is one of those rare studies in
which all effects are predicted to be significant and meaningful.)

The data and analysis of variance for this study are presented in Table 14.11. The analy-
sis has not been elaborated in detail because it mainly involves steps that you already know
how to do. The results are presented graphically in Figure 14.4 for convenience, and for the
most part they are clear-cut and in the predicted direction. Keep in mind that for these data a
lower score represents more suppression—that is, the animals are responding more slowly.

Rather than present literally three pages of tables and calculations, which few people
would have the patience to work through, I have chosen to carry out the analysis using
SPSS.6 The data would be entered just as they appear in Table 14.11, with a column for
Groups on the left. You would select Analyze, General Linear Model, Repeated Mea-
sures from the drop-down menus and specify that there were two repeated measures
(Cycles with 4 levels and Phases with 2 levels). Then click on Define and specify the vari-
ables that are associated with each of the cells and the variable(s) that define the Between-
Subject Factor(s). This dialogue box follows, where C1P1 – C4P2 would be moved to
the Within-Subjects Variables box and Group would be moved to the Between-Subjects
Factor(s) box.
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From the bottom row of that dialogue box you can specify what plots you would like to
see, what contrasts you would like to run, and any descriptive statistics you want printed
out. Then click on OK to run the analysis.

An abbreviated summary table appears below. I have omitted entries in the table related
to Greenhouse and Geisser and related corrections to condense the table. Notice that SPSS
presents separate tables for Within-Subjects factors and Between-Subjects factors, though I
would prefer to have them combined into one table with appropriate indentations.

Notice that there are multiple error terms in the table. The Group effect is tested by the
Error term in the Between-Subjects table. Then Cycle and Cycle 3 Group are tested by
Error(Cycle), Phase and Phase 3 Group are tested by Error(Phase), and Cycle 3 Phase and
Cycle 3 Phase 3 Group are tested by Error(Cycle 3 Phase).

From the summary table in Table 14.12, it is clear that nearly all the predictions were
supported. The only effect that was not significant was the main effect of Groups, but that
effect is not crucial because it represents an average across the shock and the No-shock
phases, and the experimenters had predicted little or no group differences in the Shock
phase. In this context, the Phase 3 Group interaction is of more interest, and it is clearly
significant.

The presence of an interpretable three-way interaction offers the opportunity to give
another example of the use of simple interaction effects. We would have predicted that all
groups would show high levels of suppression of the shock trials on all Cycles, because
anticipated shock is clearly disruptive. On No-shock trials, however, Groups A-B and L-A-B
should show less suppression (higher scores) than Group A-A, and this latter difference
should increase with Cycles. In other words, there should be a Groups 3 Cycles interac-
tion for the No-shock trials, but no such interaction for the shock trials. The simple effects
are shown in Table 14.13. (In these tables I have left in the corrections based on Green-
house-Geisser, Huynh-Feldt, and Lower-bound solutions to illustrate how they are pre-
sented by SPSS. Whether or not we choose to implement the corrections does not affect



the conclusions. The calculation of the appropriate tests was carried out the same way it
was earlier, by running a reduced analysis of variance using only the Phase 1 (or Phase 2)
cells. Here again we are using separate error terms to test the Shock and No-shock effects,
thus reducing problems with the sphericity assumption. (Again, just because the analyses
also give simple effects due to Groups and Cycles is no reason to feel an obligation to
interpret them. If they don’t speak to issues raised by the experimental hypotheses, they
should neither be reported nor interpreted unless you take steps to minimize the increase in
the experimentwise error rate.)
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Table 14.12 SPSS output of the analysis of conditioned suppression data

Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average

Tests of Within-Subjects Effects
Measure: MEASURE_1

Source
Type III Sum
of Squares df Mean Square F Sig.

Cycle Sphericity
Assumed

2726.974 3 908.991 12.027 .000

Cycle * Group Sphericity
Assumed

1047.073 6 174.512 2.309 .044

Error(Cycle) Sphericity
Assumed

4761.328 63 75.77

Phase Sphericity
Assumed

11703.130 1 11703.130 129.855 .000

Phase * Group Sphericity
Assumed

4054.385 2 2027.193 22.493 .000

Error(Phase) Sphericity
Assumed

1892.609 21 90.124

Cycle * Phase Sphericity
Assumed

741.516 3 247.172 4.035 .011

Cycle * 
Phase * 
Group

Sphericity
Assumed

1273.781 6 212.297 3.466 .005

Error(Cycle *
Phase)

Sphericity
Assumed

3859.078 63 61.255

Source
Type III Sum
of Squares df Mean Square F Sig.

Intercept 156009.005 1 156009.005 208.364 .000

Group 4616.760 2 2308.380 3.083 .067

Error 15723.359 21 748.731



Source
Type III Sum
of Squares df Mean Square F Sig.

Cycle Sphericity
Assumed

403.615 3 134.538 1.740 .168

Greenhouse-
Geisser

403.615 2.391 168.788 1.740 .180

Huynh-Feldt 403.615 2.977 135.598 1.740 .168

Lower-bound 403.615 1.000 403.615 1.740 .201

Cycle * Group Sphericity
Assumed

415.604 6 69.267 .896 .504

Greenhouse-
Geisser

415.604 4.783 86.901 .896 .488

Huynh-Feldt 415.604 5.953 69.813 .896 .503

Lower-bound 415.604 2.000 207.802 .896 .423

Error(Cycle) Sphericity
Assumed

4871.031 63 77.318

Greenhouse-
Geisser

4871.031 50.216 97.001

Huynh-Feldt 4871.031 62.508 77.927

Lower-bound 4871.031 21.000 231.954

Source
Type III Sum of

Squares df Mean Square F Sig.

Intercept 41126.760 1 41126.760 73.845 .000

Group 458.396 2 229.198 .412 .668

Error 11695.594 21 556.933
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Table 14.13 Simple interaction effects on conditioned suppression data

(a) Within-subjects effects (Group 3 Cycle at Phase I)

Test of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average

Tests of Within-Subjects Effects

Measure: MEASURE_1

(continues)



Source
Type III Sum
of Squares df Mean Square F Sig.

Cycle Sphericity
Assumed

3064.875 3 1021.625 17.166 .000

Greenhouse-
Geisser

3064.875 2.275 1347.224 17.166 .000

Huynh-Feldt 3064.875 2.809 1091.085 17.166 .000

Lower-bound 3064.875 1.000 3064.875 17.166 .000

Cycle * Group Sphericity
Assumed

1905.250 6 317.542 5.336 .000

Greenhouse-
Geisser

1905.250 4.550 418.744 5.336 .001

Huynh-Feldt 1905.250 5.618 339.131 5.336 .000

Lower-bound 1905.250 2.000 952.625 5.336 .013

Error(Cycle) Sphericity
Assumed

3749.375 63 59.514

Greenhouse-
Geisser

3749.375 47.774 78.481

Huynh-Feldt 3749.375 59.989 63.560

Lower-bound 3749.375 21.000 178.542

Source
Type III Sum of

Squares df Mean Square F Sig.

Intercept 126585.375 1 126585.375 449.008 .000

Group 8212.750 2 4106.375 14.566 .000

Error 5920.375 21 281.923
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Table 14.13 (continued )

b) Within-subject effects (Group 3 Cycle at Phase II)
Test of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Tests of Within-Subjects Effects
Measure: MEASURE_1

From the simple interaction effects of Group 3 Cycle at each level of Phase, you can
see that Bouton and Swartzentruber’s predictions were upheld. There is no Cycle 3 Group
interaction on Shock trials, but there is a clear interaction on No-shock trials.

14.10 Intraclass Correlation

One of the important issues in designing experiments in any field is the question of the re-
liability of the measurements. Most of you would probably expect that the last place to
look for anything about reliability is in a discussion of the analysis of variance, but that is



exactly where you will find it. (For additional material on the intraclass correlation, go to
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html.)

Suppose that we are interested in measuring the reliability with which judges rate the
degree of prosocial behavior in young children. We might investigate this reliability by
having two or more judges each rate a behavior sample of a number of children, assigning
a number from 1 to 10 to reflect the amount of prosocial behavior in each behavior sample.
I will demonstrate the procedure with some extreme data that were created to make a point.
Look at the data in Table 14.14.

In Table 14.14a the judges are in almost perfect agreement. They all see wide differ-
ences among children, they all agree on which children show high levels of prosocial
behavior and which show low levels, and they are nearly in agreement on how high or
low those levels are. In this case nearly all of the variability in the data involves differ-
ences among children—there is almost no variability among judges and almost no ran-
dom error.

In Table 14.14b we see much the same pattern, but with a difference. The judges do see
overall differences among the children, and they do agree on which children show the high-
est (and lowest) levels of the behavior. But the judges disagree in terms of the amount of
prosocial behavior they see. Judge II sees slightly less behavior than Judge I (his mean is
1 point lower), and Judge III sees relatively more behavior than do the others. In other
words, while the judges agree on ordering children, they disagree on level. Here the data
involve both variability among children and variability among judges. However, the
random error component is still very small. This is often the most realistic model of how
people rate behavior because each of us has a different understanding of how much behav-
ior is required to earn a rating of “7,” for example. Our assessment of the reliability of a
rating system must normally take variability among judges into account.

Finally, Table 14.14c shows a pattern where not only do the judges disagree in level,
they also disagree in ordering children. A large percentage of the variability in these data is
error variance.

So what do we do when we want to talk about reliability? One way to measure relia-
bility when judges use only a few levels or categories is to calculate the percentage of
times that two judges agree on their rating, but this measure is biased because of high lev-
els of chance agreement whenever one or two categories predominate. (But see the dis-
cussion earlier of Cohen’s kappa.) Another common approach is to correlate the ratings of
two judges, and perhaps average pairwise correlations if you have multiple judges. But
this approach will not take differences between judges into account. (If one judge always
rates five points higher than another judge the correlation will be 1.00, but the judges are
saying different things about the subjects.) A third way is to calculate what is called the
intraclass correlation, taking differences due to judges into account. That is what we will
do here.
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Table 14.14 Data for intraclass correlation examples

(a) (b) (c)
Judge Judge Judge

Child I II III I II III I II III

1 1 1 2 1 0 3 1 3 7
2 3 3 3 3 2 5 3 1 5
3 5 5 5 5 4 7 5 7 4
4 5 6 6 5 4 7 5 5 5
5 7 7 7 7 6 8 7 6 7

intraclass
correlation

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/icc/icc.html


You can calculate an intraclass correlation coefficient in a number of different ways,
depending on whether you treat judges as a fixed or random variable and whether judges
evaluate the same or different subjects. The classic reference for intraclass correlation is
Shrout and Fleiss (1979), who discuss several alternative approaches. I am going to discuss
only the most common approach here, one in which we consider our judges to be a random
sample of all judges we could have used and in which each judge rates the same set of sub-
jects once. (In what follows I am assuming that judges are rating “subjects,” but they could
be rating pictures, cars, or the livability of cities. Take the word “subject” as a generic term
for whatever is being rated.)

We will start by assuming that the data in Table 14.14 can be represented by the fol-
lowing model:

In this model stands for the effect of the ith judge, stands for the effect of the jth sub-
ject (person), is the interaction between the ith judge and the jth subject (the degree to
which the judge changes his or her rating system when confronted with that subject), and

stands for the error associated with that specific rating. Because each judge rates each
subject only once, it is not possible in this model to estimate and separately, but it
is necessary to keep them separate in the model.

If you look back to the previous chapter you will see that when we calculated a magnitude-
of-effect measure (which was essentially an r2-family measure), we took the variance esti-
mate for the effect in question (in this case differences among subjects) relative to the sum
of the estimates of the several sources of variance. That is precisely what we are going to
do here. We will let

If most of the variability in the data is due to differences between subjects, with only a
small amount due to differences between judges, the interaction of judges and subjects, and
error, then this ratio will be close to 1.00. If judges differ from one another in how high or
low they rate people in general, or if there is a judge by subject interaction (different judges
rate different people differently), or if there is a lot of error in the ratings, the denominator
will be substantially larger than the numerator and the ratio will be much less than 1.00.

To compute the intraclass correlation we are first going to run a Subjects 3 Judges
analysis of variance with Judges as a repeated measure. Because each judge rates each sub-
ject only once, there will not be an independent estimate of error, and we will have to use
the Judge 3 Subject interaction as the error term. From the summary table that results, we
will compute our estimate of the intraclass correlation as

where j represents the number of judges and n represents the number of subjects.
To illustrate this, I have run the analysis of variance on the data in Table14.14b, which

is the data set where I have deliberately built in some differences due to subjects and
judges. The summary table for this analysis follows.

Source df SS MS F

Between subjects 4 57.067 14.267
Within subjects 10 20.666 2.067

Judge 2 20.133 10.067 150.25
Judge × Subjects 8 0.533 0.067

Total 14 77.733 

Intraclass correlation =
MSSubjects 2 MSJ3S

MSSubjects 1 ( j 2 1)MSJ3S 1 j(MSJudge 2 MSJ3S)>n

Intraclass correlation = s2
p>(s2

a 1 s2
p 1 s2

ap 1 s2
e)

eijapij

eij

apij

pjai

Xij = m 1 ai 1 pj 1 apij 1 eij
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We can now calculate the intraclass correlation as

Thus our measure of reliability is .70, which is probably not as good as we would like to
see it. But we can tell from the calculation that the main thing that contributed to low relia-
bility was not error, but differences among judges. This would suggest that we need to have
our judges work together to decide on a consistent scale where a “7” means the same thing
to each judge.

14.11 Other Considerations

Sequence Effects

Repeated-measures designs are notoriously susceptible to sequence effects and carryover
(practice) effects. Whenever the possibility exists that exposure to one treatment will influ-
ence the effect of another treatment, the experimenter should consider very seriously be-
fore deciding to use a repeated-measures design. In certain studies, carryover effects are
desirable. In learning studies, for example, the basic data represent what is carried over
from one trial to another. In most situations, however, carryover effects (and especially dif-
ferential carryover effects) are considered a nuisance—something to be avoided.

The statistical theory of repeated-measures designs assumes that the order of adminis-
tration is randomized separately for each subject, unless, of course, the repeated measure is
something like trials, where it is impossible to have trial 2 before trial 1. In some situations,
however, it makes more sense to assign testing sequences by means of a Latin square or
some other device. Although this violates the assumption of randomization, in some situa-
tions the gains outweigh the losses. What is important, however, is that random assignment,
Latin squares, and so on do not in themselves eliminate sequence effects. Ignoring analy-
ses in which the data are analyzed by means of a Latin square or a related statistical proce-
dure, any system of assignment simply distributes sequence and carryover effects across
the cells of the design, with luck lumping them into the error term(s). The phrase “with
luck” implies that if this does not happen, the carryover effects will be confounded with
treatment effects and the results will be very difficult, if not impossible, to interpret.
For those students particularly interested in examining sequence effects, Winer (1971),
Kirk (1968), and Cochran and Cox (1957) present excellent discussions of Latin square
and related designs.

Unequal Group Sizes

One of the pleasant features of repeated-measures designs is that when a subject fails to 
arrive for an experiment, it often means that that subject is missing from every cell in which
he was to serve. This has the effect of keeping the cell sizes proportional, even if unequal. If
you are so unlucky as to have a subject for whom you have partial data, the common proce-
dure is to eliminate that subject from the analysis. If, however, only one or two scores are
missing, it is possible to replace them with estimates, and in many cases this is a satisfactory
approach. For a discussion of this topic, see Federer (1955, pp. 125–126, 133ff ), and especially
Little and Rubin (1987), and Howell (2008) and the discussion in Section 14.12.

= 14.200
14.267 1 0.134 1 6

= 14.2
20.401

= .70

Intraclass correlation = 14.267 2 0.067
14.267 1 (3 2 1)0.067 1 3(10.067 2 0.067)>5
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Matched Samples and Related Problems

In discussing repeated-measures designs, we have spoken in terms of repeated measure-
ments on the same subject. Although this represents the most common instance of the use
of these designs, it is not the only one. The specific fact that a subject is tested several times
really has nothing to do with the matter. Technically, what distinguishes repeated-measures
designs (or, more generally, randomized blocks designs, of which repeated-measures de-
signs are a special case) from the common factorial designs with equal ns is the fact that
for repeated-measures designs, the off-diagonal elements of do not have an expectation
of zero—that is, the treatments are correlated. Repeated use of the same subject leads to
such correlations, but so does use of matched samples of subjects. Thus, for example, if
we formed 10 sets of three subjects each, with the subjects matched on driving experience,
and then set up an experiment in which the first subject under each treatment came from
the same matched triad, we would have correlations among treatments and would thus have
a repeated-measures design. Any other data-collection procedure leading to nonzero corre-
lations (or covariances) could also be treated as a repeated-measures design.

14.12 Mixed Models for Repeated-Measures Designs

Earlier in the chapter I said that the standard repeated-measures analysis of variance
requires an assumption about the variance–covariance matrix known as sphericity, a spe-
cific form of which is known as compound symmetry. When we discussed and we were
concerned with correction factors that we could apply to the degrees of freedom to circum-
vent some of the problems associated with a failure of the sphericity assumption.

There is a considerable literature on repeated-measures analyses and their robustness
in the face of violations of the underlying assumptions. Although there is not universal
agreement that the adjustments proposed by Greenhouse and Geisser and by Huynh and
Feldt are successful, the adjustments work reasonably well as long as we focus on overall
main or interaction effects, or as long as we use only data that relate to specific simple
effects (rather than using overall error terms). Where we encounter serious trouble is when
we try to run individual contrasts or simple effects analyses using pooled error terms. Boik
(1981) has shown that in these cases the repeated-measures analysis is remarkably sensi-
tive to violations of the sphericity assumption unless we adopt separate error terms for each
contrast, as I did for the simple effects tests in Table 14.13. However there is another way
of dealing with assumptions about the covariance matrix, and that is to not make such
assumptions. But to do that we need to take a different approach to the analysis itself.

Standard repeated measures analysis of variance has two problems that we have lived
with for many years and will probably continue to live with. It assumes both compound
symmetry (or sphericity) and complete data. If a participant does not appear for a follow-
up session, even if he appears for all of the others, he must be eliminated from the analy-
sis. There is an alternative approach to the analysis of repeated measures designs that
does not hinge on either sphericity assumptions or complete data. This analysis is often
referred to as mixed models, multilevel modeling, or hierarchical modeling. There is a
bit of confusion here because we have already used the phrase “mixed models” to refer
to any experimental design that involves both fixed and random factors. That is a per-
fectly legitimate usage. But when we are speaking of a method of analysis, such as we
are here, the phrase “mixed models” refers more to a particular type of solution, in-
volving both fixed and random factors, using a different approach to the arithmetic.
More specifically, when someone claims to have done their analysis using mixed mod-
els, they are referring to a solution that employs maximum likelihood or, more likely,
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restricted maximum likelihood (REML) in place of the least squares approaches that
we have focused on up to now and will focus on again in the next two chapters.7

In this section I will discuss a small part of the broader topic of hierarchical or multi-
level models. For these models the repeated measure (e.g., Time or Trials) is a fixed factor
while Subjects is a random factor. The between-subjects factor is also usually a fixed fac-
tor. By approaching the problem using restricted maximum likelihood (REML) as the
method of parameter estimation, the solution can take cognizance from the very beginning
of the analysis that one or more factors are fixed and one or more factors are random. Least
squares solutions of standard analysis of variance treats all factors as fixed until it comes to
determining error terms for F statistics.

No one would seriously attempt to do a mixed model analysis by hand. You must use
computer software to perform the analysis. However, there are many software programs
available, some of them even free. The ones that you will have most access to are probably
SPSS Mixed and SAS Proc Mixed. I will use SPSS for our example, though SAS proc
mixed is probably more flexible. A more complete discussion of the analysis of alternative
designs can be found at http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_
Data/Mixed Models for Repeated Measures.pdf. For an example I have chosen a design with
one between subject variable and one within subject variable. The example has missing data
because that will illustrate an analysis that you can not do with standard analysis of variance.

The Data

I created data to have a number of characteristics. There are two groups—a Control group
and a Treatment group, measured at 4 times. These times are labeled as 0 (pretest), 1 (one
month posttest), 3 (three months follow-up), and 6 (six months follow-up). I had a study of
treatment of depression in mind, so I created the treatment group to show a sharp drop in
depression at post-test and then sustain that drop (with slight regression) at 3 and 6 months.
The Control group declines slowly over the 4 intervals but does not reach the low level of
the Treatment group.

The data are shown in Table 14.15. A period is used to indicate missing values.
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Table 14.15 Data for mixed model analysis

Group Subj Time0 Time1 Time3 Time6

1 1 296 175 187 242
1 2 376 329 236 126
1 3 309 238 150 173
1 4 222 60 82 135
1 5 150 . 250 266
1 6 316 291 238 194
1 7 321 364 270 358
1 8 447 402 . 266
1 9 220 70 95 137
1 10 375 335 334 129
1 11 310 300 253 .
1 12 310 245 200 170

7 In previous editions I used the MANOVA approach under SPSS/Univariate/Repeated measures as a way of
avoiding assumptions of compound symmetry. This approach does not require compound symmetry, but it does
require balanced designs. I have dropped it in favor of the mixed model precisely because the mixed model will
handle missing data much better.

(continues)

SPSS Mixed

SAS Proc Mixed
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maximum
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One difference between data files for mixed models and others is that we use what is often
called a “long form.” Instead of putting each subject’s data on one line, we have a separate
line for every value of the dependent variance. Thus our data file will be structured like the
one in Table 14.16

Instead of showing you how to use the graphical interface in SPSS, which would take
quite a bit of space, I am simply giving you the syntax for the commands.8 After you have
entered your data, open a new Syntax window, paste in the following commands, and
select Run from the toolbar. I have left out a number of commands that do fine tuning, but
what I have will run your analysis nicely.

MIXED
dv BY Group Time
/FIXED 5 Group Time Group * Time | SSTYPE(3)
/METHOD 5 REML
/PRINT 5 DESCRIPTIVES SOLUTION
/REPEATED 5 Time | SUBJECT(Subj) COVTYPE(CS)
/EMMEANS 5 TABLES(Group)
/EMMEANS 5 TABLES(Time)
/EMMEANS 5 TABLES(Group * Time).
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Table 14.15 (continued )

Group Subj Time0 Time1 Time3 Time6

2 13 282 186 225 134
2 14 317 31 85 120
2 15 362 104 . .
2 16 338 132 91 77
2 17 263 94 141 142
2 18 138 38 16 95
2 19 329 . . 6
2 20 292 139 104 .
2 21 275 94 135 137
2 22 150 48 20 85
2 23 319 68 67 .
2 24 300 138 114 174

Table 14.16 Data restructured into a long form

Subj Time Group dv

1 0 1 296
1 1 1 175
1 3 1 187
1 6 1 242

. . . . . . . . . . . .
24 3 2 114
24 6 2 174

8 The following is quick description of using the menu selections. Select analysis/mixed/linear, specify Subj for
the Subjects box and Time for the Repeated box. Click continue and move to the next screen. Specify the
dependent variable (dv) and the factors (Group and Time). Select fixed from the bottom of the box, highlight both
Group and Time and click the add button,  click continue. Now click on the random button and add Subj to the
bottom box. Then click paste to make sure that you have syntax similar to what I gave above. 



I am only presenting the most important parts of the printout, but you can see the rest by
running the analysis yourself. (The data are available on the book’s Web site as
WickMiss.dat.)
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Information Criteriaa

–2 Restricted Log Likelihood 905.398
Akaike’s Information Criterion (AIC) 909.398
Hurvich and Tsai’s Criterion (AICC) 909.555
Bozdogan’s Criterion 916.136
Schwarz’s Bayesian Criterion (BIC) 914.136

The information criteria are displayed in smaller-is-better forms.
a Dependent Variable: dv

Fixed Effects
Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 22.327 269.632 .000
Group 1 22.327 16.524 .001
Time 3 58.646 32.453 .000
Group * Time 3 58.646 6.089 .001

a Dependent Variable: dv
Covariance Parameters

Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Repeated Measures CS diagonal offset 2954.544 551.1034
CS covariance 2558.656 1026.581

a Dependent Variable: dv

I will not discuss the section labeled “Information criteria” here, but will come back to
it when we compare the fit of different models. The fixed effects part of the table looks just
like one that you would see in most analyses of variance except that it does not include
sums of squares and mean squares. That is because of the way that maximum likelihood
solutions go about solving the problem. In some software it is possible to force them into
the printout. Notice the test on the Intercept. That is simply a test that the grand mean is 0,
and is of no interest to us. The other three effects are all significant. We don’t really care
very much about the two main effects. The groups started off equal on pre-test, and those
null differences would influence any overall main effect of groups. Similarly, we don’t care
a great deal about the Time effect because we expect different behavior from the two
groups. What we do care about, however, is the interaction. This tells us that the two groups
perform differently over Time, which is what we hoped to see. You can see this effect in
Figure 14.5.

There are two additional results in the printout that need to be considered. The section
headed “Covariance Parameters” is the random part of the model. The term labeled “CS
diagonal offset” represents the residual variance and, with balanced designs, would be the
error term for the within-subject tests. The term labeled “CS covariance” is the variance of
the intercepts, meaning that if you plot the dependent variable against time for each sub-
ject, the differences in intercepts of those lines would represent differences due to subjects



(some lines are higher than others) and it is this variance that we have here. For most of us
that variance is not particularly important, but there are studies in which it is.

As I said earlier, mixed model analyses do not require an assumption of compound
symmetry. In fact, that assumption is often incorrect. In Table 14.17 you can see the pat-
tern of correlations among trials. These are averaged over the separate groups, but give you
a clear picture that the structure is not one of compound symmetry.

There are a number of things that we could do to alter the model that we just ran, which
requested a solution based on compound symmetry. We could tell SPSS to solve the problem
without assuming anything about the correlations or covariances. (That is essentially what
the MANOVA approach to repeated measures does.) The problem with this approach is
that the solution has to derive estimates of those correlations and that will take away
degrees of freedom, perhaps needlessly. There is no point in declaring that you are to-
tally ignorant when you are really only partially ignorant. Another approach would be to
assume a specific (but different) form of the covariance matrix. For example, we could
use what is called an autoregressive solution. Such a solution assumes that correlations
between observations decrease as the times move further apart in time. It further assumes
that each correlation depends only on the preceding correlation plus some (perhaps
much) error. If the correlation between adjacent trials is, for example 0.5121 (as it is in
the study we are discussing), then times that are two steps apart are assumed to correlate
.51212 and times three steps apart are assumed to correlate .51213. This leads to a matrix
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Figure 14.5 Means across trials for the two conditions

Table 14.17 Correlations among trials

Estimated R Correlation Matrix for Subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5121 0.4163 20.08840
2 0.5121 1.0000 0.8510 0.3628
3 0.4163 0.8510 1.0000 0.3827
4 20.08840 0.3628 0.3827 1.0000



of correlations that decrease regularly the more removed the observations are from each
other. That sounds like a logical expectation for what we would find when we measure
depression over time. For now we are going to consider the autoregressive covariance
structure.

Having decided on a correlational (or covariance) structure we simply need to tell
SPSS to use that structure and solve the problem as before. The only change we will
make is to the repeated command, where we will replace covtype(cs) with covtype(AR1).

MIXED
dv BY Group Time
/FIXED 5 Group Time Group * Time | SSTYPE(3)
/METHOD 5 REML
/PRINT 5 DESCRIPTIVES SOLUTION
/REPEATED 5 Time | SUBJECT(Subj) COVTYPE(AR1)
/EMMEANS 5 TABLES(Group)
/EMMEANS 5 TABLES(Time)
/EMMEANS 5 TABLES(Group * Time).

Information Criteriaa
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22 Restricted Log Likelihood 895.066
Akaike’s Information Criterion (AIC) 899.066
Hurvich and Tsai’s Criterion (AICC) 899.224
Bozdogan’s Criterion (CAIC) 905.805
Schwarz’s Bayesian Criterion (BIC) 903.805

The information criteria are displayed in smaller-is-better
forms.
a Dependent Variable: dv

Fixed Effects
Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intecept 1 26.462 270.516 .000
Group 1 26.462 17.324 .000
Time 3 57.499 30.821 .000
Group * Time 3 57.499 7.721 .000

a Dependent Variable: dv

Covariance Parameters
Estimates of Covariance Parametersa

Parameter Estimate Std. Error

Repeated Measures AR1 diagonal 5349.879 1060.035
AR1 rho .618198 .084130

a DependentVariable: dv

Here we see that all effects are still significant, which is encouraging. But which of
these two models (one assuming a compound symmetry structure to the covariance matrix
and the other assuming a first order autoregressive structure) is the better choice. We are
going to come to the same conclusion with either model in this case, but that is often not



true, and we still want to know which model is better. One way of doing that is to compare
the sections labeled “Information Criteria” for each analysis. These are reproduced below
for the two models.

Section 14.12 Mixed Models for Repeated-Measures Designs 505

Compound Symmetry Autoregressive (1)

Information Criteriaa Information Criteriaa

2 Restricted Log Likelihood 905.398 2 Restricted Log Likelihood 895.066
Akaike’s Information Akaike’s Information 
Criterion (AIC) 909.398 Criterion (AIC) 899.066
Hurvich and Tsai’s Criterion Hurvich and Tsai’s Criterion 
(AICC) 909.555 (AICC) 899.224
Bozdogan’s Criterion 916.136 Bozdogan’s Criterion (CAIC) 905.805
Schwarz’s Bayesian Schwarz’s Bayesian 
Criterion (BIC) 914.136 Criterion (BIC) 903.805
The information criteria The information criteria are 
are displayed in displayed in smaller-is- 
smaller-is-better forms. better forms.

a Dependent Variable: dv a Dependent Variable: dv

22

A good way to compare models is to compare either the Akaike’s Information Crite-
rion (AIC) or the Bayesian Information Criterion (BIC). In general a model with a smaller
value is better. For our examples the two AIC criteria are 909.398 and 899.066. It would
appear that the Autoregressive (1) model is to be preferred, which is in line with what our
eyes told us about the covariance structures. (If we had rerun the analysis using an unstruc-
tured covariance matrix (COVTYPE(UN)), AIC would be 903.691 and BIC would be
927.385, so we would still choose the autoregressive model.)

Mixed models have a great deal to offer in terms of fitting data to models and allow us
to compare underlying models to best interpret our data. They also can be very valuable in
the presence of missing data. However, they are more difficult to work with and the soft-
ware, while certainly improving, is far from intuitive in some cases. Nevertheless, I think
that this is the direction that more and more analyses will take over the next decade, and it
is important to understand them.

Papers by Overall, Tonidandel, and others illustrate the problems with mixed models.
The major problem is the fact that it is very difficult to know how to correctly specify your
model, and different specifications can lead to different results and sometimes rather low
power. An excellent paper in this regard is by Overall and Shivakumar (1997) and another
by Overall and Tonidandel (2007). I recommend that you look at those papers when con-
sidering the use of mixed models, although those authors used SAS Proc Mixed for their
analyses and it is not entirely clear how those models relate to models you would have us-
ing SPSS. What seems to be critically important is the case where missing data depend on
the participant’s initial response at baseline and attempts to use this measure as a covariate.
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Exercises

14.1 It is at least part of the folklore that repeated experience with any standardized test leads
to better scores, even without any intervening study. Suppose that we obtain eight subjects
and give them a standardized admissions exam every Saturday morning for 3 weeks. The
data follow: 

S First Second Third

1 550 570 580
2 440 440 470
3 610 630 610
4 650 670 670
5 400 460 450
6 700 680 710
7 490 510 510
8 580 550 590

a. Write the statistical model for these data.

b. Run the analysis of variance.

c. What, if anything, would you conclude about practice effects on the GRE?

14.2 Using the data from Exercise 14.1,

a. Delete the data for the third session and run a (matched-sample) t test between Sessions
1 and 2.

b. Now run a repeated-measures analysis of variance on the two columns you used in part
(a) and compare this F with the preceding t.

14.3 To demonstrate the practical uses of basic learning principles, a psychologist with an inter-
est in behavior modification collected data on a study designed to teach self-care skills to
severely developmentally handicapped children. An experimental group received reinforce-
ment for activities related to self-care. A second group received an equivalent amount of
attention, but no reinforcement. The children were scored (blind) by a rater on a 10-point
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scale of self-sufficiency. The ratings were done in a baseline session and at the end of training.
The data follow:

Reinforcement No Reinforcement

Baseline Training Baseline Training

8 9 3 5
5 7 5 5
3 2 8 10
5 7 2 5
2 9 5 3
6 7 6 10
5 8 6 9
6 5 4 5
4 7 3 7
4 9 5 5

Run the appropriate analysis and state your conclusions.

14.4 An experimenter with only a modicum of statistical training took the data in Exercise 14.3
and ran an independent-groups t test instead, using the difference scores (training minus
baseline) as the raw data.

a. Run that analysis.

b. Square the value of t and compare it to the Fs you obtained in Exercise 14.3.

c. Explain why is not equal to F for Groups.

14.5 To understand just what happened in the experiment involving the training of severely
developmentally handicapped children (Exercise 14.3), our original experimenter evaluated
a third group at the same times as he did the first two groups, but otherwise provided no spe-
cial treatment. In other words, these children did not receive reinforcement, or even the 
extra attention that the control group did. Their data follow:
Baseline: 3 5 8 5 5 6 6 6 3 4

Training: 4 5 6 6 4 7 7 3 2 2

a. Add these data to those in Exercise 14.3 and rerun the analysis.

b. Plot the results.

c. What can you conclude from the results you obtained in parts (a) and (b)?

d. Within the context of this three group experiment, run the contrast of the two conditions
that you have imported from Exercise 14.3.

e. Compute the effect size for the contrast in part (d).

14.6 For 2 years I carried on a running argument with my daughter concerning hand calculators.
She wanted one. I maintained that children who use calculators never learn to do arithmetic
correctly, whereas she maintained that they do. To settle the argument, we selected five of
her classmates who had calculators and five who did not, and made a totally unwarranted
assumption that the presence or absence of calculators was all that distinguished these chil-
dren. We then gave each child three 10-point tests (addition, subtraction, and multiplica-
tion), which they were required to do in a very short time in their heads. The scores are as
follows:

Addition Subtraction Multiplication

Calculator owners 8 5 3
7 5 2 
9 7 3 
6 3 1 
8 5 1

t2

(continues)
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Addition Subtraction Multiplication

Non-calculator owners 10 7 6 
7 6 5
6 5 5
9 7 8
9 6 9

a. Run the analysis of variance.

b. Do the data suggest that I should have given in and bought my daughter a calculator? (I did
anyway. She is now in her late 30s and is a fully certified actuary—so what do I know?)

14.7 For the data in Exercise 14.6,

a. Calculate the variance–covariance matrices.

b. Calculate using your answers to part (a).

14.8 From the results in Exercise 14.7, do we appear to have reason to believe that we have met
the assumptions required for the analysis of repeated measures?

14.9 For the data in Exercise 14.6,

a. Calculate all possible simple effects after first plotting the results.

b. Test the simple effects, calculating test terms and adjusted degrees of freedom where
necessary.

14.10 In a study of the way children and adults summarize stories, we selected 10 fifth graders
and 10 adults. These were further subdivided into equal groups of good and poor readers
(on the hypothesis that good and poor readers may store or retrieve story information differ-
ently). All subjects read 10 short stories and were asked to summarize the story in their own
words immediately after reading it. All summaries were content analyzed, and the numbers
of statements related to Settings, Goals, and inferred Dispositions were recorded. The data
are collapsed across the 10 stories:

Age
Adults Children

Items Setting Goal Disp. Setting Goal Disp.

Good readers 8 7 6 5 5 2
5 6 4 7 8 4
5 5 5 7 7 4
7 8 6 6 4 3
6 4 4 4 4 2

Poor readers 7 6 3 2 2 2
5 3 1 2 0 1
6 6 2 5 4 1
4 4 1 4 4 2
5 5 3 2 2 0

Run the appropriate analysis.

14.11 Refer to Exercise 14.10.

a. Calculate the simple effect of reading ability for children.

b. Calculate the simple effect of items for adult good readers.

14.12 Calculate the within-groups covariance matrices for the data in Exercise 14.10.

14.13 Suppose we had instructed our subjects to limit their summaries to 10 words. What effect
might that have on the data in Exercise 14.10?

14.14 In an investigation of cigarette smoking, an experimenter decided to compare three different
procedures for quitting smoking (tapering off, immediate stopping, and aversion therapy).
She took five subjects in each group and asked them to rate (on a 10-point scale) their 
desire to smoke “right now” in two different environments (home versus work) both before
and after quitting. Thus, we have one between-subjects variable (Treatment group) and two
within-subjects variables (Environment and Pre/Post).

gN
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Pre Post

Home Work Home Work

Taper 7 6 6 4 
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3

Immediate 8 7 7 6
5 5 5 4
7 6 6 5
8 7 6 5
7 6 5 4

Aversion 9 8 5 4
4 4 3 2
7 7 5 3
7 5 5 0
8 7 6 3

a. Run the appropriate analysis of variance.

b. Interpret the results.

14.15 Plot the results you obtained in Exercise 14.14.

14.16 Run simple effects on the data in Exercise 14.14 to clarify the results.

14.17 The abbreviated printout in Exhibit 14.1 represents the analysis of the data in Exercise 14.5.

a. Compare this printout with the results you obtained in Exercise 14.5.

b. What does a significant F for “MEAN” tell us?

c. Relate to the table of cell standard deviations.MSw/in cell

BMDP2V – ANALYSIS OF VARIANCE AND COVARIANCES
WITH REPEATED MEASURES.

PROGRAM CONTROL INFORMATION
/PROBLEM TITLE IS ‘BMDP2V ANALYSIS OF EXERCISE 14.5’.
/INPUT VARIABLES ARE 3.

FORMAT IS ‘(3F2.0)’.
CASES ARE 30.

/VARIABLE NAMES ARE GROUP, PRE, POST
/DESIGN DEPENDENT ARE 2, 3.

LEVELS ARE 2.
NAME IS TIME.
GROUP = 1.

/END

CELL MEANS FOR 1-ST DEPENDENT VARIABLE

MARGINAL
GROUP = * 1.0000 * 2.0000 * 3.0000

TIME
PRE 1 4.80000 4.70000 5.10000 4.86667
POST 2 7.00000 6.40000 4.60000 6.00000

Exhibit 14.1

(continues)
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14.18 The SPSS printout in Exhibit 14.2 was obtained by treating the data in Exercise 14.10 as
though all variables were between-subjects variables (i.e., as though the data represented a
standard three-way factorial). Show that the error terms for the correct analysis represent a
partition of the error term for the factorial analysis.

MARGINAL 5.90000 5.55000 4.85000 5.43333
COUNT 10 10 10 30

STANDARD DEVIATIONS FOR 1-ST DEPENDENT VARIABLE

GROUP = * 1.0000 * 2.000 * 3.0000
TIME

PRE 1 1.68655 1.76698 1.52388
POST 2 2.16025 2.45855 1.89737

SUM OF DEGREES OF MEAN TAIL
SOURCE SQUARES FREEDOM SQUARE F PROBABILITY
MEAN 1771.26667 1 1771.26667 322.48 0.0000
GROUP 11.43333 2 5.71667 1.04 0.3669

1 ERROR 148.30000 27 5.49259

TIME 19.26667 1 19.26667 9.44 0.0048
TG 20.63333 2 10.31667 5.06 0.0137

2 ERROR 55.10000 272.04074 

Exhibit 14.1 (continued)

Type III
Sum of
Squares
170.800a

1058.400
29.400
68.267
60.400

3.267
.000
.933

8.533
82.800

1312.000
253.600

Source
Corrected Model
Intercept
AGE
READER
PART
AGE * READER
AGE * PART
READER * PART
AGE * READER * PART
Error
Total
Corrected Total

df
11

1
1
1
2
1
2
2
2

48
60
59

Mean
Square

15.527
1058.400

29.400
68.267
30.200

3.267
.000
.467

4.267
1.725

F
9.001

613.565
17.043
39.575
17.507

1.894
.000
.271

2.473

Sig.
.000
.000
.000
.000
.000
.175

1.000
.764
.095

Tests of Between-Subjects Effects
Dependent Variable: DV

a R Squared 5 .674 (Adjusted R Squared 5 .599)

Exhibit 14.2

14.19 Outline the summary table for an A 3 B 3 C 3 D design with repeated measures on A and B
and independent measures on C and D.

14.20 Foa, Rothbaum, Riggs, and Murdock (1991) ran a study comparing different treatments for
posttraumatic stress disorder (PTSD). They used three groups (plus a waiting list control)
One group received Stress Inoculation Therapy (SIT), another received a Prolonged Expo-
sure (PE) treatment, and a third received standard Supportive Counseling (SC). All clients
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were measured at Pretreatment, Posttreatment, and a 3.5 month Follow-up. The data below
closely approximate the data that they collected, and the dependent variable is a measure of
PTSD.

SIT PE SC
Pre Post Followup Pre Post Followup Pre Post Followup

19 6 1 20 5 0 12 14 18
28 14 16 21 18 21 27 18 9
18 6 8 36 26 17 24 19 13
23 6 11 25 11 9 32 21 11
21 6 13 26 2 7 26 20 18
24 10 8 30 31 10 18 20 26
26 10 7 19 6 11 38 35 34
15 6 13 19 7 5 26 22 22
18 8 6 22 4 4 23 10 8
34 13 8 22 17 20 22 19 19
20 10 16 24 19 1 34 27 23
34 10 1 28 22 16 22 15 12
29 16 23 29 23 20 27 18 13
33 19 39 27 15 20 23 21 19
22 7 16 27 7 3 26 18 13

a. Run a repeated measures analysis of variance on these data.

b. Draw the appropriate conclusions.

14.21 Using the data from Exercise 14.20 use SPSS to run a mixed models analysis of variance,
specifying an appropriate form for the covariance matrix, and compare the results with
those you obtained in Exercise 14.20.

14.22 The following data come from Exercise 14.20 with some observations deleted. (An entry of
“999” represents a missing observation.)

SIT PE SC
Pre Post Followup Pre Post Followup Pre Post Followup

19 6 1 20 5 0 12 14 18
28 14 16 999 999 21 27 18 9
18 6 8 36 26 17 24 999 13
999 6 11 25 11 9 32 21 11
21 6 13 26 999 7 26 20 18
24 10 8 30 31 10 18 20 26
26 10 999 19 6 11 38 35 34
15 6 13 19 7 999 26 22 999
18 8 6 22 4 999 23 10 8
34 13 8 22 17 20 22 19 19
20 999 999 24 19 1 34 999 999
34 10 1 28 22 16 22 15 12
29 16 23 29 23 20 27 18 13
33 19 39 27 15 20 23 21 19
22 7 16 27 7 3 26 18 13

a. Analyze these data using a standard repeated measures analysis of variance.

b. How do your results differ from the results you found in Exercise 14.20?

14.23 Now analyze the data in Exercise 14.22 using a mixed models approach, an appropriate
form for the covariance matrix. How do those results differ from the results you found in
Exercise 14.22?
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14.24 In the data file Stress.dat, available on the Web site, are data on the stress level reported by can-
cer patients and their spouses at two different times—shortly after the diagnosis and 3 months
later. The data are also distinguished by the gender of the respondent. As usual, a “.” indicates
each missing data point. See description in Appendix: Computer Data Sets, p. 692.

a. Use any statistical package to run a repeated-measures analysis of variance with
Gender and Role (patient versus spouse) as between-subject variables and Time as the
repeated measure.

b. Have the program print out cell means, and plot these means as an aid in interpretation.

c. There is a significant three-way interaction in this analysis. Interpret it along with the
main effects.

14.25 Everitt reported data on a study of three treatments for anorexia in young girls. One treat-
ment was cognitive behavior therapy, a second was a control condition with no therapy, and
a third was a family therapy condition. The data follow:

Group Pretest Posttest Gain

1 80.5 82.2 1.7
1 84.9 85.6 .7
1 81.5 81.4 2.1
1 82.6 81.9 2.7
1 79.9 76.4 23.5
1 88.7 103.6 14.9
1 94.9 98.4 3.5
1 76.3 93.4 17.1
1 81.0 73.4 27.6
1 80.5 82.1 1.6
1 85.0 96.7 11.7
1 89.2 95.3 6.1
1 81.3 82.4 1.1
1 76.5 72.5 24.0
1 70.0 90.9 20.9
1 80.4 71.3 29.1
1 83.3 85.4 2.1
1 83.0 81.6 21.4
1 87.7 89.1 1.4
1 84.2 83.9 2.3
1 86.4 82.7 23.7
1 76.5 75.7 2.8
1 80.2 82.6 2.4
1 87.8 100.4 12.6
1 83.3 85.2 1.9
1 79.7 83.6 3.9
1 84.5 84.6 .1
1 80.8 96.2 15.4
1 87.4 86.7 2.7
2 80.7 80.2 2.5
2 89.4 80.1 29.3
2 91.8 86.4 25.4
2 74.0 86.3 12.3
2 78.1 76.1 22.0
2 88.3 78.1 210.2
2 87.3 75.1 212.2

Group Pretest Posttest Gain

2 75.1 86.7 11.6
2 80.6 73.5 27.1
2 78.4 84.6 6.2
2 77.6 77.4 20.2
2 88.7 79.5 29.2
2 81.3 89.6 8.3
2 78.1 81.4 3.3
2 70.5 81.8 11.3
2 77.3 77.3 0.0
2 85.2 84.2 21.0
2 86.0 75.4 210.6
2 84.1 79.5 24.6
2 79.7 73.0 26.7
2 85.5 88.3 2.8
2 84.4 84.7 0.3
2 79.6 81.4 1.8
2 77.5 81.2 3.7
2 72.3 88.2 15.9
2 89.0 78.8 210.2
3 83.8 95.2 11.4
3 83.3 94.3 11.0
3 86.0 91.5 5.5
3 82.5 91.9 9.4
3 86.7 100.3 13.6
3 79.6 76.7 22.9
3 76.9 76.8 20.1
3 94.2 101.6 7.4
3 73.4 94.9 21.5
3 80.5 75.2 25.3
3 81.6 77.8 23.8
3 82.1 95.5 13.4
3 77.6 90.7 13.1
3 83.5 92.5 9.0
3 89.9 93.8 3.9
3 86.0 91.7 5.7
3 87.3 98.0 10.7

a. Run an analysis of variance on group differences in Gain scores.

b. Repeat the analysis, but this time use a repeated measures design where the repeated
measures are Pretest and Posttest.
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c. How does the answer to part (b) relate to the answer to part (a)?

d. Plot scatterplots of the relationship between Pretest and Posttest separately for each
group. What do these plots show?

e. Run a test on the null hypothesis that the Gain for the Control is 0.00. What does this
analysis tell you? Are you surprised?

f. Why would significant gains in the two experimental groups not be interpretable with-
out the control group?

Discussion Questions
14.26 In Exercise 14.24 we ignored the fact that we have pairs of subjects from the same family.

a. What is wrong with doing this?

b. Under what conditions would it be acceptable to ignore this problem?

c. What alternative analyses would you suggest?

14.27 In Exercise 14.24 you probably noticed that many observations at Time 2 are missing. (This
is partly because for many patients it had not yet been 3 months since the diagnosis.)

a. Compare the means at Time 1 for those subjects who did, and who did not, have data at
Time 2.

b. If there are differences in (a), what would this suggest to you about the data?

In a study of behavior problems in children we asked 3 “judges” to rate each of 20 children
on the level of aggressive behavior. These judges were the child’s Parent, the child’s
Teacher, and the child him/herself (Self). The data follow.

Child 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Parent 10 12 14 8 16 21 10 15 18 6 22 14 19 22 11 14 18 25 22 7
Teacher 8 13 17 10 18 24 9 16 18 8 24 19 15 20 10 18 19 30 20 10
Self 12 17 16 15 24 24 13 17 21 13 29 23 16 20 15 17 21 25 25 14

These data are somewhat different from the data we saw in Section 14.10 because in that
case the same people judged each child, whereas here the Parent and Self obviously change
from child to child. We will ignore that for the moment and simply act as if we could some-
how have the same parent and the same “self” do all the ratings.

14.28 What is the reliability of this data set in terms of the intraclass correlation coefficient?

14.29 What do your calculations tell you about the sources of variability in this data set?

14.30 Suppose that you had no concern about the fact that one source systematically rates chil-
dren higher or lower than another source. How might you evaluate reliability differently?

14.31 Under what conditions might you not be interested in differences among judges?

14.32 What do you think is the importance of the fact that the “parent” who supplies the parent
rating changes from child to child?

14.33 Strayer, Drews, and Crouch (2006) (which we saw as a between-subjects design in Exercise
11.32) examined the effects of cell phone use on driving ability. They had 40 drivers drive
while speaking on a cell phone, drive while at the legal limit for alcohol (0.08%), and drive
under normal conditions. (The conditions were counterbalanced across drivers.) The data
for this study are found at www.uvm.edu/~dhowell/methods7/DataFiles/Ex14–34. Their
hypothesis, based on the research of others, was that driving while speaking on a cell phone
would have as much of an effect as driving while intoxicated. The dependent variable in this
example is “braking reaction time.” The data have exactly the same means and standard
deviations as they found.

a. Run the analysis of variance for a repeated measures design.

b. Use the appropriate contrasts to compare the three conditions. Did the results support
the experimenters’ predictions?

www.uvm.edu/%7Edhowell/methods7/DataFiles/Ex14%E2%80%9334
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