
CHAPTER 13

Factorial Analysis 
of Variance
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To discuss the analysis of variance for the case of two or more independent
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IN THE PREVIOUS TWO CHAPTERS, we dealt with a one-way analysis of variance in which we
had only one independent variable. In this chapter, we will extend the analysis of variance to
the treatment of experimental designs involving two or more independent variables. For pur-
poses of simplicity, we will be concerned primarily with experiments involving two or three
variables, although the techniques discussed can be extended to more complex designs.

In Chapter 11, we considered a study by Eysenck (1974) in which he asked participants
to recall lists of words to which they had been exposed under one of several different con-
ditions. In that example, we were interested in determining whether recall was related to
the level at which material was processed initially. Eysenck’s study was actually more
complex. He was interested in whether level-of-processing notions could explain differ-
ences in recall between older and younger participants. If older participants do not process
information as deeply, they might be expected to recall fewer items than would younger
participants, especially in conditions that entail greater processing. This study now has two
independent variables, which we shall refer to as factors: Age and Recall Condition (here-
after referred to simply as Condition). The experiment thus is an instance of what is called
a two-way factorial design.

An experimental design in which every level of every factor is paired with every level
of every other factor is called a factorial design. In other words, a factorial design is one
in which we include all combinations of the levels of the independent variables. In the fac-
torial designs discussed in this chapter, we will consider only the case in which different
participants serve under each of the treatment combinations. For instance, in our example,
one group of younger participants will serve in the Counting condition, a different group of
younger participants will serve in the Rhyming condition, and so on. Since we have 10
combinations of our two factors (5 Recall Conditions 3 2 Ages), we will have 10 different
groups of participants. When the research plan calls for the same participant to be included
under more than one treatment combination, we will speak of repeated-measures designs.
Repeated-measures designs will be discussed in Chapter 14.

Factorial designs have several important advantages over one-way designs. First, they
allow greater generalizability of the results. Consider Eysenck’s study for a moment. If we
were to run a one-way analysis using the five Conditions with only the older participants,
as in Chapter 11, then our results would apply only to older participants. When we use a
factorial design with both older and younger participants, we are able to determine whether
differences between Conditions apply to younger participants as well as older ones. We are
also able to determine whether age differences in recall apply to all tasks, or whether
younger (or older) participants excel on only certain kinds of tasks. Thus, factorial designs
allow for a much broader interpretation of the results, and at the same time give us the abil-
ity to say something meaningful about the results for each of the independent variables sep-
arately. An interesting discussion of this issue, though from the perspective of engineering,
can be found in Czitrom (1999).

The second important feature of factorial designs is that they allow us to look at the
interaction of variables. We can ask whether the effect of Condition is independent of Age
or whether there is some interaction between Condition and Age. For example, we would
have an interaction if younger participants showed much greater (or smaller) differences
among the five Recall Conditions than did older participants. Interaction effects are often
among the most interesting results we obtain.

A third advantage of a factorial design is its economy. Since we are going to average
the effects of one variable across the levels of the other variable, a two-variable factorial
will require fewer participants than would two one-ways for the same degree of power. Es-
sentially, we are getting something for nothing. Suppose we had no reason to expect an in-
teraction of Age and Condition. Then, with 10 old participants and 10 young participants
in each Condition, we would have 20 scores for each of the five conditions. If we instead
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ran a one-way with young participants and then another one-way with old participants, we
would need twice as many participants overall for each of our experiments to have the
same power to detect Condition differences—that is, each experiment would have to have
20 participants per condition, and we would have two experiments.

Factorial designs are labeled by the number of factors involved. A factorial design with
two independent variables, or factors, is called a two-way factorial, and one with three fac-
tors is called a three-way factorial. An alternative method of labeling designs is in terms of
the number of levels of each factor. Eysenck’s study had two levels of Age and five levels
of Condition. As such, it is a 2 3 5 factorial. A study with three factors, two of them hav-
ing three levels and one having four levels, would be called a 3 3 3 3 4 factorial. The use
of such terms as “two-way” and “2 3 5” are both common ways of designating designs,
and both will be used throughout this book.

In much of what follows, we will concern ourselves primarily with the two-way analy-
sis. Higher-order analyses follow almost automatically once you understand the two-way,
and many of the related problems we will discuss are most simply explained in terms of
two factors. For most of the chapter, we will also limit our discussion to fixed—as opposed
to random—models, as these were defined in Chapter 11. You should recall that a fixed fac-
tor is one in which the levels of the factor have been specifically chosen by the experi-
menter and are the only levels of interest. A random model involves factors whose levels
have been determined by some random process and the interest focuses on all possible lev-
els of that factor. Gender or “type of therapy” are good examples of fixed factors, whereas
if we want to study the difference in recall between nouns and verbs, the particular verbs
that we use represent a random variable because our interest is in generalizing to all verbs.

Notation

Consider a hypothetical experiment with two variables, A and B. A design of this type is
illustrated in Table 13.1. The number of levels of A is designated by a, and the number of
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Table 13.1 Representation of factorial design

B1 B2 … Bb

X111 X121 … X1b1

X112 X122 X1b2

A1 … … …
X11n X12n X1bn

X211 X221 … X2b1

X212 X222 X2b2

A2 … … …
X21n X22n X2bn

… … … … …

Xa11 Xa21 Xab1

Xa12 Xa22 Xab2

Aa … … …
Xa1n Xa2n Xabn

… X..X.bX.2X.1

XabXa2Xa1

Xa.

X2bX22X21

X2.

X1bX12X11

X1.

2 3 5 factorial



levels of B is designated by b. Any combination of one level of A and one level of B is
called a cell, and the number of observations per cell is denoted n, or, more precisely, .
The total number of observations is . When any confusion might arise, an
individual observation (X) can be designated by three subscripts, , where the subscript i
refers to the number of the row (level of A), the subscript j refers to the number of the column
(level of B), and the subscript k refers to the kth observation in the ijth cell. Thus, is the
fourth participant in the cell corresponding to the second row and the third column. Means
for the individual levels of A are denoted as or and for the levels of B are denoted 
or The cell means are designated ij, and the grand mean is symbolized by . Needless
subscripts are often a source of confusion, and whenever possible they will be omitted.

The notation outlined here will be used throughout the discussion of the analysis of
variance. The advantage of the present system is that it is easily generalized to more com-
plex designs. Thus, if participants recalled at three different times of day, it should be self-
evident to what refers.

13.1 An Extension of the Eysenck Study

As mentioned earlier, Eysenck actually conducted a study varying Age as well as Recall Con-
dition. The study included 50 participants in the 18-to-30–year age range, as well as 50 par-
ticipants in the 55-to-65–year age range. The data in Table 13.2 have been created to have the
same means and standard deviations as those reported by Eysenck. The table contains all the
calculations for a standard analysis of variance, and we will discuss each of these in turn. Be-
fore beginning the analysis, it is important to note that the data themselves are approximately
normally distributed with acceptably equal variances. The boxplots are not given in the table
because the individual data points are artificial, but for real data it is well worth your effort to
compute them. You can tell from the cell and marginal means that recall appears to increase
with greater processing, and younger participants seem to recall more items than do older
participants. Notice also that the difference between younger and older participants seems to
depend on the task, with greater differences for those tasks that involve deeper processing.
We will have more to say about these results after we consider the analysis itself.

It will avoid confusion later if I take the time here to define two important terms. As
I have said, we have two factors in this experiment—Age and Condition. If we look at the
differences between means of older and younger participants, ignoring the particular con-
ditions, we are dealing with what is called the main effect of Age. Similarly, if we look at
differences among the means of the five conditions, ignoring the Age of the participants,
we are dealing with the main effect of Condition.

An alternative method of looking at the data would be to compare means of older and
younger participants for only the data from the Counting task, for example. Or we might
compare the means of older and younger participants on the Intentional task. Finally, we
might compare the means on the five conditions for only the older participants. In each of
these three examples we are looking at the effect of one factor for those observations at
only one level of the other factor. When we do this, we are dealing with a simple effect—
the effect of one factor at one level of the other factor. A main effect, on the other hand, is
that of a factor ignoring the other factor. If we say that tasks that involve more processing
lead to better recall, we are speaking of a main effect. If we say that for younger partici-
pants tasks that involve more processing lead to better recall, we are speaking about a sim-
ple effect. Simple effects are frequently referred to as being conditional on the level of the
other variable. We will have considerably more to say about simple effects and their calcu-
lation shortly. For now, it is important only that you understand the terminology.

XTime 1

X..XX.j.
XBXi..,XA

X234

Xijk

N = gnij = abn
nij
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Table 13.2 Data and computations for example from Eysenck (1974)

(a) Data:
Recall Conditions Meani.

Counting Rhyming Adjective Imagery Intention

Old 9 7 11 12 10
8 9 13 11 19
6 6 8 16 14
8 6 6 11 5

10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11

Mean1j 7.0 6.9 11.0 13.4 12.0 10.06

Young 8 10 14 20 21
6 7 11 16 19
4 8 18 16 17
6 10 14 15 15
7 4 13 18 22
6 7 22 16 16
5 10 17 20 22
7 6 16 22 22
9 7 12 14 18
7 7 11 19 21

Mean2j 6.5 7.6 14.8 17.6 19.3 13.16

Mean.j 6.75 7.25 12.9 15.5 15.65 11.61

(b) Calculations:

(continues)
= 1945.49
= 10[(7.0 2 11.61)2 1 (6.9 2 11.61)2 1 . . . 1 (19.3 2 11.61)2]

SScells = na (Xij 2 X..)
2

= 1514.94
= 10 3 2[(6.75 2 11.61)2 1 (7.25 2 11.61)2 1 . . . 1 (15.65 2 11.61)2]

SSC = naa (X.j 2 X..)
2

= 240.25
= 10 3 5[(10.06 2 11.61)2 1 (13.16 2 11.61)2]

SSA = nca (Xi. 2 X..)
2

= 2667.79
= (9 2 11.61)2 1 (8 2 11.61)2 1 . . . 1 (21 2 11.61)2

SStotal = a (X 2 X..)
2



Calculations

The calculations for the sums of squares appear in Table 13.2b. Many of these calculations
should be familiar, since they resemble the procedures used with a one-way. For example,

is computed the same way it was in Chapter 11, which is the way it is always com-
puted. We sum all of the squared deviations of the observations from the grand mean.

The sum of squares for the Age factor ( ) is nothing but the that we would ob-
tain if this were a one-way analysis of variance without the Condition factor. In other
words, we simply sum the squared deviations of the Age means from the grand mean and
multiply by nc. We use nc as the multiplier here because each age has n participants at each
of c levels. (There is no need to remember that multiplier as a formula. Just keep in mind
that it is the number of scores upon which the relevant means are based.) The same proce-
dures are followed in the calculation of , except that here we ignore the presence of the
Age variable.

Having obtained , , and , we come to an unfamiliar term, . This term
represents the variability of the individual cell means and is in fact only a dummy term; it
will not appear in the summary table. It is calculated just like any other sum of squares. We
take the deviations of the cell means from the grand mean, square and sum them, and mul-
tiply by n, the number of observations per mean. Although it might not be readily apparent
why we want this term, its usefulness will become clear when we calculate a sum of
squares for the interaction of Age and Condition. (It may be easier to understand the calcu-
lation of if you think of it as what you would have if you viewed this as a study with
10 “groups” and calculated .)

The is a measure of how much the cell means differ. Two cell means may differ
for any of three reasons, other than sampling error: (1) because they come from different
levels of A (Age); (2) because they come from different levels of C (Condition); or (3) be-
cause of an interaction between A and C. We already have a measure of how much the cells
differ, since we know . tells us how much of this difference can be attributed to
differences in Age, and tells us how much can be attributed to differences in Condi-
tion. Whatever cannot be attributed to Age or Condition must be attributable to the interac-
tion between Age and Condition ( ). Thus, has been partitioned into its three
constituent parts— , , and . To obtain , we simply subtract and 
from . Whatever is left over is . In our example,

SSAC = SScells 2 SSA 2 SSC
        = 1945.49 2 240.25 2 1514.94 = 190.30

SSACSScells

SSCSSASSACSSACSSCSSA
SScellsSSAC

SSC
SSASScells

SScells

SSgroups

SScells

SScellsSSCSSASStotal

SSC

SStreatSSA

SStotal
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Table 13.2 (continued)

(c) Summary table

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*
C (Condition) 4 1514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

* p < .05

SSerror = SStotal 2 SScells = 2667.79 2 1945.49 = 722.30
SSAC = SScells 2 SSA 2 SSC = 1945.49 2 240.25 2 1514.94 = 190.30

SScells



All that we have left to calculate is the sum of squares due to error. Just as in the one-
way analysis, we will obtain this by subtraction. The total variation is represented by SStotal.
Of this total, we know how much can be attributed to A, C, and AC. What is left over repre-
sents unaccountable variation or error. Thus

However, since , it is simpler to write

This provides us with our sum of squares for error, and we now have all of the necessary
sums of squares for our analysis.

A more direct, but tiresome, way to calculate exists, and it makes explicit just
what the error sum of squares is measuring. represents the variation within each cell,
and as such can be calculated by obtaining the sum of squares for each cell separately. For
example,

5 (9 2 7)2 1 (8 2 7)2 1 . . . 1 (7 2 7)2 5 30

We could perform a similar operation on each of the remaining cells, obtaining

The sum of squares within each cell is then summed over the 10 cells to produce .
Although this is the hard way of computing an error term, it demonstrates that is
in fact the sum of within-cell variation. When we come to mean squares, MSerror will turn
out to be just the average of the variances within each of the 2 3 5 5 10 cells.

Table 13.2c shows the summary table for the analysis of variance. The source column
and the sum of squares column are fairly obvious from what has already been said. Note,
however, that we could organize the summary table somewhat differently, although we
would seldom do so in practice. Thus, we could have

Source df SS

Between cells 9 1945.49
A 1 240.25
C 4 1514.94
AC 4 190.30

Within cells 90 722.30
(Error)

Total 99 2667.79

This alternative summary table makes it clear that we have partitioned the total variation
into variation among the cell means and variation within the cells. The former is then fur-
ther partitioned into A, C, and AC.

Returning to Table 13.2c, look at the degrees of freedom. The calculation of df is
straightforward. The total number of degrees of freedom ( ) is always equal to N 2 1.
The degrees of freedom for Age and Condition are the number of levels of the variable
minus 1. Thus, and . The number of degrees ofdfC = c 2 1 = 4dfA = a 2 1 = 1

dftotal

SSerror

SSerror

SScell11
= 30.0

SScell12
= 40.9

Á   Á
SScell25

SSerror
= 64.1

722.30

SScell11

SSerror

SSerror

SSerror = SStotal 2 SScells

SSA 1 SSC 1 SSAC = SScells

SSerror = SStotal 2 (SSA 1 SSC 1 SSAC)
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freedom for any interaction is simply the product of the degrees of freedom for the com-
ponents of that interaction. Thus, .
These three rules apply to any analysis of variance, no matter how complex. The
degrees of freedom for error can be obtained either by subtraction (

), or by realizing that the error term represents variability
within each cell. Since each cell has n 21 df, and since there are ac cells, 

.
Just as with the one-way analysis of variance, the mean squares are again obtained by

dividing the sums of squares by the corresponding degrees of freedom. This same proce-
dure is used in any analysis of variance.

Finally, to calculate F, we divide each MS by . Thus for Age, ;
for Condition, ; and for AC, . To appreciate why

is the appropriate divisor in each case, we will digress briefly in a moment and con-
sider the underlying structural model and the expected mean squares. First, however, we
need to consider what the results of this analysis tell us.

Interpretation

From the summary table in Table 13.2c, you can see that there were significant effects for
Age, Condition, and their interaction. In conjunction with the means, it is clear that
younger participants recall more items overall than do older participants. It is also clear
that those tasks that involve greater depth of processing lead to better recall overall than do
tasks involving less processing. This is in line with the differences we found in Chapter 11.
The significant interaction tells us that the effect of one variable depends on the level of the
other variable. For example, differences between older and younger participants on the eas-
ier tasks such as counting and rhyming are less than age differences on tasks, such as im-
agery and intentional, that involve greater depths of processing. Another view is that
differences among the five conditions are less extreme for the older participants than they
are for the younger ones.

These results support Eysenck’s hypothesis that older participants do not perform as
well as younger participants on tasks that involve a greater depth of processing of informa-
tion, but perform about equally with younger participants when the task does not involve
much processing. These results do not mean that older participants are not capable of pro-
cessing information as deeply. Older participants simply may not make the effort that
younger participants do. Whatever the reason, however, they do not perform as well on
those tasks.

13.2 Structural Models and Expected Mean Squares

Recall that in discussing a one-way analysis of variance, we employed the structural model

where represented the effect of the jth treatment. In a two-way design we
have two “treatment” variables (call them A and B) and their interaction. These can be rep-
resented in the model by a, b, and ab, producing a slightly more complex model. This
model can be written as 

Xijk = m 1 ai 1 bj 1 abij 1 eijk

tj = mj 2 m

Xij = m 1 tj 1 eij

MSerror

FAC = MSAC>MSerrorFC = MSC>MSerror

FA = MSA>MSerrorMSerror

ac(n 2 1) = 2 3 5 3 9 = 90
dferror 5

dftotal 2 dfA 2 dfC 2 dfAC
dferror 5

dfAC = dfA 3 dfC = (a 2 1)(c 2 1) = 1 3 4 = 4
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where

From this model it can be shown that with fixed variables the expected mean squares are
those given in Table 13.3. It is apparent that the error term is the proper denominator for
each F ratio, since the E(MS) for any effect contains only one term other than .s2

e

 Xijk = any observation
    m = the grand mean
    ai = the effect of Factor Ai = mAi 2 m

   bj = the effect of Factor Bj = mBj 2 m

abij = the interaction effect of Factor Ai and Factor Bj

       = m 2 mAi 2 mBj 1 mij; ai abij = a
j

abij = 0

  eijk = the unit of error associated with observation Xijk
       = N(0, s2

e)
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Table 13.3 Expected mean squares for two-way analysis of variance (fixed)

Source E(MS)

A

B

AB

Error s2
e

s2
e 1 nu2

ab

s2
e 1 nau2

b

s2
e 1 nbu2

a

where 

Consider for a moment the test of the effect of Factor A:

If is true, then and , and thus nb , will be 0. In this case, F will have
an expectation of approximately 1 and will be distributed as the standard (central) F distri-
bution. If is false, however, will not be 0 and F will have an expectation greater than
1 and will not follow the central F distribution. The same logic applies to tests on the ef-
fects of B and AB. We will return to structural models and expected mean squares in Section
13.8 when we discuss alternative designs that we might use. There we will see that the ex-
pected mean squares can become much more complicated, but the decision on the error
term for a particular effect will reflect what we have seen here.

13.3 Interactions

One of the major benefits of factorial designs is that they allow us to examine the interac-
tion of variables. Indeed, in many cases, the interaction term may well be of greater inter-
est than are the main effects (the effects of factors taken individually). Consider, for
example, the study by Eysenck. The means are plotted in Figure 13.1 for each age group
separately. Here you can see clearly what I referred to in the interpretation of the results
when I said that the differences due to Condition were greater for younger participants than

u2
aH0

u2
au2

amA1
= mA2

= mH0

E(MSA)
E(MSerror)

=
s2
e 1 nbu2

a

s2
e

u2
a =

©a2
j

a 2 1
=

©(mi 2 m)2

a 2 1



for older ones. The fact that the two lines are not parallel is what we mean when we speak
of an interaction. If Condition differences were the same for the two Age groups, then the
lines would be parallel—whatever differences between Conditions existed for younger par-
ticipants would be equally present for older participants. This would be true regardless of
whether younger participants were generally superior to older participants or whether the
two groups were comparable. Raising or lowering the entire line for younger participants
would change the main effect of Age, but it would have no effect on the interaction because
it would not affect the degree of parallelism between the lines.

It may make the situation clearer if you consider several plots of cell means that repre-
sent the presence or absence of an interaction. In Figure 13.2 the first three plots represent
the case in which there is no interaction. In all three cases the lines are parallel, even when
they are not straight. Another way of looking at this is to say that the simple effect of Fac-
tor B at is the same as it is at and at . In the second set of three plots, the lines
clearly are not parallel. In the first, one line is flat and the other rises. In the second, the
lines actually cross. In the third, the lines do not cross, but they move in opposite direc-
tions. In every case, the simple effect of B is not the same at the different levels of A. When-
ever the lines are (significantly) nonparallel, we say that we have an interaction.

A3A2A1
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Figure 13.1 Cell means for data in Table 13.2
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Many people will argue that if you find a significant interaction, the main effects
should be ignored. It is not reasonable, however, automatically to exclude interpretation of
main effects in the presence of any significant interaction. In the Eysenck study, we had a
significant interaction, but for both younger and older participants the tasks that involved
greater processing led to greater recall. The fact that this effect was more pronounced in
the younger group does not negate the fact that it was also clearly present in the older par-
ticipants. Here it is perfectly legitimate to speak about the main effect of Condition, even
in the presence of an interaction, though you should also be quick to point out that Condi-
tion effects also depend on the Age of the participant. However, had the younger group
shown better recall with more demanding tasks whereas the older group had shown poorer
recall, then it might actually not be of interest whether the main effect of Condition was
significant or not, and we would instead concentrate on discussing only the simple effects
of difference among Conditions for the younger and older participants separately. (Interac-
tions in which group differences reverse their sign at some level of the other variable are
sometimes referred to as “disordinal” interactions. When one group is consistently above
the other group we have an “ordinal” interaction.) In general, the interpretation depends
on common sense. If the main effects are clearly meaningful, then it makes sense to inter-
pret them, whether or not an interaction is present. However, if the main effect does not
really have any meaning, then it should be ignored.

This discussion of the interaction effects has focused on examining cell means. I have
taken that approach because it is the easiest to see and has the most to say about the results
of the experiment. Rosnow and Rosenthal (1989) have pointed out that a more accurate
way to look at an interaction is to first remove any row and column effects from the data.
They raise an interesting point, but most interactions are probably better understood in
terms of the explanation above.

13.4 Simple Effects

I earlier defined a simple effect as the effect of one factor (independent variable) at one
level of the other factor—for example, the differences among Conditions for the younger
participants. The analysis of simple effects can be an important technique for analyzing
data that contain significant interactions. In a very real sense, it allows us to “tease apart”
interactions.

I will use the Eysenck data to illustrate how to calculate and interpret simple effects.
Table 13.4 shows the cell means and the summary table reproduced from Table 13.2. The
table also contains the calculations involved in obtaining all the simple effects.

The first summary table in Table 13.4c reveals significant effects due to Age, Condi-
tion, and their interaction. We already discussed these results earlier in conjunction with
the original analysis. As I said there, the presence of an interaction means that there are dif-
ferent Condition effects for the two Ages, and there are different Age effects for the five
Conditions. It thus becomes important to ask whether our general Condition effect really
applies for older as well as younger participants, and whether there really are Age differ-
ences under all Conditions. The analysis of these simple effects is found in Table 13.4b and
the second half of Table 13.4c. I have shown all possible simple effects for the sake of com-
pleteness of the example, but in general you should calculate only those effects in which
you are interested. When you test many simple effects you either raise the familywise error
rate to unacceptable levels or else you control the familywise error rate at some reasonable
level and lose power for each simple effect test. One rule of thumb is “Don’t calculate a
contrast or simple effect unless you plan to discuss it when you write up the results.” The
more effects you test, the higher the familywise error rate will be.
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Table 13.4 Illustration of calculation of simple effects (data taken from Table 13.2)

(a) Cell means (n = 10)

Counting Rhyming Adjective Imagery Intention Mean

Older 7.0 6.9 11.0 13.4 12.0 10.06
Younger 6.5 7.6 14.8 17.6 19.3 13.16

Mean 6.75 7.25 12.90 15.50 15.65 11.61

(b) Calculations:

Conditions at Each Age

Age at Each Condition

(c) Summary Tables

Overall Analysis

Source df SS MS F

A (Age) 1 240.25 240.25 29.94*
C (Condition) 4 1514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

* p < .05

Simple Effects

Source df SS MS F

Conditions
C at Old 4 351.52 87.88 10.95*
C at Young 4 1353.72 338.43 42.15*
Age
A at Counting 1 1.25 1.25 <1
A at Rhyming 1 2.45 2.45 <1
A at Adjective 1 72.20 72.20 9.00*
A at Imagery 1 88.20 88.20 10.99*
A at Intentional 1 266.45 266.45 33.20*

Error 90 722.30 8.03

* p < .05

  SSA at Counting = 10 3 [(7.0 2 6.75)2 1 (6.5 2 6.75)2] = 1.25
 SSA at Rhyming = 10 3 [(6.9 2 7.25)2 1 (7.6 2 7.25)2] = 2.45
 SSA at Adjective = 10 3 [(11.0 2 12.9)2 1 (14.8 2 12.9)2] = 72.2
   SSA at Imagery = 10 3 [(13.4 2 15.5)2 1 (17.6 2 15.5)2] = 88.20
SSA at Intentional = 10 3 [(12.0 2 15.65)2 1 (19.3 2 15.65)2] = 266.45

    SSC at Old = 10 3 [(7.0 2 10.06)2 1 (6.9 2 10.06)2 1 . . . 1 (12 2 10.06)2] = 351.52
SSC at Young = 10 3 [(6.5 2 13.16)2 1 (7.6 2 13.16)2 1 . . . 1 (19.3 2 13.16)2] = 1353.72



Calculation

In Table 13.4b you can see that is calculated in the same way as any sum of
squares. We simply calculate using only the data for the older participants. If we con-
sider only those data, the five Condition means are 7.0, 6.9, 11.0, 13.4, and 12.0. Thus, the
sum of squares will be

The other simple effects are calculated in the same way, by ignoring all data in which you
are not at the moment interested. Notice that the sum of squares for the simple effect of
Condition for older participants (351.52) is the same value as that we obtained in Chapter 11
when we ran a one-way analysis of variance on only the data from older participants.

The degrees of freedom for the simple effects are calculated in the same way as for the
corresponding main effects. This makes sense because the number of means we are com-
paring remains the same. Whether we use all of the participants or only some of them, we
are still comparing five conditions and have 5 2 1 5 4 df for Condition.

To test the simple effects, we generally use the error term from the overall analysis
( ). The expected mean squares are presented in Table 13.5, and they make it clear
why this is the appropriate error term. The expected mean square for each simple effect
contains only one effect other than error (e.g., ), whereas is an estimate of
error variance ( ). In fact, the only difference between what I have done in Table 13.4 and
what I would do if I ran a standard one-way analysis of variance on the Old participants’
data (which is the way I usually calculate sums of squares for simple effects when I use
computer software) is the error term. continues to be based on all the data because
it is a better estimate with more degrees of freedom.

Interpretation

From the column labeled F in the bottom table in Table 13.4c, it is evident that differences
due to Conditions occur for both ages although the sum of squares for the older participants
is only about one-quarter of what it is for the younger ones. With regard to the Age effects,
however, no differences occur on the lower-level tasks of counting and rhyming, but differ-
ences do occur on the higher-level tasks. In other words, differences between age groups
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Table 13.5 Expected mean squares for simple effects

Source E(MS)

Simple Effects of A

A at B1
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show up on only those tasks involving higher levels of processing. This is basically what
Eysenck set out to demonstrate.

In general, we seldom look at simple effects unless a significant interaction is present.
However it is not difficult to imagine data for which an analysis of simple effects would be
warranted even in the face of a nonsignificant interaction, or to imagine studies in which
the simple effects are the prime reason for conducting the experiment.

Additivity of Simple Effects

All sums of squares in the analysis of variance (other than ) represent a partitioning
of some larger sum of squares, and the simple effects are no exception. The simple effect
of Condition at each level of Age represents a partitioning of and , whereas the
effects of Age at each level of Condition represent a partitioning of and . Thus

and

A similar additive relationship holds for the degrees of freedom. The fact that the sums of
squares for simple effects sum to the combined sums of squares for the corresponding main
effect and interaction affords us a quick and simple check on our calculations.

13.5 Analysis of Variance Applied 
to the Effects of Smoking

This next example is based on a study by Spilich, June, and Renner (1992), who investi-
gated the effects of smoking on performance. They used three tasks that differed in the
level of cognitive processing that was required to perform them, with different participants
serving in each task. The first task was a Pattern recognition task in which the participants
had to locate a target on a screen. The second was a Cognitive task in which the partici-
pants were required to read a passage and then recall it at a later time. The third task was a
Driving simulation video game. In each case the dependent variable was the number of er-
rors that the participant committed. (This wasn’t really true for all tasks in the original
study, but it allows me to treat Task as an independent variable. I am not seriously distort-
ing the results that Spilich et al. obtained.)

Participants were further divided into three Smoking groups. Group AS was composed
of people who actively smoked during or just before carrying out the task. Group DS par-
ticipants were regular smokers who had not smoked for 3 hours before the task (D stands
for delay). Group NS were nonsmokers.

The data follow, but before you look at those data you should make some predictions
the kinds of effects that you might find for Task, Smoking, and about their interaction.

Pattern Recognition
NS: 9 8 12 10 7 10 9 11 8 10 8 10 8 11 10
DS: 12 7 14 4 8 11 16 17 5 6 9 6 6 7 16
AS: 8 8 9 1 9 7 16 19 1 1 22 12 18 8 10

SSA 1 SSA3C = 240.25 1 190.30 = 430.55

aSSA at C = 1.25 1 2.45 1 72.20 1 88.20 1 266.45 = 430.55

SSC 1 SSA3C = 1514.94 1 190.30 = 1705.24

aSSC at A = 351.52 1 1353.72 = 1705.24

SSA3CSSA
SSA3CSSC

SStotal
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Cognitive Task
NS: 27 34 19 20 56 35 23 37 4 30 4 42 34 19 49
DS: 48 29 34 6 18 63 9 54 28 71 60 54 51 25 49
AS: 34 65 55 33 42 54 21 44 61 38 75 61 51 32 47

Driving Simulation
NS: 15 2 2 14 5 0 16 14 9 17 15 9 3 15 13
DS: 7 0 6 0 12 17 1 11 4 4 3 5 16 5 11
AS: 3 2 0 0 6 2 0 6 4 1 0 0 6 2 3

I will omit hand calculations here on the assumption that you can carry them out your-
self, and in fact it would be good practice to do so. In Exhibit 13.1 you will find the analy-
sis of these data using SPSS.
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(a) Summary table

Tests of Between-Subjects Effects

Dependent Variable: DV

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model 31744.726a 8 3968.091 36.798 .000
Intercept 45009.074 1 45009.074 417.389 .000
Task 28661.526 2 14330.763 132.895 .000
SmokCond 354.548 2 177.274 1.644 .197
Task * SmokCond 2728.652 4 682.163 6.326 .000
Error 13587.200 126 107.835
Total 90341.000 135
Corrected Total 45331.926 134

aR Squared 5 .700 (Adjusted R Squared 5 .681)

(b) Interaction plot

Exhibit 13.1 Analysis of Spilich et al. data



A SPSS summary table for a factorial design differs somewhat from others you have
seen in that it contains additional information. The line labeled “Corrected model” is the
sum of the main effects and the interaction. As such its sum of squares is what we earlier
called SScells. The line labeled “Intercept” is a test on the grand mean, here showing that the
grand mean is significantly different from 0.00, which is hardly a surprise. Near the bottom
the line labeled “Corrected total” is what we normally label “Total,” and the line that they
label “Total” is These extra lines rarely add anything of interest.

The summary table reveals that there are significant effects due to Task and to the in-
teraction of Task and SmokeGrp, but there is no significant effect due to the SmokeGrp
variable. The Task effect is of no interest, because it simply says that people make more er-
rors on some kinds of tasks than others. This is like saying that your basketball team scored
more points in yesterday’s game than did your soccer team. You can see the effects graphi-
cally in the interaction plot, which is self-explanatory.

13.6 Multiple Comparisons

All of the multiple-comparison procedures discussed in Chapter 12 are applicable to the
analysis of factorial designs. Thus we can test the differences among the five Condition
means in the Eysenck example, or the three SmokeGrp means in the Spilich example using
the Bonferroni t test, the Tukey test, Ryan’s REGWQ, or any other procedure. Keep in
mind, however, that we must interpret the “n” that appears in the formulae in Chapter 12 to
be the number of observations on which each treatment mean was based. Since the Condi-
tion means are based on (a 3 n) observations, that is the value that you would enter into
the formula, not n.

In the Spilich smoking example, there is no significant effect due to SmokeGrp, so you
would probably not wish to run contrasts among the three levels of that variable. Because
the dependent variable (errors) is not directly comparable across groups, it makes no sense
to look for specific group differences there. We could do so, but no one would be likely to
care. (Remember the basketball and soccer teams referred to above.) However, the interac-
tion suggests that you might wish to run multiple comparisons on simple effects. In partic-
ular, you might wish to examine the effect of smoking on cognitive tasks. You could run
these tests by restricting yourself just to the data from the Cognitive task. However, I would
suggest making these contrasts using from the overall analysis, assuming that you
have no reason to think that you have heterogeneity of variance. If you run your analysis
using standard computer software, you will have to recalculate your effects by substituting

from the main summary table.
The analysis of SmokeGrp differences on the Cognitive task gives a frequent, but un-

welcome, result. Whether you use standard contrasts, Ryan’s procedure, or Tukey’s proce-
dure, you will find that the Nonsmoking group performs significantly better than the Active
group, but not significantly better than the Delayed group. The Delayed group is also not
significantly different from the Active group. Representing this graphically, we have

Nonsmoking Delayed Active

with the groups that did not differ significantly underlined.
If you just came from your class in Logic 132, you know that it does not make sense to

say A 5 B, B 5 C, but But, don’t confuse Logic, which is in some sense exact, with
Statistics, which is probabilistic. Don’t forget that a failure to reject does not mean that
the means are equal. It just means that they are not sufficiently different for us to know which

H0

A Z C.

MSerror

MSerror

(gX2>N).
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one is larger. Here we don’t have enough evidence to conclude that Delayed is different
from Nonsmoking, but we do have enough evidence (i.e., power) to conclude that there is a
significant difference between Active and Nonsmoking. This kind of result occurs fre-
quently with multiple-comparison procedures, and we just have to learn to live with a bit
of uncertainty.

13.7 Power Analysis for Factorial Experiments

Calculating power for fixed-variable factorial designs is basically the same as it was for
one-way designs. In the one-way design we defined 

and

where , k 5 the number of treatments, and n 5 the number of observa-
tions in each treatment. In the two-way and higher-order designs, we have more than one “treat-
ment,” but this does not alter the procedure in any important way. If we let , and

, where represents the parametric mean of Treatment (across all levels of
B) and represents the parametric mean of Treatment (across all levels of A), then we
can define the following terms:

and

Examination of these formulae reveals that to calculate the power against a null hypothesis
concerning A, we act as if variable B did not exist. To calculate the power of the test against
a null hypothesis concerning B, we similarly act as if variable A did not exist.

Calculating the power against the null hypothesis concerning the interaction follows
the same logic. We define

where is defined as for the underlying structural model ( ).
Given we can simply obtain the power of the test just as we did for the one-way 
design.

Calculating power for the random model is more complicated, and for the mixed model
requires a set of rather unrealistic assumptions. To learn how to obtain estimates of power
with these models, see Winer (1971, p. 334).

In certain situations a two-way factorial is more powerful than are two separate one-
way designs, in addition to the other advantages that accrue to factorial designs. Consider
two hypothetical studies, where the number of participants per treatment is held constant
across both designs.
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In Experiment 1 an investigator wishes to examine the efficacy of four different treat-
ments for post-traumatic stress disorder (PTSD) in rape victims. She has chosen to use both
male and female therapists. Our experimenter is faced with two choices. She can run a one-
way analysis on the four treatments, ignoring the sex of the therapist (SexTher) variable
entirely, or she can run a 4 3 2 factorial analysis on the four treatments and two sexes. In
this case the two-way has more power than the one-way. In the one-way design we would
ignore any differences due to SexTher and the interaction of Treatment with SexTher, and
these would go toward increasing the error term. In the two-way we would take into ac-
count differences that can be attributed to SexTher and to the interaction between Treat-
ment and SexTher, thus removing them from the error term. The error term for the two-way
would thus be smaller than for the one-way, giving us greater power.

For Experiment 2, consider the experimenter who had originally planned to use only
female therapists in her experiment. Her error term would not be inflated by differences
among SexTher and by the interaction, because neither of those exist. If she now expanded
her study to include male therapists, would increase to account for additional effects
due to the new independent variable, but the error term would remain constant because the
extra variation would be accounted for by the extra terms. Since the error term would re-
main constant, she would have no increase in power in this situation over the power she
would have had in her original study, except for an increase in n.

As a general rule, a factorial design is more powerful than a one-way design only when
the extra factors can be thought of as refining or purifying the error term. In other words,
when extra factors or variables account for variance that would normally be incorporated
into the error term, the factorial design is more powerful. Otherwise, all other things being
equal, it is not, although it still possesses the advantage of allowing you to examine the in-
teractions and simple effects.

You need to be careful about one thing, however. When you add a factor that is a ran-
dom factor (e.g., Classroom) you may well actually decrease the power of your test. As you
will see in a moment, in models with random factors the fixed factor, which may well be
the one in which you are most interested, will probably have to be tested using 
as the error term instead of . This is likely to cost you a considerable amount of
power. And you can’t just pretend that the Classroom factor didn’t exist, because then you
will run into problems with the independence of errors. For a discussion of this issue, see
Judd, McClelland, and Culhane (1995).

There is one additional consideration in terms of power that we need to discuss.
McClelland and Judd (1993) have shown that power can be increased substantially using
what they call “optimal” designs. These are designs in which sample sizes are apportioned
to the cells unequally to maximize power. McClelland has argued that we often use more
levels of the independent variables than we need, and we frequently assign equal numbers
of participants to each cell when in fact we would be better off with fewer (or no) participants
in some cells (especially the central levels of ordinal independent variables). For example,
imagine two independent variables that can take on up to five levels, denoted as

for Factor A, and for Factor B. McClelland and
Judd (1993) show that a 5 3 5 design using all five levels of each variable is only 25% as effi-
cient as a design using only , and . A 3 3 3 design using ,
and is 44% as efficient. I recommend a close reading of their paper.

13.8 Expected Mean Squares and Alternative Designs

For traditional experimental research in psychology, fixed models with crossed inde-
pendent variables have long been the dominant approach and will most likely continue
to be. In such designs the experimenter chooses a few fixed levels of each independent

B1, B3, and B5

A1, A3, and A5B1 and B5A1 and A5

B1, B2, B3, B4, and B5A1, A2, A3, A4, and A5

MSerror

MSinteraction

SStotal
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variable, which are the levels that are of primary interest and would be the same levels
he or she would expect to use in a replication. In a factorial design each level of each
independent variable is paired (crossed) with each level of all other independent
variables.

However, there are many situations in psychology and education where this traditional
design is not appropriate, just as there are a few cases in traditional experimental work. In
many situations the levels of one or more independent variables are sampled at random
(e.g., we might sample 10 classrooms in a given school and treat Classroom as a factor),
giving us a random factor. In other situations one independent variable is nested within
another independent variable. An example of the latter is when we sample 10 classrooms
from school district A and another 10 classrooms from school district B. In this situation
the District A classrooms will not be found in District B and vice versa, and we call this a
nested design. Random factors and nested designs often go together, which is why they
are discussed together here, though they do not have to.

When we have random and/or nested designs, the usual analyses of variance that we
have been discussing are not appropriate without some modification. The primary problem
is that the error terms that we usually think of are not correct for one or more of the Fs that
we want to compute. In this section I will work through four possible designs, starting with
the traditional fixed model with crossed factors and ending with a random model with
nested factors. I certainly can not cover all aspects of all possible designs, but the general-
ization from what I discuss to other designs should be reasonably apparent. I am doing this
for two different reasons. In the first place, modified traditional analyses of variance, as de-
scribed below, are quite appropriate in many of these situations. In addition, there has been
a general trend toward incorporating what are called hierarchical models or mixed models
in our analyses, and an understanding of those models hinges crucially on the concepts dis-
cussed here.

In each of the following sections, I will work with the same set of data but with different
assumptions about how those data were collected, and with different names for the inde-
pendent variables. The data that I will use are the same data that we saw in Table 13.2 on
Eysenck’s study of age and recall under conditions of varying levels of processing of the
material.

One important thing to keep firmly in mind is that virtually all statistical tests operate
within the idea of the results of an infinite number of replications of the experiment. Thus
the Fs that we have for the two main effects and the interaction address the question of “If
the null hypothesis were true and we replicated this experiment 10,000 times, how often
would we obtain an F statistic as extreme as the one we obtained in this specific study?” If
that probability is small, we reject the null hypothesis. There is nothing new there. But we
need to think for a moment about what would produce different F values in our 10,000
replications of the same basic study. Given the design that Eysenck used, every time we re-
peated the study we would use one group of older subjects and one group of younger sub-
jects. There is no variability in that independent variable. Similarly, every time we repeat
the study we will have the same five recall conditions (Counting, Rhyming, Adjective, Im-
agery, Intention). So again there is no variability in that independent variable. This is why
we refer to this experiment as a fixed effect design—the levels of the independent variable
are fixed and will be the same from one replication to another. The only reason why we
would obtain different F values from one replication to another is sampling error, which
comes from the fact that each replication uses different subjects. (You will shortly see that
this conclusion does not apply with random factors.)

To review the basic structural model behind the analyses that we have been running up
to now, recall that the model was

Xijk = m 1 ai 1 bj 1 abij 1 eijk
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Over replications the only variability comes from the last term (eijk), which explains
why can be used as the denominator for all three F tests. That will be important as
we go on.

A Crossed Experimental Design with Fixed Variables

The original example is what we will class as a crossed experimental design with fixed
factors. In a crossed design each level of one independent variable (factor) is paired with
each level of any other independent variable. For example, both older and younger partici-
pants are tested under each of the five recall conditions. In addition, the levels of the fac-
tors are fixed because these are the levels that we actually want to study—they are not, for
example, a random sample of ages or of possible methods of processing information.

Simply as a frame of reference, the results of the analysis of this study are shown in
Table 13.6. We see that was used as the test term for each effect, that it was based
on 90 df, and that each effect is significant at p , .05.

A Crossed Experimental Design with a Random Variable

Now we will move from the study we just analyzed to one in which one of the factors is ran-
dom but crossed with the other factor. I will take an example based on one used by Judd and
McClelland (1989). Suppose that we want to test whether subjects are quicker to identify
capital letters than they are lower case letters. We will refer to this variable as “Case.” Case
here is a fixed factor. We want to use several different letters, so we randomly sample five of
them (e.g., A, G, D, K, W ) and present them as either upper or lower case. Here Letter is
crossed with Case (i.e., each letter appears in each case), so we have a crossed design, but
we have randomly sampled Letters, giving us a random factor. Each subject will see only
one letter and the dependent variable will be the response time to identify that letter.

In this example Case takes the place of Age in Eysenck’s study and Letter takes the
place of Condition. If you think about many replications of this experiment, you would ex-
pect to use the same levels of Case (there are only two cases after all), but you would prob-
ably think of taking a different random sample of Letters for each experiment. This means
that the F values that we calculate will vary not only on the basis of sampling error, but also
as a result of the letters that we happened to sample. What this means is that any interac-
tion between Case and Letter will show up in the expected mean squares for the fixed ef-
fect (Case). This will affect the expected mean squares for the effect of Case, and we need
to take that into account when we form our F ratios. (Maxwell & Delaney, 2004, p. 475 do
an excellent job of illustrating this phenomenon.)

To see the effect of random factors we need to consider expected mean squares, which
we discussed only briefly in Section 11.4. Expected mean squares tell us what is being

MSerror

MSerror
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Table 13.6 Analysis of variance of Eysenck’s basic fixed variable design

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*
C (Condition) 4 1514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

* p , .05

crossed
experimental
design

expected mean
squares



estimated by the numerator and denominator in an F statistic. Rather than providing a deri-
vation of expected mean squares, as I have in the past (See Howell, 2007 for that develop-
ment), I will simply present a table showing the expected mean squares for fixed, random,
and mixed models. Here a random model is one in which both factors are random, and is
not often found in the behavioral sciences. A mixed model is one with both a random and a
fixed factor, as we are dealing with here, and they are much more common. (I present the
expected mean squares of completely random models only to be complete.) Notice that for
fixed factors the “variance” for that term is shown as rather than as . The reason for
this is that the term is formed by dividing the sum of squared deviations by the degrees of
freedom. For example,

But since we are treating the levels of the factor that we actually used as the entire popula-
tion of that factor in which we are interested, it is not actually a variance because, as the
parameter, it would have to be divided by the number of levels of A, not the df for A. This
is not going to make any difference in what you do, but the distinction needs to be made
for accuracy. The variance terms for the random factors are represented as . Thus the
variance of Letter means is and the error variance, which is the variance due to subjects,
which is always considered a random term, is .

If you look at the column for a completely fixed model you will see that the expected
mean squares for the main effects and interaction contain a component due to error and a
single component reflecting differences among the means for the main effect or interaction.
The error term, on the other hand, contains only an error component. So if you form a ratio
of the mean squares for A, B, or AB divided by MSerror the only reason that the expected
value of F will depart much from 1 will be if there is an effect for the term in question. (We
saw something like this when we first developed the F statistic in Section 11.4.) This means
that for all factors in fixed models MSerror is the appropriate error term.

Look now at the column representing the mixed model, which is the one that applies to
our current example. Leaving aside the test on our fixed effect (A) for a moment, we will
focus on the other two effects. If we form the ratio

that ratio will be significantly different from 1 only if the component for the B effect ( )
is nonzero. Thus MSerror is an appropriate denominator for the F test on B. In this case we
can divide MSLetter by MSerror and have a legitimate test.
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Table 13.7 Expected mean squares for fixed, random, and mixed models

Fixed Random Mixed

A fixed A random A fixed
Source B fixed B random B random
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The same kind of argument holds for our test on the interaction, because

and the result will be significant only if the interaction component is significant.1

But now look at the test on A, the fixed effect. If we form our usual F ratio

we no longer have a legitimate test on A. The ratio could be large if either the interaction is
significant or the effect of A is significant, and we can’t tell which is causing a result. This
creates a problem, and the only way we can form a legitimate F for A is to divide MSA by
MSAB, giving us

I know from experience that people are going to tell me that I made an error here be-
cause I have altered the test on the fixed effect rather than on the random effect, which is
the effect that is causing all of the problems. I wish I were wrong, but I’m not. Having a
random effect alters the test for the fixed effect. For a very nice explanation of why this
happens I strongly recommend looking at Maxwell and Delaney (2004, p. 475).

For our example we can create our F tests as

The results of this analysis are presented in Table 13.8.
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MSerror
b =

s2
e 1 ns2

ab

s2
e
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1 If an interaction is the product of both a fixed and a random factor, the interaction is treated as random.
2 These results differ from those produced by some software packages, which treat the mixed model as a random
model when it comes to the denominator for F. But they are consistent with the expected mean squares given
above and with the results obtained by other texts. You can reproduce these results in SPSS by using the following
syntax: 
Manova dv by Case(1,2) Letter(1,5)

/design 5 Case vs 1
Case by Letter 5 1 vs within
Letter vs within.

Table 13.8 Analysis of variance with one fixed and
one random variable2

Source df SS MS F

Case 1 240.25 240.250 5.05*
Letter 4 1514.94 378.735 47.19*
C3L 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

*p , .05



Nested Designs

Now let’s modify our basic study again while retaining the same values of the dependent
variable so that we can compare results. Suppose that your clinical psychology program is
genuinely interested in whether female students are better therapists than male students. To
run the study the department will randomly sample 10 graduate students, split them into
two groups based on Gender, and have each of them work with 10 clients and produce a
measure of treatment effectiveness. In this case Gender is certainly a fixed variable because
every replication would involve Male and Female therapists. However, Therapist is best
studied as a random factor because therapists were sampled at random and we would want
to generalize to male and female therapists in general, not just to the particular therapists
we studied. Therapist is also a nested factor because you can’t cross Gender with Therapist—
Mary will never serve as a male therapist and Bob will never serve as a female therapist.
Over many replications of the study the variability in F will depend on random error
(MSerror) and also on the therapists who happen to be used. This variability must be taken
into account when we compute our F statistics.3

The study as I have described it looks like our original example, but it really is not. In this
study therapists are nested within gender. (Remember that in the first example each Condi-
tion (adjective, etc.) was paired with each Age, but that is not the case here.) The fact that we
have a nested design is going to turn out to be very important in how we analyze the data. For
one thing we cannot compute an interaction. We obviously cannot ask if the differences
between Barbara, Lynda, Stephanie, Susan, and Joan look different when they are males than
when they are females. There are going to be differences among the five females, and there
are going to be differences among the five males, but this will not represent an interaction.

In running this analysis we can still compute a difference due to Gender, and for these
data this will be the same as the effect of Case is the previous example. However, when we
come to Therapist we can only compute differences due to therapists within females, and
differences due to therapist within males. These are really just the simple effects of Therapist
at each Gender. We will denote this as “Therapist within Gender” and write it as Thera-
pist(Gender). As I noted earlier, we cannot compute an interaction term for this design, so
that will not appear in the summary table. Finally we are still going to have the same source
of random error as in our previous example, which, in this case, is a measure of variability
of client scores within each of the Gender/Therapist cells.

For a nested design our model will be written as

Notice that this model has a term for the grand mean a term for differences between
genders and a term for differences among therapists, but with subscripts indicating
that Therapist was nested within Gender There is no interaction because none can
be computed, and there is a traditional error term (eijk).

Calculation for Nested Designs

The calculations for nested designs are straightforward, though they differ a bit from what
you are used to seeing. We calculate the sum of squares for Gender the same way we
always would—sum the squared deviations for each gender and multiply by the number of
observations for each gender. For the nested effect we simply calculate the simple effect of
therapist for each gender and then sum the simple effects. For the error term we just calculate
the sum of squares error for each Therapist/Gender cell and sum those. The calculations
are shown in the Table 13.9. However before we can calculate the F values for this design

(bj(i)).
(ai),

(m),

Xijk = m 1 ai 1 bj(i) 1 eijk
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3 It is possible to design a study in which a nested variable is a fixed variable, but that rarely happens in the
behavioral sciences and I will not discuss that design except to show the expected mean squares in a table.



we need to look at the expected mean squares when we have a random variable that is
nested within a fixed variable. These expected mean squares are shown in Table 13.10,
where I have broken them down by fixed and random models, even though I am only dis-
cussing a nested design with one random factor here. I don’t usually include syntax for
SPSS and SAS, but nested designs cannot be run directly from menus in SPSS, so I am in-
cluding the syntax for the analysis of these data.

SPSS Code
UNIANOVA

dv BY Gender Therapist
/RANDOM 5 Therapist
/METHOD 5 SSTYPE(3)
/INTERCEPT 5 INCLUDE
/CRITERIA 5 ALPHA(.05)
/DESIGN 5 Gender Therapist(Gender).

SAS Code
data GenderTherapist;

infile C:\Documents and Settings\David Howell\
My Documents\Methods7\Chapters\Chapter13\GenderTherapist.dat ;

input Gender Therapist dv;

Proc GLM data 5 GenderTherapist;
Class Gender Therapist;
Model dv 5 Gender Therapist(Gender);
Random Therapist Therapist(Gender);
Test H 5 Gender E 5 Therapist(Gender);

run;

¿
¿
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Table 13.9 Nested design with a random effect

SSerror = SStotal 2 SSG 2 SST(G) = 2667.79 2 240.25 2 1705.24 = 722.30

SSTherapist(Gender) = SSTherapist(Male) 1 SSTherapist(Female) = 351.52 1 1353.72 = 1705.24

= 10(135.372) = 1353.72

= 10[(6.5 2 13.16)2 1 (7.6 2 13.16)2 1 . . . 1 (19.3 2 13.16)2]

SST(Female) = na AX.j 2 X..B2= 10(35.152) = 351.52

= 10[(7.0 2 10.06)2 1 (6.9 2 10.06)2 1 . . . 1 (12.0 2 10.06)2]

SST(Male) = na AX.j 2 X..B2= 240.25

= 5 3 4[(10.06 2 11.61)2 1 (13.16 2 11.61)2]

SSG = nca AXi. 2 X..B2= 550.775

= (9 2 11.61)2 1 (8 2 11.61)2 1 . . . 1 (21 2 11.61)2

SStotal = a AX 2 XB2



Notice in Table 13.10 that when we have a nested design with a random variable nested
within a fixed variable our F statistic is going to be computed differently. We can test the
effect of Therapist(Gender) by dividing MST(G) by MSerror, but when we want to test Gender
we must divide MSG by MST(G). The resulting Fs are shown in Table 13.11, where I have
labeled the error terms to indicate how the Fs were constructed.

Notice that the Gender effect has the same sum of squares that it had in the original
study, but the F is quite different because Therapist(Gender) served as the error term and
there was considerable variability among therapists. Notice also that SSTherapist(Gender) is
equal to the sum of SSCondition and SSAge 3 Condition in the first example, although I prefer to
think of it as the sum of the two simple effects.)

Having a random factor such as Therapist often creates a problem. We really set out to
study Gender differences, and that is what we most care about. We don’t really care much
about therapist differences because we know that they will be there. But the fact that Ther-
apist is a random effect, which it should be, dramatically altered our test on Gender. The F
went from nearly 30 to nearly 1.0. This is a clear case where the design of the study has a
dramatic effect on power, even with the same values for the data. Maxwell and Delaney
(2004) make the point that in designs with random factors, power depends on both the
number of subjects (here, clients) and the number of levels of the random variable (here,
therapists). Generally the number of levels of the random variable is far more important.

Summary

I have presented three experimental designs. The crossed design with fixed factors is the
workhorse for most traditional experimental studies. The nested design with a random fac-
tor is an important design in much research in education and more applied areas of psy-
chology. The crossed design with a random factor occurs occasionally but is not as
common. In general when you have crossed effects they are most often fixed, and when
you have nested effects the nested factor is most often random. This helps to explain why
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Table 13.10 Expected mean squares for nested designs

Fixed Random Mixed

A fixed A random A fixed
Source B fixed B random B random

A
B(A)
Error

s2
e 1 ns2

ab 1 nbu2
a

s2
e 1 ns2

b

s2
e

s2
e 1 ns2

b 1 nbs2
a

s2
e 1 ns2

b

s2
e

s2
e 1 nbu2

a

s2
e 1 nau2

b

s2
e

Table 13.11 Tests for a nested design with a random nested factor

Source df SS MS F

Gender 1 240.25 240.250 1.127
Error1 8 1705.24 213.155
Therapist(Gender) 8 1705.24 213.155 26.56*
Error2 90 722.300 8.026

Total 99 2667.79

* p , .05



when you go to other sources to look up nested (or random) designs you will often find the
two discussed together. A final point to keep in mind is that in all of the between-subjects
designs in this book subjects are nested within other factors and are considered to be a ran-
dom factor. All of our F statistics are computed taking that into account.

13.9 Measures of Association and Effect Size

We can look at the magnitude of an effect in two different ways, just as we did with the
one-way analysis. We can either calculate an r-family measure, such as , or we can cal-
culate a d-family measure such as d. Normally when we are examining an omnibus F, we
use an r-family measure. However, when we are looking at a contrast between means it is
usually more meaningful to calculate an effect size estimate (d ). We have seen both types
of measures in previous chapters.

r-Family Measures

As with the one-way design, it is possible to calculate the magnitude of effect associated
with each independent variable. The easiest, but also the most biased, way to do this is to
calculate . Here we would simply take the relevant sum of squares and divide by . Thus,
the magnitude of effect for variable A is 5 and for variable B is 

5 , whereas the magnitude of effect for the interaction is 5 .
There are two difficulties with the measure that we have just computed. In the first

place is a biased estimate of the true magnitude of effect in the population. To put this
somewhat differently, is a very good descriptive statistic, but a poor inferential statistic.
Second, , as we calculated it here, may not measure what we want to measure. We will
speak about that shortly when we discuss partial .

Although is also biased, the bias is much less than for . In addition, the statistical
theory underlying allows us to differentiate between fixed, random, and mixed models
and to act accordingly.

To develop for two-way and higher-order designs, we begin with the set of expected
mean squares given in Table 13.8, derive estimates of , and then form
ratios of each of these components relative to the total variance. Rather than derive the for-
mulae for calculating for the three different models, as I have done in previous editions
of this book, I will present the results in a simple table. I strongly suspect that no student
remembered the derivation five minutes after he or she read it, and that many students were
so numb by the end of the derivation that they missed the final result.

For a factorial analysis of variance the basic formula to estimate remains the same
whether we are looking at fixed or random variables. The only difference is in how we cal-
culate the components of that formula. We will start by letting refer to the estimate
of the variance of the independent variable we care about at the moment, such as A, B, or
AB, and by letting refer to the sum of all sources of variance. (If an effect is fixed,
replace by ) Then if we know the value of these terms we can estimate as

For the main effect of A, for example, this becomes

All we have to know is how to calculate the variance components (s2
effect).

v2
a =

sN 2
a

sN 2
total

=
sN 2

a

sN 2
a 1 sN 2

b 1 sN 2
ab 1 sN 2

e

vN 2
effect =

sN 2
effect

sN 2
total

v2
effectu2.s2

sN 2
total

sN 2
effect

v2

v2

s2
a, s2

b, s2
ab, and s2

e

v2

v2
h2v2

h2
h2

h2
h2

SSAB>SStotalhab
2SSB>SStotalhb

2
SSA>SStotalha

2
SStotalh2

h2
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Table 13.12 contains the variance components for fixed and random variables for two-
way factorial designs, where the subscripts in the leftmost column stand for fixed ( f ) or
random (r) variables.4 You simply calculate each of these terms as given, and then form the
appropriate ratio. This procedure is illustrated using the summary table from the design in
Table 13.8, where subjects were asked to identify an upper or lower case letter and the Let-
ters used were random.5

If we let represent the fixed effect of Case and b represent the random effect of Let-
ter, then we have (using the formulae in Table 13.9)

sN 2
b = (MSB 2 MSerror)>na

= (378.735 2 8.026)>10 3 5 = 7.414

sN 2
a = (a 2 1)(MSA 2 MSAB)>nab
= (2 2 1)(240.25 2 47.575)>(10 3 2 3 5) = 1.927

a
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4 If you need such a table for higher-order designs, you can find one at www.uvm.edu/~dhowell/StatPages/More_
Stuff/Effect_size_components.html. 
5 Some authors do as I do and use for effects of both random and fixed factors. Others use to refer to effects
of fixed factors and (the squared intraclass correlation coefficient) to refer to effects of random factors. r2

v2v2

Table 13.12 Estimates of variance components in two-way
factorial designs

Model Variance Component

Af Bf

Af Br

ArBr

The summary table for Eysenck’s study is reproduced below for
convenience.

Source df SS MS F

C (Case) 1 240.25 240.250 29.94*
L (Letter) 4 1514.94 378.735 47.19*
CL 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

*p , .05

s2
e = MSe

s2
ab = (MSAB 2 MSe)>ns2

b = (MSB 2 MSAB)>na

s2
a = (MSA 2 MSAB)>nb

s2
e = MSe

uN 2
ab = (a 2 1)(MSAB 2 MSe)>na

s2
b = (MSB 2 MSe)>na

Nu2
a = (a 2 1)(MSA 2 MSAB)>nab

s2
e = MSe

Nuab
2 = (a 2 1)(b 2 1)(MSAB 2 MSe)>nab

Nub
2 = (b 2 1)(MSB 2 MSe)>nab

Nua
2 = (a 2 1)(MSA 2 MSe)>nab

www.uvm.edu/~dhowell/StatPages/More_Stuff/Effect_size_components.html
www.uvm.edu/~dhowell/StatPages/More_Stuff/Effect_size_components.html


Thus

We can now estimate for each effect:

Partial Effects

Both and represent the size of an effect (SSeffect) relative to the total variability in
the experiment (SStotal). Often it makes more sense just to consider one factor separately
from the others. For example, in the Spilich et al. (1992) study of the effects of smok-
ing under different kinds of tasks, the task differences were huge and of limited interest
in themselves. If we want a measure of the effect of smoking, we probably don’t want
to dilute that measure with irrelevant variance. Thus we might want to estimate the
effect of smoking relative to a total variability based only on smoking and error. This
can be written

We then simply calculate the necessary terms and divide. For example, in the case of the
partial effect of the smoking by task interaction, treating both variables as fixed, we
would have

This is a reasonable sized effect.

d-Family Measures

The r-family measures ( and ) make some sense when we are speaking about an om-
nibus F test involving several levels of one of the independent variables, but when we are
looking closely at differences among individual groups or sets of groups, the d-family of
measures often is more useful and interpretable. Effect sizes (d) are a bit more complicated

v2h2

v2
ST(partial) =

NsST
sNST 1 sNerror

= 38.26
38.26 1 108

= 0.26

sN  e = MSerror = 108

= (3 2 1)(3 2 1)(682 2 108)>(15)(3)(3) = 5166
135

= 38.26

sN2
SxT = (s 2 1)(t 2 1)(MSST 2 MSe)>nst

partial v2 =
sN 2

effect

sN 2
effect 1 sN 2

e

v2h2

NvCase3Letter
2 =

Nsab
2

sN total
2 = 1.977

19.344
= 0.10

NvLetter
2 =

Nsb
2

sN total
2 = 7.414

19.344
= 0.38

NvCase
2 =

Nsa
2

sN total
2 = 1.927

19.344
= 0.10

v2

sN 2
total = sN 2

a 1 sN 2
b 1 sN 2

ab 1 sN 2
e

= 1.927 1 7.414 1 1.977 1 8.026 = 19.344

sN 2
e = MSerror = 8.026

sN 2
ab = (a 2 1)(MSAB 2 MSerror)>na

= (2 2 1)(47.575 2 8.026)>(10 3 2) = 1.977
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when it comes to factorial experiments, primarily because you have to decide what to con-
sider “error.” They also become more complicated when we have unequal sample sizes
(called an “unbalanced design”). In this chapter we will deal only with estimation with
balanced, or nearly balanced, designs. The reader is referred to Kline (2004) for a more
thorough discussion of these issues.

As was the case with t tests and the one-way analysis of variance, we will define our
effect size as

where the “hats” indicate that we are using estimates based on sample data. There is no real
difficulty in estimating because it is just a linear contrast. You will see an example in a
minute in case you have forgotten what that is, but it is really just a difference between
means of two groups or sets of groups. On the other hand, our estimate of the appropriate
standard deviation will depend on our variables. Some variables normally vary in the pop-
ulation (e.g., amount of caffeine a person drinks in a day) and are, at least potentially, what
Glass, McGraw, and Smith (1981) call a “variable of theoretical interest.” Gender, extra-
version, metabolic rate, and hours of sleep are other examples. On the other hand, many
experimental variables, such as the number of presentations of a stimulus, area of cranial
stimulation, size of a test stimulus, and presence or absence of a cue during recall do not
normally vary in the population, and are of less theoretical interest. I am very aware that
the distinction is a slippery one, and if a manipulated variable is not of theoretical interest,
why are we manipulating it?

It might make more sense if we look at the problem slightly differently. Suppose that I
ran a study to investigate differences among three kinds of psychotherapy. If I just ran that
as a one-way design, my error term would include variability due to all sorts of things, one
of which would be variability between men and women in how they respond to different
kinds of therapy. Now suppose that I ran the same study but included gender as an inde-
pendent variable. In effect I am controlling for gender, and MSerror would not include gen-
der differences because I have “pulled them out” in my analysis. So MSerror would be
smaller here than in the one-way. That’s a good thing in terms of power, but it may not be a
good thing if I use the square root of MSerror in calculating the effect size. If I did, I would
have a different sized effect due to psychotherapy in the one-way experiment than I have in
the factorial experiment. That doesn’t seem right. The effect of therapy ought to be pretty
much the same in the two cases. So what I will do instead is to put that gender variability,
and the interaction of gender with therapy, back into error when it comes to computing an
effect size.

But suppose that I ran a slightly different study where I examined the same three
different therapies, but also included, as a second independent variable, whether or not
the patient sat in a tub of cold water during therapy. Now patients don’t normally sit in
a cold tub of water, but it would certainly be likely to add variability to the results. That
variability would not be there in the one-way design because we can’t imagine some
patients bringing in a tub of water and sitting in it. And it is variability that I wouldn’t
want to add back into the error term, because it is in some way artificial. The point is
that I would like the effect size for types of therapy to be the same whether I used a one-
way or a factorial design. To accomplish that I would add effects due to Gender and the
Gender X Therapy interaction back into the error term in the first study, and withhold
the effects of Water and its interaction with Therapy in the second example. What fol-
lows is an attempt to do that. The interested reader is referred to Glass et al. (1981) for
further discussion.

c

dN = °N
sN
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We will return to working with the example from Eysenck’s (1974) study. The means
and the analysis of variance summary table are presented below for easy reference.

Counting Rhyming Adjective Imagery Intention Mean

Older 7.0 6.9 11.0 13.4 12.0 10.06
Younger 6.5 7.6 14.8 17.6 19.3 13.16

Mean 6.75 7.25 12.90 15.50 15.65 11.61

Source df SS MS F

A (Age) 1 240.25 240.25 29.94*
C(Condition) 4 1514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2667.79

* p , .05

One of the questions that would interest me is the contrast between the two lower lev-
els of processing (Counting and Rhyming) and the two higher levels (Adjective and
Imagery). I don’t have any particular thoughts about the Intentional group, so we will
ignore that. My coefficients for a standard linear contrast, then, are

Counting Rhyming Adjective Imagery Intention

−1⁄2 −1⁄2 1⁄2 1⁄2 0

The test on this contrast is

This t is clearly significant, showing that higher levels of processing lead to greater lev-
els of recall. But I want an effect size for this difference.

I am looking for an effect size on a difference between two sets of conditions, but
I need to consider the error term. Age is a normal variable in our world, and it leads to
variability in people’s responses. (If I had just designed this experiment as a one-way on
Conditions, and ignored the age of my participants, that age variability would have been a
normal part of MSerror). I need to have any Age effects contributing to error when it comes
to calculating an effect size. So I will add SSage and SSA3C back into the error.

Having computed our error term for this effect, we find

dN = °N

sN
= 7.20

3.48
= 2.07

= B1152.85
95

= 212.135 = 3.48

Serror = BSSerror 1 SSAge 1 SSA3C

dferror 1 dfAge 1 dfA3C
= B722.30 1 240.25 1 190.30

90 1 1 1 4

t =
°NB(©a2
i )MSerror

n

= 7.20B(1)(8.026)
10

= 7.20
0.896

= 8.04

cN = a21
2
b (6 .75) 1 a21

2
b (7 .25) 1 a1

2
b (12 .90) 1 a1

2
b (15 .50) 1 (0)(11 .61) = 7.20
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The difference between recall with high levels of processing and recall with low levels of
processing is about two standard deviations, which is a considerable difference. Thinking
about the material you are studying certainly helps you to recall it.

Now suppose that you wanted to look at the effects of Age. Because we can guess that
people vary in the levels of processing that they normally bring to a memory task, then we
should add the main effect of Condition and its interaction with Age to the error term in
calculating the effect size. Thus

Because we only have two ages, the contrast ( ) is just the difference between the two
means, which is (13.16 2 10.06) 5 3.10.

In this case younger subjects differ from older participants by nearly two-thirds of a stan-
dard deviation.

Simple Effects

The effect sizes for simple effects are calculated in ways directly derived from the way we
calculate main effects. The error term in these calculations is the same error term as that
used for the corresponding main effect. Thus for the simple effect of Age for highest level
of processing (Imagery) is

Similarly, for the contrast of low levels of processing versus high levels among young par-
ticipants we would have

and the effect size is

which means that for younger participants there is nearly a 22⁄3 standard deviation differ-
ence in recall between the high and low levels of processing.

13.10 Reporting the Results

We have carried out a number of calculations to make various points, and I would certainly
not report all of them when writing up the results. What follows is the basic information
that I think needs to be presented.

In an investigation of the effects of different levels of information processing on the
retention of verbal material, participants were instructed to process verbal material in

dN =
cN

sN
= 9.15

3.48
= 2.63

c = a2
1
2
b (6.5) 1 a2

1
2
b (7.6) 1 a1

2
b(14.8) 1 a1

2
b (17.6) 1 (0)(19.3) = 9.15

dN = °N

sN
=

(17.6 2 13.4)
4.98

= 4.20
4.98

= 0.84

dN = °N

sN
= 3.10

4.98
= 0.62

°

= B2427.54
98

= 124.77 = 4.98

serror = BSSerror 1 SSCondition 1 SSA3C

dferror 1 dfCondition 1 dfA3C
= B722.30 1 1514.94 1 190.30

90 1 4 1 4
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one of four ways, ranging from the simple counting of letters in words to forming a
visual image of each word. Participants in a fifth Condition were not given any in-
structions about what to do with the items. A second dimension of the experiment
compared Younger and Older participants in terms of recall, thus forming a 2 3 5 fac-
torial design.

The dependent variable was the number of items recalled after three presentations of
the material. There was a significant Age effect (F(1,90) 5 29.94, p , .05, v2 5 .087),
with younger participants recalling more items than older ones. There was also a signifi-
cant effect due to Condition (F(4,90) 5 47.19, p , .05, v2 5 .554), and visual inspec-
tion of the means shows that there was greater recall for conditions in which there was a
greater degree of processing. Finally the Age by Condition interaction was significant
(F(4,90) 5 5.93, p , .05, v2 5 .059), with a stronger effect of Condition for the
younger participants.

A contrast of lower levels of processing (Counting and Rhyming) with higher levels
of processing (Adjective and Imagery) produced a clearly statistically significant effect
in favor of higher levels of processing (t(90)58.04, p , .05). This corresponds to an
effect size of 52.07, indicating that participants with higher levels of processing out-
perform those with lower levels of processing by over two standard deviations. This
effect is even greater if we look only at the younger participants, where 52.63.

13.11 Unequal Sample Sizes

Although many (but certainly not all) experiments are designed with the intention of hav-
ing equal numbers of observations in each cell, the cruel hand of fate frequently intervenes
to upset even the most carefully laid plans. Participants fail to arrive for testing, animals
die, data are lost, apparatus fails, patients drop out of treatment, and so on. When such
problems arise, we are faced with several alternative solutions, with the choice depending
on the nature of the data and the reasons why data are missing.

When we have a plain one-way analysis of variance, the solution is simple and we have
already seen how to carry that out. When we have more complex designs, the solution is
not simple. With unequal sample sizes in factorial designs, the row, column, and interac-
tion effects are no longer independent. This lack of independence produces difficulties in
interpretation, and deciding on the best approach depends both on why the data are miss-
ing and how we conceive of our model.

There has been a great deal written about the treatment of unequal sample sizes, and
we won’t see any true resolution of this issue for a long time. (That is in part because
there is no single answer to the complex questions that arise.) However, there are some
approaches that seem more reasonable than others for the general case. Unfortunately,
the most reasonable and the most common approach is available only using standard
computer packages, and a discussion of that will have to wait until Chapter 15. I will,
however, describe a pencil-and-paper solution. This approach is commonly referred to as
an unweighted means solution or an equally weighted means solution because we
weight the cell means equally, regardless of the number of observations in those cells.
My primary purpose in discussing this approach is not to make you get out your pencil
and a calculator, but to help provide an understanding of what SPSS and SAS do if you
take the default options. Although I will not work out an example, such an example can
be found in Exercise 13.17. And, if you have difficulty with that, the solution can be
found online in the Student Manual (www.uvm.edu/~dhowell/methods7/StudentManual/
StudentManual.html).

dN

dN
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The Problem

You can see what our problem is if we take a very simple 2 3 2 factorial where we know
what is happening. Suppose that we propose to test vigilance on a simple driving task when
participants are either sober or are under the influence of alcohol. The task involves using a
driving simulator and having to respond when cars suddenly come out of driveways and
when pedestrians suddenly step into the street. We would probably expect that sober driv-
ers would make many fewer errors on this task than drivers who had been plied with alco-
hol. We will have two investigators working together on this problem, one from Michigan
and one from Arizona, and each of them will run half of the participants in their own
facilities. We have absolutely no reason to believe that participants in Michigan are any dif-
ferent from participants in Arizona, nor do we have any reason to believe that there would
be an interaction between State and Alcohol condition. I constructed the data with those
expectations in mind.

Suppose that we obtained the quite extreme data shown in Table 13.13 with unequal
numbers of participants in the four cells. The dependent variable is the number of errors
each driver made in one half-hour session. From the cell means in this table you can see
that the data came out as expected. The Drinking participants made, on average, 6 more
errors than the participants in the Non-Drinking condition, and they did so whether they
came from Michigan or Arizona. Similarly, you can see that there are no differences
between Michigan and Arizona participants, whether you look at the Drinking or the Non-
Drinking column. So what’s wrong with this picture?

Well, if you look at the column means you see what you expect, but if you look at the
row means you find that the mean for Michigan is 18.3, whereas the mean for Arizona is
only 15.9. It looks as if we have a difference between States, even after we went to such
pains to make sure there wasn’t one here. What you are seeing is really a Drinking effect
disguised as a State effect. And that is allowed to happen only because you have unequal
numbers of participants in the cells. Michigan’s mean is relatively high because they have
more Drinking participants, and Arizona’s mean is relatively low because they have more
Non-Drinking participants. Now I suppose that if we had used actual people off the street,
and Michigan had more drunks, perhaps a higher mean for Michigan would make some
sort of sense. But that isn’t what we did, and we don’t usually want State effects contami-
nated by Drinking effects. So what do we do?

The most obvious thing to do would be to calculate row and column means ignoring
the differing cell sizes. We could simply average cell means, paying no attention to how
many participants are in each cell. If we did this, the means for both Michigan and Arizona
would be (14 1 20)/2 5 17, and there would be no difference due to States. You could then
substitute those means in standard formulae for a factorial analysis of variance, but what
are you going to use for the sample size? Your first thought might be that you would just
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Table 13.13 Illustration of the contaminating effects of unequal sample sizes

Non-Drinking Drinking Row Means

Michigan 13 15 16 12 18 20 22 19 21
23 17 18 22 20 1. 5 18.3

11 5 14 12 5 20

Arizona 13 15 18 14 10 24 25 17 16 18
12 16 17 15 10 14 2. 5 15.9

21 5 14 22 5 20

Col Means .1 5 14 .2 5 20XX

XX
X

XX
X



use the average sample size, and that is actually quite close. Actually you will use the
harmonic mean of the sample sizes. The harmonic mean is defined as

where the subscript “h” stands for “harmonic” and k represents the number of observations
whose mean we are calculating. You can now use the formulae shown in Table 13.2 by re-
placing n with nh and the row and column means with the means of the cells in those rows
and columns. For the current example the row means would be 17 and 17, the column
means would be 14 and 20, and the grand mean would be the mean of the cell means. The
one difference is that the error term ( ) is not obtained by subtraction; instead, we
calculate for each cell of the design and then sum these terms to obtain the sum
of squares due to error.

I am not recommending that you solve your problem with unbalanced designs this way,
although the answer would be very close to the answer given by the solution that I will rec-
ommend in Chapter 15. I present this approach here because I think that it helps to clarify
what SPSS and SAS do when you have unequal sample sizes and select the default option
(Type III sum of squares). I think that it also makes it easier to understand how a column
effect can actually show up as a row effect even when the cell means within columns do
not differ by row.

13.12 Higher-Order Factorial Designs

All of the principles concerning a two-way factorial design apply equally well to a three-
way or higher-order design. With one additional piece of information, you should have no
difficulty running an analysis of variance on any factorial design imaginable, although the
arithmetic becomes increasingly more tedious as variables are added. We will take a sim-
ple three-way factorial as an example, since it is the easiest to use.

The only major way in which the three-way differs from the two-way is in the presence
of more than one interaction term. To see this, we must first look at the underlying struc-
tural model for a factorial design with three variables:

In this model we have not only main effects, symbolized by , , and , but also two
kinds of interaction terms. The two-variable or first-order interactions are , , and

, which refer to the interaction of variables A and B, A and C, and B and C, respec-
tively. We also have a second-order interaction term, , which refers to the joint
effect of all three variables. We have already examined the first-order interactions in dis-
cussing the two-way. The second-order interaction can be viewed in several ways. Proba-
bly the easiest way to view the ABC interaction is to think of the AB interaction itself
interacting with variable C. Suppose that we had two levels of each variable and plotted
the AB interaction separately for each level of C. We might have the result shown in
Figure 13.3. Notice that for we have one AB interaction, whereas for we have a dif-
ferent one. Thus, AB depends on C, producing an ABC interaction. This same kind of
reasoning could be invoked using the AC interaction at different levels of B, or the BC
interaction at different levels of A. The result would be the same.

As I have said, the three-way factorial is merely an extension of the two-way, with a
slight twist. The twist comes about in obtaining the interaction sums of squares. In the

C2C1

abgijk

bgjk

agikabij

gkbjai

Xijkl = m 1 ai 1 bj 1 gk 1 abij 1 agik 1 bgjk 1 abgijk 1 eijkl

SSwithin cell

SSerror

Xh = k
1
X1

1
1
X2

1
1
X3

1 Á 1
1
Xk
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two-way, we took an A 3 B table of cell means, calculated , subtracted the main
effects, and were left with . In the three-way, we have several interactions, but we
will calculate them using techniques analogous to those employed earlier. Thus, to ob-
tain we will take a B 3 C table of cell means (averaging over A), obtain ,
subtract the main effects of B and C, and end up with . The same applies to 
and . We also follow the same procedure to obtain , but here we need to be-
gin with an A 3 B 3 C table of cell means, obtain , and then subtract the main
effects and the lower-order interactions to arrive at . In other words, for each
interaction we start with a different table of cell means, collapsing over the variable(s)
in which we are not at the moment interested. We then obtain an for that table
and subtract from it any main effects and lower-order interactions that involve terms
included in that interaction.

Variables Affecting Driving Performance

For an example, consider a hypothetical experiment concerning the driving ability of two
different types of drivers—inexperienced ( ) and experienced ( ). These people will
drive on one of three types of roads—first class ( ), second class ( ), or dirt ( ), under
one of two different driving conditions—day ( ) and night ( ). Thus we have a 2 3 3 3 2
factorial. The experiment will include four participants per condition (for a total of 48 par-
ticipants), and the dependent variable will be the number of steering corrections in a one-
mile section of roadway. The raw data are presented in Table 13.14a.

The lower part of Table 13.14a contains all the necessary matrices of cell means for the
subsequent calculation of the interaction sums of squares. These matrices are obtained sim-
ply by averaging across the levels of the irrelevant variable. Thus, the upper left-hand cell
of the AB summary table contains the sum of all scores obtained under the treatment com-
bination , regardless of the level of C (i.e., ). (Note: You should be
aware that I have rounded everything to two decimals for the tables, but the computations
were based on more decimals. Beware of rounding error.6)

Table 13.14b shows the calculations of the sums of squares. For the main effects, the
sums of squares are obtained exactly as they would be for a one-way. For the first-order
interactions, the calculations are just as they would be for a two-way, taking two vari-
ables at a time. The only new calculation is for the second-order interaction, and the

ABC111 1 ABC112AB11

C2C1

B3B2B1

A2A1

SScells

SSABC

SScells ABC

SSABCSSAC

SSABSSBC

SScells BCSSBC

SSAB

SScells
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C1

A1

A2

B1 B2

C2

A1

A2

B1

Figure 13.3 Plot of second-order interaction

6 The fact that substantial rounding error accumulates when you work with means is one major reason why
formulae for use with calculators worked with totals. I am using the definitional formulae in these chapters
because they are clearer, but that means that we need to put up with occasional rounding errors. Good computing
software uses very sophisticated formulae optimized to minimize rounding error.
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Table 13.14 Illustration of calculations for 2 3 3 3 2 factorial design

(a) Data

B1 B2 B3 B1 B2 B3

A1 4 23 16 21 25 32
18 15 27 14 33 42
8 21 23 19 30 46

10 13 14 26 20 40

A2 6 2 20 11 23 17
4 6 15 7 14 16

13 8 8 6 13 25
7 12 17 16 12 12

Cell Means

B1 B2 B3 B1 B2 B3 Means

A1 10.000 18.000 20.000 20.000 27.000 40.000 22.500
A2 7.500 7.000 15.000 10.000 15.500 17.500 12.083

Means 8.750 12.500 17.500 15.000 21.250 28.750 17.292

More Cell Means

B1 B2 B3 Means C1 C2 Means

A1 15.000 22.500 30.000 22.500 A1 16.000 29.000 22.500
A2 8.750 11.250 16.250 12.083 A2 9.833 14.333 12.083

Means 11.875 16.875 23.125 17.292 Means 12.917 21.667 17.292

B1 B2 B3 Means

C1 8.750 12.500 17.500 12.917
C2 15.000 21.250 28.750 21.667

Means 11.875 16.875 23.125 17.292

(b) Calculations

C1 C2

C1 C2

AB Cells AC Cells

BC Cells

= 918.75
SSC = naba (X. .k 2 X...)2 = 4 3 2 3 3[(12.917 2 17.292)2 1 (21.667 2 17.292)2]

1 (23.125 2 17.292)2] = 1016.67

SSB = naca (X. j. 2 X ...)2 = 4 3 2 3 2[(11.875 2 17.292)2 1 Á
=  1302.08

SSA = nbca (Xi . . 2 X ... )2 = 4 3 3 3 2[(22.50 2 17.292)2 1 (12.083 2 17.292)2]

SStotal = a (X 2 X ...)2 = (4 2 17.292)2 1 Á 1 (12 2 17.292)2 = 4727.92

(continues)



difference is only a matter of degree. Here we first obtain the for the three-
dimensional matrix. This sum of squares represents all of the variation among the cell
means in the full-factorial design. From this, we must subtract all of the variation that
can be accounted for by the main effects and by the first-order interactions. What
remains is the variation that can be accounted for by only the joint effect of all three vari-
ables, namely .

The final sum of squares is . This is most easily obtained by subtracting
from . Since represents all of the variation that can be attributa-

ble to differences among cells (
), subtracting it from will leave us with only that variation within the

cells themselves.
SStotalSSBC 1 SSABC
SScells ABC = SSA 1 SSB 1 SSC 1 SSAB 1 SSAC 1

SScells ABCSStotalSScellsABC

SSerror

SSABC

SScells
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Table 13.14 (continued)

(c) Summary table

Source df SS MS F

A (Experience) 1 1302.08 1302.08 48.78*
B (Road) 2 1016.67 508.33 19.04*
C (Conditions) 1 918.75 918.75 34.42*
AB 2 116.67 58.33 2.19
AC 1 216.75 216.75 8.12*
BC 2 50.00 25.00 ,1
ABC 2 146.00 73.00 2.73
Error 36 961.00 26.69

Total 47 4727.92

*p , .05

SSerror = SStotal 2 SSCell ABC = 4727.92 2 3766.92 = 961.00

= 146.00

= 3766.92 2 1302.08 2 1016.67 2 918.75 2 116.67 2 216.75 2 50.00

SSABC = SSCell ABC 2 SSA 2 SSB 2 SSC 2 SSAB 2 SSAC 2 SSBC

= 3766.92

SSCell ABC = na (Xijk 2 X ... )2 = 4[(10.00 2 17.292)2 1 Á 1 (17.50 2 17.292)2]

= 50.00

SSBC = SSCell BC 2 SSB 2 SSC = 1985.42 2 1016.67 2 918.75

= 1985.42

SSCell BC = naa (X.jk 2 X ... )2 = 4 3 2[(8.75 2 17.292)2 1 Á 1 (28.75 2 17.292)2]

= 216.75

SSAC = SSCell AC 2 SSA 2 SSC = 2437.58 2 1302.08 2 918.75

= 2437.58

SSCell AC = nba (Xi.k 2 X ... )2 = 4 3 3[(16.00 2 17.292)2 1 Á 1 (14.333 2 17.292)2]

SSAB = SSCell AB 2 SSA 2 SSB = 2435.42 2 1302.08 2 1016.67 = 116.67
= 2435.42

SSCell AB = nca (Xij. 2 X ... )2 = 4 3 2[(15.00 2 17.292)2 1 Á 1 (16.25 2 17.292)2



The summary table for the analysis of variance is presented in Table 13.14c. From this
we can see that the three main effects and the A 3 C interaction are significant. None of
the other interactions is significant.7

Simple Effects

Since we have a significant interaction, the main effects of A and C should be interpreted
with caution, if at all. To this end, the AC interaction has been plotted in Figure 13.4. When
plotted, the data show that for the inexperienced driver, night conditions produce consider-
ably more steering corrections than do day conditions, whereas for the experienced driver
the difference in the number of corrections made under the two conditions is relatively
slight. Although the data might give us some confidence in reporting a significant effect for
A (the difference between experienced and inexperienced drivers), they should leave us a
bit suspicious about differences due to variable C. At a quick glance, it would appear that
there is a significant C effect for the inexperienced drivers, but possibly not for the experi-
enced drivers. To examine this question more closely, we must consider the simple effects
of C under and separately. This analysis is presented in Table 13.15, from which we
can see that there is a significant effect between day and night condition, not only for the
inexperienced drivers, but also for the experienced drivers. (Note that we can again check
the accuracy of our calculations; the simple effects should sum to .)

From this hypothetical experiment, we would conclude that there are significant differ-
ences among the three types of roadway, and between experienced and inexperienced driv-
ers. We would also conclude that there is a significant difference between day and night
conditions, for both experienced and inexperienced drivers.

SSC 1 SSAC

A2A1
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7 You will notice that this analysis of variance included seven F values and thus seven hypothesis tests. With so
many hypothesis tests, the familywise error rate would be quite high. Most people ignore the problem and simply
test each F at a per-comparison error rate of a 5 .05. However, if you are concerned about error rates, it would
be appropriate to employ the equivalent of either the Bonferroni or multistage Bonferroni t procedure. This is
generally practical only when you have the probability associated with each F, and can compare this probability
against the probability required by the Bonferroni (or multistage Bonferroni) procedure. An interesting example
of this kind of approach is found in Rosenthal and Rubin (1984). I suspect that most people will continue to
evaluate each F on its own, and not worry about familywise error rates.
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Simple Interaction Effects

With higher-order factorials, not only can we look at the effects of one variable at individual
levels of some other variable (what we have called simple effects but what should more accu-
rately be called simple main effects), but we can also look at the interaction of two variables
at individual levels of some third variable. This we will refer to as a simple interaction effect.

Although our second-order interaction (ABC) was not significant, you might have a
theoretical reason to expect an interaction between Experience (A) and Road (B) under
night conditions, because driving at night is more difficult, but would expect no AB inter-
action during the day. As an example, I will break down the ABC interaction to get at those
two simple interaction effects. (I should stress, however, that it is not good practice to test
everything in sight just because it is possible to do so.)

In Figure 13.5 the AB interaction has been plotted separately for each level of C. It ap-
pears that there is no AB interaction under C1, but there may be an interaction under C2. We
can test this hypothesis by calculating the AB interaction at each level of C, in a manner
logically equivalent to the test we used for simple main effects. Essentially, all we need to
do is treat the C1 (day) and C2 (night) data separately, calculating for C1 data and then
for C2 data. These simple interaction effects are then tested using from the overall
analysis. This has been done in Table 13.16.

From the analysis of the simple interaction effects, it is apparent that the AB interaction
is not significant for the day data, but it is for the night data. When night conditions ( ) and
dirt roads ( ) occur together, differences between experienced ( ) and inexperienced ( )
drivers are magnified.

A1A2B3

C2

MSerror

SSAB
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Table 13.15 Simple effects for data in Table 13.14

(a) Data

C1 C2 Mean

A1 16.000 29.000 22.500
A2 9.833 14.333 12.083

(b) Computations

(c) Summary table

Source df SS MS F

C at A1 1 1014.00 1014.00 37.99*
C at A2 1 121.50 121.50 4.55*
Error 36 961.00 26.69

*p , .05

(d) Decomposition of sums of squares

1135.50 = 1135.50

1014.00 1 121.50 = 918.75 1 216.75

SSC at A1
1 SSC at A2

= SSC 1 SSAC

= 4 3 3[(9.833 2 12.083)2 1 (14.333 2 12.083)2] = 121.50

SSC at A2
= nba (X2.k 2 X2..)

2

= 4 3 3[(16.000 2 22.500)2 1 (29.000 2 22.500)2] = 1014.00

SSC at A1
= nba (X1.k 2 X1..)

2

simple main
effects

simple
interaction effect
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Figure 13.5 ABC interaction for data in Table 13.14

Table 13.16 Simple interaction effects for data in Table 13.16

(a) Data and Computations for SSAB at C1

C1 Means

B1 B2 B3 Mean

A1 10.00 18.00 20.00 16.000
A2 7.50 7.00 15.00 9.833

8.75 12.50 17.50 12.917

(b) Data and Computations for SSAB at C2

C2 Means

B1 B2 B3 Mean

A1 20.00 27.00 40.00 29.000
A2 10.00 15.50 17.50 14.333

Mean 15.00 21.25 28.75 21.667

= 612.83 2 228.17 2 308.33 = 76.33

SSAB at C1
= SSCells AB at C1

2 SSA at C1
2 SSB at C1

= 4 3 [(10.000 2 12.917)2 1 Á 1 (15.000 2 17.500)2] = 612.83

SSCells AB at C1
= na (Xij1 2 X..1)2

= 4 3 2[(8.750 2 12.917)2 1 Á 1 (17.500 2 12.917)2] = 308.33

SSB at C1
= naa (X.j1 2 X..1)2

= 4 3 3[(16.000 2 12.917)2 1 (9.833 2 12.917)2] = 228.17

SSA at C1
= nba (Xi.1 2 X..1)2

(continues)



Although there is nothing to prevent someone from examining simple interaction
effects in the absence of a significant higher-order interaction, cases for which this would
make any logical sense are rare. If, however, the experimenter has a particular reason for
looking at, for example, the AB interaction at each level of C, he is perfectly free to do so.
On the other hand, if a higher-order interaction is significant, the experimenter should cast
a wary eye on all lower-order effects and consider testing the important simple effects.
However, to steal a line from Winer (1971, p. 442), “Statistical elegance does not necessar-
ily imply scientifically meaningful inferences.” Common sense is at least as important as
statistical manipulations.

13.13 A Computer Example

The following example illustrates the analysis of a three-way factorial design with unequal
numbers of participants in the different cells. It is roughly based on a study by Seligman,
Nolen-Hoeksema, Thornton, and Thornton (1990), although the data are contrived and one
of the independent variables (Event) is fictitious. The main conclusions of the example are
in line with the results reported. Note that we will not discuss how SPSS handles unequal
sample sizes in this example until we come to Chapter 15.

The study involved collegiate swimming teams. At a team practice, all participants
were asked to swim their best event as fast as possible, but in each case the time that was
reported was falsified to indicate poorer than expected performance. Thus each swimmer
was disappointed at receiving a poor result. Half an hour later, each swimmer was asked to
perform the same event, and their times were again recorded. The authors predicted that on
the second trial more pessimistic swimmers would do worse than on their first trial,
whereas optimists would do better.

Participants were classified by their explanatory Style (optimism versus pessimism),
Sex, and the preferred Event. The dependent variable was the ratio of , so a
value greater than 1.00 means that the swimmer did better on the second trial. The data and
results are given in Table 13.17. The results were obtained using SPSS. In examining the
results remember that SPSS prints several lines out output that we rarely care about, and
they can just be ignored.

Time1>Time2
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Table 13.16 (continued)

= 2235.33 2 1290.67 2 758.33 = 186.33

SSAB atC2
= SSCells BC at C2

2 SSA at C2
2 SSB at C2

= 4 3 [(20.00 2 21.667)2 1 Á 1 (15.00 2 21.667)2] = 2235.33

SSCells AB at C2
= na (Xij2 2 X..3)2

= 4 3 2[(15.00 2 21.667)2 1 Á 1 (28.75 2 21.667)2] = 758.33

SSB at C2
= naa (X.j2 2 X..2)2

= 4 3 3[(29.00 2 21.667)2 1 (14.33 2 21.667)2] = 1290.67

SSA at C2
= nba (Xi.2 2 X..2)2



454 Chapter 13 Factorial Analysis of Variance

(b) Summary Table from SPSS

Tests of Between-Subjects Effects
Dependent Variable: PERFORM

Type III Sum Mean
Source of Squares df Square F Sig.

Corrected Model 6.804E-02a 11 6.186E-03 1.742 .094
Corrected Model 48.779 1 48.779 13738.573 .000
OPTIM 2.412E-02 1 2.412E-02 6.793 .012
SEX 7.427E-03 1 7.427E-03 2.092 .155
STROKE 4.697E-03 2 2.348E-03 .661 .521
OPTIM * SEX 1.631E-02 1 1.631E-02 4.594 .037
OPTIM * STROKE 5.612E-03 2 2.806E-03 .790 .460
SEX * STROKE 1.142E-02 2 5.708E-03 1.608 .211
OPTIM * SEX * STROKE 1.716E-03 2 8.578E-04 .242 .786
Error .163 46 3.550E-03
Total 57.573 58
Corrected Total .231 57

a R Squared 5 .294 (Adjusted R Squared 5 .125)

Table 13.17 Analysis of variance on responses to failure by optimists and pessimists

(a) Data

Optimists Pessimists

Male Female Male Female

Free Breast Back Free Breast Back Free Breast Back Free Breast Back

0.986 1.026 1.009 1.108 1.048 1.004 0.983 0.962 0.936 0.997 1.045 1.045
1.108 1.045 1.065 0.985 1.027 0.936 0.947 0.944 0.995 0.983 1.095 0.864
1.080 0.996 1.053 1.001 1.040 0.932 0.941 0.872 1.105 0.944 0.982
0.952 0.923 0.924 1.078 0.831 1.116 1.039 0.915
0.998 1.000 0.968 0.914 0.997 0.927 1.047
1.017 1.003 0.955 0.960 0.988
1.080 0.934 1.015

1.032 0.990 1.042 0.997 1.038 0.993 0.968 0.920 0.934 1.026 1.008 0.971X

(continues)
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0.94

0.92

Sex of subject

Male

Female

(c) Plot by Sex 3 Optim interaction

8 To be fair to Seligman et al. (1990), I should say that this is not a result they appeared to have analyzed for, and
therefore not one they found. I built it in to illustrate a point.

Key Terms

Factors (Introduction)

Two-way factorial design (Introduction)

Factorial design (Introduction)

Repeated-measures design
(Introduction)

Interaction (Introduction)

2 3 5 factorial (Introduction)

Cell (Introduction)

Main effect (13.1)

Simple effect (13.1)

SScells (13.1)

Disordinal interactions (13.3)

Ordinal interaction (13.3)

Crossed (13.8)

Random factor (13.8)

Nested design (13.8)

Random design (13.8)

Hierarchical models (13.8)

Mixed models (13.8)

Crossed experimental design (13.8)

Expected mean squares (13.8)

Partial effect (13.9)

Unbalanced design (13.9)

Unweighted means (13.11)

Equally weighted means (13.11)

First-order interactions (13.12)

Second-order interaction (13.12)

Simple main effects (13.12)

Simple interaction effect (13.12)

From the SPSS computer output you can see that there is a significant effect due to the
attributional style, with Optimists showing slightly improved performance after a perceived
failure, and pessimists doing worse. The difference in means may appear to be small, but
when you consider how close a race of this type usually is, even a tiny difference is impor-
tant. You can also see that there is a Optim 3 Sex interaction. Looking at the means we see
that there is almost no difference between Optimistic males and females, but this is not true
of pessimists. Pessimistic males appear in these data to be much more affected by a perceived
loss than are females. This Optim 3 Sex interaction is plotted as a bar chart following the
summary table. This plot has collapsed across Event, because that variable had no effect.8

Table 13.17 (continued)
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not this was their first child (primiparous versus multiparous) and on the basis of whether
this was a low-birthweight (LBW) infant or normal-birthweight (NBW) infant. Mothers of
LBW infants were further classified on the basis of whether or not they were under 18 years
old. The data represent a score on a 12-point scale; a higher score represents better
mother–infant interaction. Run and interpret the appropriate analysis of variance.

Primiparous Multiparous Primiparous Multiparous

LBW LBW LBW LBW LBW LBW LBW LBW
,18 .18 NBW ,18 .18 NBW ,18 .18 NBW ,18 .18 NBW

4 6 8 3 7 9 7 6 2 7 2 10
6 5 7 4 8 8 4 2 5 1 1 9
5 5 7 3 8 9 5 6 8 4 9 8
3 4 6 3 9 9 4 5 7 4 9 7
3 9 7 6 8 3 4 5 7 4 8 10

13.2 In Exercise 13.1 the design may have a major weakness from a practical point of view. No-
tice the group of multiparous mothers under 18 years of age. Without regard to the data,
would you expect this group to lie on the same continuum as the others?

13.3 Refer to Exercise 13.1. It seems obvious that the sample sizes do not reflect the relative fre-
quency of age and parity characteristics in the population. Under what conditions would this
be a relevant consideration, and under what conditions would it not be?

13.4 Use simple effects to compare the three groups of multiparous mothers in Exercise 13.1.

13.5 In a study of memory processes, animals were tested in a one-trial avoidance-learning task.
The animals were presented with a fear-producing stimulus on the learning trial as soon as
they stepped across a line in the test chamber. The dependent variable was the time it took
them to step across the line on the test trial. Three groups of animals differed in terms of the
area in which they had electrodes implanted in their cortex (Neutral site, Area A, or Area B).
Each group was further divided and given electrical stimulation 50, 100, or 150 millisec-
onds after crossing the line and being presented with the fear-inducing stimulus. If the brain
area that was stimulated is involved in memory, stimulation would be expected to interfere
with memory consolidation and retard learning of the avoidance response, and the animal
should not show any hesitancy in recrossing the line. The data on latency to recross the line
are as follows:

Stimulation Area

Neutral Site Area A Area B

50 100 150 50 100 150 50 100 150

25 30 28 11 31 23 23 18 28
30 25 31 18 20 28 30 24 21
28 27 26 26 22 35 18 9 30
40 35 20 15 23 27 28 16 30
20 23 35 14 19 21 23 13 23

Run the analysis of variance.

Exercises

The following problems can all be solved by hand, but any of the standard computer software
packages will produce the same results.

13.1 In a study of mother–infant interaction, mothers are rated by trained observers on the qual-
ity of their interactions with their infants. Mothers are classified on the basis of whether or
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13.6 Plot the cell means in Exercise 13.5.

13.7 For the study in Exercise 13.5, to what would refer (if A were used to represent Area)?

13.8 Use simple effects to clarify the results for the Area factor in Exercise 13.5. Show that these
simple effects sum to the correct figure.

13.9 Use the Bonferroni test to compare the neutral site to each of the other areas in 
Exercise 13.5, ignoring the length of stimulation. (Hint: Follow the procedures outlined
in Chapters 11 and 12, but be sure that you take n as the number of scores on which the
mean is based.)

13.10 Use simple effects to examine the effect of delay of stimulation in area A for the data in
Exercise 13.5.

13.11 Refer to Exercise 11.3a in Chapter 11. You will see that it forms a 2 3 2 factorial. Run the
factorial analysis and interpret the results.

13.12 In Exercise 11.3 you ran a test between Groups 1 and 3 combined versus Groups 2 and 4
combined. How does that compare to testing the main effect of Level of processing in
Exercise 13.11? Is there any difference?

13.13 Make up a set of data for a 2 3 2 design that has two main effects but no interaction.

13.14 Make up a set of data for a 2 3 2 design that has no main effects but does have an interaction.

13.15 Describe a reasonable experiment for which the primary interest would be in the interaction
effect.

13.16 Assume that in Exercise 13.1 the last three participants in cell12 (Primiparous, LBW . 18)
and the last two participants in cell23 (Multiparous, NBW) refused to give consent for their
data to be used. Rerun the analysis.

13.17 Klemchuk, Bond, and Howell (1990) examined role-taking ability in younger and older
children depending on whether or not they attended daycare. The dependent variable was a
scaled role-taking score. The sample sizes were distinctly unequal. The data follow

Younger Older

No Daycare 20.139 22.002 21.631 22.173 0.179 20.167 20.285 0.851 20.397
20.829 21.503 0.009 21.934  21.448 0.351 20.240 0.160 20.535
21.470 21.54520.137 22.302 20.102 0.273 0.277 0.714

Daycare 21.412 20.681 0.638 20.222 0.668 0.859 0.782 0.851 20.158
20.896 20.464 21.659 22.096 0.493

Run the analysis of variance and draw the appropriate conclusions.

13.18 Use any standard computer software to analyze the data in Exercise 13.17. Compare your
results with those you obtained previously.

13.19 Calculate and for Exercise 13.1.

13.20 Calculate for the data in Exercise 13.1.

13.21 Calculate and for Exercise 13.5.

13.22 Calculate for the data in Exercise 13.5.

13.23 To study the effects of early experience on conditioning, an experimenter raised four groups
of rats in the presence of (1) no special stimuli, (2) a tone stimulus, (3) a vibratory stimulus,
and (4) both a tone and a vibratory stimulus. The rats were later classically conditioned us-
ing either a tone or a vibratory stimulus as the conditioned stimulus and one of three levels
of foot shock as the unconditioned stimulus. This is a 4 3 2 3 3 factorial design. The cell
means, rather than the raw data, follow. The SStotal 5 41,151.00 and 5 5. The dependent
variable was the number of trials to a predetermined criterion.
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Conditioned Stimulus

Tone Vibration

High Med Low High Med Low

Control 11 16 21 19 24 29
Tone 25 28 34 21 26 31
Vibration 6 13 20 40 41 52
Tone and Vibration 22 30 30 35 38 48

Analyze the data and interpret the results.

13.24 In Chapter 2 we considered Sternberg’s experiment on the time it takes to report whether a test
stimulus was part of a prior stimulus display. The independent variables were the number of
stimuli in the display (1, 3, or 5) and whether the test stimulus had been included in the dis-
play (Yes or No). The data are found in RxTime.dat on the Web site (www.uvm.edu/
~dhowell/methods). This is a two-way analysis of variance. Run the analysis and interpret the
results, including mention and interpretation of effect sizes.

13.25 Use any statistical package to run the two-way analysis of variance on Interval and Dosage
for the data in Epineq.dat. Compare the results you obtain here with the results you obtained
in Chapter 11, Exercises 11.28–11.30.

13.26 In Exercise 11.30 you calculated the average of the nine cell variances. How does that
answer compare to the from Exercise 13.25?

13.27 Obtain the Tukey test for Dosage from the analysis of variance in Exercise 13.25. Interpret
the results.

13.28 The data for the three-way analysis of variance given in Table 13.14 are found on the Web.
They are named Tab13–14.dat. The first three entries in each record represent the coding for
A (Experience), B (Road), and C (Conditions). The fourth entry is the dependent variable.
Use any analysis of variance package to reproduce the summary table found in Table 13.14c.

13.29 Using the data from Exercise 13.28, reproduce the simple effects shown in Table 13.14.

13.30 A psychologist interested in esthetics wanted to compare composers from the classical
period to composers from the romantic period. He randomly selected four composers from
each period, played one work from each of them, and had 5 subjects rate each of them. Dif-
ferent subjects were used for each composer. The data are given below. (Note that this is a
nested design.) Run the appropriate analysis of variance.

Classical Period Romantic Period

Composer A B C D E F G H

12 10 15 21 10 9 8 12
14 9 18 17 11 12 7 14
15 10 16 16 9 7 11 9
11 12 18 18 8 15 12 7
16 13 17 17 13 8 8 8

MSerror

www.uvm.edu/~dhowell/methods
www.uvm.edu/~dhowell/methods
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13.31 An educational researcher wanted to test the hypothesis that schools that implemented strict
dress codes produced students with higher academic performance. She randomly selected
7 schools in the state with dress codes and 7 schools that had no dress code. She then ran-
domly selected 10 students within each school and noted their performance on a standard-
ized test. The results follow.

Dress Code No Dress Code

School 1 2 3 4 5 6 7 8 9 10 11 12 13 14

91 75 80 84 59 62 87 69 72 78 66 67 52 63
78 73 77 92 67 93 78 74 56 77 55 82 71 65
86 65 70 78 68 83 83 67 71 75 58 76 73 75
70 68 68 78 64 78 79 64 92 56 73 78 68 82
78 70 70 77 75 65 53 61 88 84 55 87 65 77
48 60 69 76 74 71 66 76 64 83 70 87 69 81
89 72 64 74 67 65 76 74 79 67 64 63 79 67
90 77 73 81 56 85 67 71 73 70 52 68 67 73
85 75 70 75 61 74 74 62 72 31 64 86 66 72
82 80 74 81 67 83 72 67 70 70 79 84 64 56

13.32 Rerun the analysis in Exercise 13.31 but treat both variables as fixed and crossed. Show that
the SSschool(code) in Exercise13.31 is the sum of SSschool and SSschool*code in this analysis. (Hint:
If you run this using SPSS you will have to have both sets of schools numbered 1–7.)

Discussion Questions

13.33 In the analysis of Seligman et al. (1990) data on explanatory style (Table 13.15) you will
note that there are somewhat more males than females in the Optimist group and more
females than males in the Pessimist group. Under what conditions might this affect the way
you would want to deal with unequal sample sizes, and when might you wish to ignore it?

13.34 Think of a nonstatistical example that could be used to explain to a student in an introduc-
tory statistics course why it is possible with any of the pairwise comparison tests to show
that Group 1 is not different from Group 2, Group 2 is not different from Group 3, but
Group 1 is different from Group 3.

13.35 Find an example of a three-way factorial in the research literature in which at least one of
the interactions is significant and meaningful. Then create a data set that mirrors those
results.
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