
CHAPTER 6

Generalized linear models

6.1 Introduction

Generalized linear modeling is a framework for statistical analysis that includes
linear and logistic regression as special cases. Linear regression directly predicts
continuous data y from a linear predictor Xβ = β0 + X1β1 + · · · + Xkβk. Logistic
regression predicts Pr(y = 1) for binary data from a linear predictor with an inverse-
logit transformation. A generalized linear model involves:
1. A data vector y = (y1, . . . , yn)
2. Predictors X and coefficients β, forming a linear predictor Xβ

3. A link function g, yielding a vector of transformed data ŷ = g−1(Xβ) that are
used to model the data

4. A data distribution, p(y|ŷ)
5. Possibly other parameters, such as variances, overdispersions, and cutpoints,

involved in the predictors, link function, and data distribution.
The options in a generalized linear model are the transformation g and the data
distribution p.
• In linear regression, the transformation is the identity (that is, g(u) ≡ u) and

the data distribution is normal, with standard deviation σ estimated from data.
• In logistic regression, the transformation is the inverse-logit, g−1(u) = logit−1(u)

(see Figure 5.2a on page 80) and the data distribution is defined by the proba-
bility for binary data: Pr(y=1) = ŷ.

This chapter discusses several other classes of generalized linear model, which we
list here for convenience:
• The Poisson model (Section 6.2) is used for count data; that is, where each

data point yi can equal 0, 1, 2, . . . . The usual transformation g used here is the
logarithmic, so that g(u) = exp(u) transforms a continuous linear predictor Xiβ
to a positive ŷi. The data distribution is Poisson.
It is usually a good idea to add a parameter to this model to capture overdis-
persion, that is, variation in the data beyond what would be predicted from the
Poisson distribution alone.

• The logistic-binomial model (Section 6.3) is used in settings where each data
point yi represents the number of successes in some number ni of tries. (This ni,
the number of tries for data point i, is not the same as n, the number of data
points.) In this model, the transformation g is the inverse-logit and the data
distribution is binomial.
As with Poisson regression, the binomial model is typically improved by the
inclusion of an overdispersion parameter.

• The probit model (Section 6.4) is the same as logistic regression but with the
logit function replaced by the normal cumulative distribution, or equivalently
with the normal distribution instead of the logistic in the latent-data errors.
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• Multinomial logit and probit models (Section 6.5) are extensions of logistic and
probit regressions for categorical data with more than two options, for example
survey responses such as Strongly Agree, Agree, Indifferent, Disagree, Strongly
Disagree. These models use the logit or probit transformation and the multi-
nomial distribution and require additional parameters to model the multiple
possibilities of the data.
Multinomial models are further classified as ordered (for example, Strongly Agree,
. . . , Strongly Disagree) or unordered (for example, Vanilla, Chocolate, Straw-
berry, Other).

• Robust regression models (Section 6.6) replace the usual normal or logistic models
by other distributions1 (usually the so-called Student-t family of models) that
allow occasional extreme values.
This chapter briefly goes through many of these models, with an example of

overdispersed Poisson regression in Section 6.2 and an ordered logistic example in
Section 6.5. Finally, in Section 6.8 we discuss the connections between generalized
linear models and behavioral models of choice that are used in psychology and eco-
nomics, using as an example the logistic regression for well switching in Bangladesh.
The chapter is not intended to be a comprehensive overview of generalized linear
models; rather, we want to give a sense of the variety of regression models that can
be appropriate for different data structures that we have seen in applications.

Fitting generalized linear models in R

Because of the variety of options involved, generalized linear modeling can be more
complicated than fitting linear and logistic regressions. The starting point in R is
the glm() function, which we have already used extensively for logistic regression
in Chapter 5 and is a generalization of the linear-modeling function lm(). We can
use glm() directly to fit logistic-binomial, probit, and Poisson regressions, among
others, and to correct for overdispersion where appropriate. Ordered logit and probit
regressions can be fit using the polr() function, unordered probit models can be
fit using the mnp package, and t models can be fit using the hett package in R. (See
Appendix C for information on these and other R packages.) Beyond this, most of
these models and various generalizations can be fit in Bugs, as we discuss in Part
2B of this book in the context of multilevel modeling.

6.2 Poisson regression, exposure, and overdispersion

The Poisson distribution is used to model variation in count data (that is, data
that can equal 0, 1, 2, . . .). After a brief introduction, we illustrate in detail with the
example of New York City police stops that we introduced in Section 1.2.

Traffic accidents

In the Poisson model, each unit i corresponds to a setting (typically a spatial
location or a time interval) in which yi events are observed. For example, i could

1 In the statistical literature, generalized linear models have been defined using exponential-family
models, a particular class of data distributions that excludes, for example, the t distribution. For
our purposes, however, we use the term “generalized linear model” to apply to any model with
a linear predictor, link function, and data distribution, not restricting to exponential-family
models.
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index street intersections in a city and yi could be the number of traffic accidents
at intersection i in a given year.

As with linear and logistic regression, the variation in y can be explained with
linear predictors X . In the traffic accidents example, these predictors could include:
a constant term, a measure of the average speed of traffic near the intersection, and
an indicator for whether the intersection has a traffic signal. The basic Poisson
regression model has the form

yi ∼ Poisson(θi). (6.1)

The parameter θi must be positive, so it makes sense to fit a linear regression on
the logarithmic scale:

θi = exp(Xiβ). (6.2)

Interpreting Poisson regression coefficients

The coefficients β can be exponentiated and treated as multiplicative effects. For
example, suppose the traffic accident model is

yi ∼ Poisson(exp(2.8 + 0.012Xi1 − 0.20Xi2)),

where Xi1 is average speed (in miles per hour, or mph) on the nearby streets and
Xi2 = 1 if the intersection has a traffic signal or 0 otherwise. We can then interpret
each coefficient as follows:
• The constant term gives the intercept of the regression, that is, the prediction if

Xi1 = 0 and Xi2 = 0. Since this is not possible (no street will have an average
speed of 0), we will not try to interpret the constant term.

• The coefficient of Xi1 is the expected difference in y (on the logarithmic scale) for
each additional mph of traffic speed. Thus, the expected multiplicative increase
is e0.012 = 1.012, or a 1.2% positive difference in the rate of traffic accidents per
mph. Since traffic speeds vary by tens of mph, it would actually make sense to
define Xi1 as speed in tens of mph, in which case its coefficient would be 0.12,
corresponding to a 12% increase (more precisely, e0.12 = 1.127: a 12.7% increase)
in accident rate per ten mph.

• The coefficient of Xi2 tells us that the predictive difference of having a traffic
signal can be found be multiplying the accident rate by exp(−0.20) = 0.82
yielding a reduction of 18%.

As with regression models in general, each coefficient is interpreted as a comparison
in which one predictor differs by one unit while all the other predictors remain at
the same level, which is not necessarily the most appropriate assumption when
extending the model to new settings. For example, installing traffic signals in all
the intersections in the city would not necessarily be expected to reduce accidents
by 18%.

Poisson regression with an exposure input

In most applications of Poisson regression, the counts can be interpreted relative
to some baseline or “exposure,” for example, the number of vehicles that travel
through the intersection. In the general Poisson regression model, we think of yi as
the number of cases in a process with rate θi and exposure ui.

yi ∼ Poisson(uiθi), (6.3)
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where, as before, θi = exp(Xiβ). The logarithm of the exposure, log(ui), is called
the offset in generalized linear model terminology.

The regression coefficients β summarize the associations between the predictors
and θi (in our example, the rate of traffic accidents per vehicle).
Including log(exposure) as a predictor in the Poisson regression. Putting the log-
arithm of the exposure into the model as an offset, as in model (6.3), is equivalent
to including it as a regression predictor, but with its coefficient fixed to the value
1. Another option is to include it as a predictor and let its coefficient be estimated
from the data. In some settings, this makes sense in that it can allow the data to
be fit better; in other settings, it is simpler to just keep it as an offset so that the
estimated rate θ has a more direct interpretation.

Differences between the binomial and Poisson models

The Poisson model is similar to the binomial model for count data (see Section 6.3)
but is applied in slightly different situations:
• If each data point yi can be interpreted as the number of “successes” out of ni

trials, then it is standard to use the binomial/logistic model (as described in
Section 6.3) or its overdispersed generalization.

• If each data point yi does not have a natural limit—it is not based on a number of
independent trials—then it is standard to use the Poisson/logarithmic regression
model (as described here) or its overdispersed generalization.

Example: police stops by ethnic group

For the analysis of police stops:
• The units i are precincts and ethnic groups (i = 1, . . . , n = 3 × 75).
• The outcome yi is the number of stops of members of that ethnic group in that

precinct.
• The exposure ui is the number of arrests by people of that ethnic group in that

precinct in the previous year as recorded by the Department of Criminal Justice
Services (DCJS).

• The inputs are the precinct and ethnicity indexes.
• The predictors are a constant, 74 precinct indicators (for example, precincts 2–

75, with precinct 1 as the baseline), and 2 ethnicity indicators (for example, for
hispanics and whites, with blacks as the baseline).
We illustrate model fitting in three steps. First, we fit a model with the offset

and a constant term alone:

R output glm(formula = stops ~ 1, family=poisson, offset=log(arrests))
coef.est coef.se

(Intercept) -3.4 0.0
n = 225, k = 1
residual deviance = 44877, null deviance = 44877 (difference = 0)

Next, we add ethnicity indicators:

R output glm(formula = stops ~ factor(eth), family=poisson,
offset=log(arrests))

coef.est coef.se
(Intercept) -3.30 0.00



POISSON REGRESSION, EXPOSURE, AND OVERDISPERSION 113

factor(eth)2 0.06 0.01
factor(eth)3 -0.18 0.01
n = 225, k = 3
residual deviance = 44133, null deviance = 44877 (difference = 744.1)

The two ethnicity coefficients are highly statistically significant, and the deviance
has decreased by 744, much more than the 2 that would be expected if ethnicity had
no explanatory power in the model. Compared to the baseline category 1 (blacks),
we see that category 2 (hispanics) has 6% more stops, and category 3 (whites) has
18% fewer stops, in proportion to DCJS arrest rates.

Now we add the 75 precincts:

R outputglm(formula = stops ~ factor(eth) + factor(precinct), family=poisson,
offset=log(arrests))

coef.est coef.se
(Intercept) -4.03 0.05
factor(eth)2 0.00 0.01
factor(eth)3 -0.42 0.01
factor(precinct)2 -0.06 0.07
factor(precinct)3 0.54 0.06
. . .
factor(precinct)75 1.41 0.08
n = 225, k = 77
residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)
overdispersion parameter = 18.2

The decrease in the deviance, from 44,000 to 2800, is huge—much larger than the
decrease of 74 that would be expected if the precinct factor were random noise. After
controlling for precincts, the ethnicity coefficients have changed a bit—blacks and
hispanics (categories 1 and 2) have approximately the same rate of being stopped,
and whites (category 3) have about a 42% lower chance than minorities of being
stopped—all in comparison to the DCJS arrest rates, which are used as a baseline.2

Thus, controlling for precinct actually increases the difference between whites
and minorities in the rate of stops. We explore this issue further in Section 15.1.

We can also look at the precinct coefficients in the regression—for example,
the stop rates (per DCJS arrest) after controlling for ethnicity, are approximately
6% lower in precinct 2, exp(0.54) = 1.72 times as high in precinct 3, . . . , and
exp(1.41) = 4.09 times as high in precinct 75, as compared to the baseline precinct
1.

The exposure input

In this example, stops by police are compared to the number of arrests in the
previous year, so that the coefficient for the “hispanic” or “white” indicator will be
greater than 1 if the people in that group are stopped disproportionately to their
rates of arrest, as compared to blacks. Similarly, the coefficients for the indicators
for precincts 2–75 will exceed 1 for those precincts where stops are more frequent
than in precinct 1, as compared to their arrest rates in the previous year.

In Section 15.1 we shall consider another possible analysis that uses population,
rather than previous year’s arrests, as the exposure.

2 More precisely, the exponentiated coefficient for whites is exp(−0.42) = 0.66, so their chance
of being stopped is actually 34% lower—the approximation exp(−β) ≈ 1−β is accurate only
when β is close to 0.
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Figure 6.1 Testing for overdispersion in a Poisson regression model: (a) residuals versus
predicted values, (b) standardized residuals versus predicted values. As expected from the
model, the variance of the residuals increases as predicted values increase. The standardized
residuals should have mean 0 and standard deviation 1 (hence the lines at ±2 indicating
approximate 95% error bounds). The variance of the standardized residuals is much greater
than 1, indicating a large amount of overdispersion.

Overdispersion

Poisson regressions do not supply an independent variance parameter σ, and as a
result can be overdispersed and usually are, a point we considered briefly on page
21 and pursue further here in a regression context. Under the Poisson distribution
the variance equals the mean—that is, the standard deviation equals the square
root of the mean. In the model (6.3), E(yi) = uiθi and sd(yi) =

√
uiθi. We define

the standardized residuals:

zi =
yi − ŷi

sd(ŷi)

=
yi − uiθ̂i√

uiθ̂i

, (6.4)

where θ̂i = eXiθ̂. If the Poisson model is true, then the zi’s should be approxi-
mately independent (not exactly independent, since the same estimate β̂ is used
in computing all of them), each with mean 0 and standard deviation 1. If there is
overdispersion, however, we would expect the zi’s to be larger, in absolute value,
reflecting the extra variation beyond what is predicted under the Poisson model.

We can test for overdispersion in classical Poisson regression by computing the
sum of squares of the n standardized residuals,

∑n
i=1 z2

i , and comparing this to the
χ2

n−k distribution, which is what we would expect under the model (using n−k
rather than n degrees of freedom to account for the estimation of k regression
coefficients). The χ2

n−k distribution has average value n−k, and so the ratio,

estimated overdispersion =
1

n − k

n∑

i=1

z2
i , (6.5)

is a summary of the overdispersion in the data compared to the fitted model.
For example, the classical Poisson regression for the police stops has n = 225

data points and k = 77 linear predictors. Figure 6.1 plots the residuals yi − ŷi and
standardized residuals zi = (yi − ŷi)/sd(ŷi), as a function of predicted values from
the Poisson regression model. As expected from the Poisson model, the variance of
the residuals increases as the predicted values increase, and the variance of the stan-
dardized residuals is approximately constant. However, the standardized residuals
have a variance much greater than 1, indicating serious overdispersion.



POISSON REGRESSION, EXPOSURE, AND OVERDISPERSION 115

To program the overdispersion test in R:
R codeyhat <- predict (glm.police, type="response")

z <- (stops-yhat)/sqrt(yhat)
cat ("overdispersion ratio is ", sum(z^2)/(n-k), "\n")
cat ("p-value of overdispersion test is ", pchisq (sum(z^2), n-k), "\n")

The sum of squared standardized residuals is
∑n

i=1 z2
i = 2700, compared to an ex-

pected value of n−k = 148. The estimated overdispersion factor is 2700/148 = 18.2,
and the p-value is 1, indicating that the probability is essentially zero that a random
variable from a χ2

148 distribution would be as large as 2700. In summary, the police
stops data are overdispersed by a factor of 18, which is huge—even an overdispersion
factor of 2 would be considered large—and also statistically significant.

Adjusting inferences for overdispersion

In this example, the basic correction for overdispersion is to multiply all regression
standard errors by

√
18.2 = 4.3. Luckily, it turns out that our main inferences are

not seriously affected. The parameter of primary interest is α3—the log of the rate of
stops for whites compared to blacks—which is estimated at −0.42±0.01 before (see
the regression display on page 113) and now becomes −0.42 ± 0.04. Transforming
back to the original scale, whites are stopped at an estimated 66% of the rate of
blacks, with an approximate 50% interval of e−0.42±(2/3)0.04 = [0.64, 0.67] and an
approximate 95% interval of e−0.42±2·0.04 = [0.61, 0.71].

Fitting the overdispersed-Poisson or negative-binomial model

More simply, we can fit an overdispersed model using the quasipoisson family:
R outputglm(formula = stops ~ factor(eth) + factor(precinct), family=quasipoisson,

offset=log(arrests))
coef.est coef.se

(Intercept) -4.03 0.21
factor(eth)2 0.00 0.03
factor(eth)3 -0.42 0.04
factor(precinct)2 -0.06 0.30
factor(precinct)3 0.54 0.24
. . .
factor(precinct)75 1.41 0.33
n = 225, k = 77
residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)
overdispersion parameter = 18.2

We write this model as

yi ∼ overdispersed Poisson (ui exp(Xiβ), ω),

where ω is the overdispersion parameter (estimated at 18.2 in this case). Strictly
speaking, “overdispersed Poisson” is not a single model but rather describes any
count-data model for which the variance of the data is ω times the mean, reducing
to the Poisson if ω = 1.

A specific model commonly used in this scenario is the so-called negative-binomial
distribution:

yi ∼ Negative-binomial (mean = ui exp(Xiβ), overdispersion = ω).

Unfortunately, the negative-binomial distribution is conventionally expressed not
based on its mean and overdispersion but rather in terms of parameters a and b,



116 GENERALIZED LINEAR MODELS

where the mean of the distribution is a/b and the overdispersion is 1 + 1/b. One
must check the parameterization when fitting such models, and it can be helpful to
double-check by simulating datasets from the fitted model and checking that they
look like the actual data (see Section 8.3).

We return to the police stops example, correcting for overdispersion using a
multilevel model, in Section 15.1.

6.3 Logistic-binomial model

Chapter 5 discussed logistic regression for binary (Yes/No or 0/1) data. The logistic
model can also be used for count data, using the binomial distribution (see page
16) to model the number of “successess” out of a specified number of possibilities,
with the probability of success being fit to a logistic regression.

The binomial model for count data, applied to death sentences

We illustrate binomial logistic regression in the context of a study of the proportion
of death penalty verdicts that were overturned, in each of 34 states in the 23 years,
1973–1995. The units of this analysis are the 34×23 = 784 state-years (actually, we
only have n = 450 state-years in our analysis, since different states have restarted
the death penalty at different times since 1973). For each state-year i, we label ni

as the number of death sentences in that state in that year and yi as the number of
these verdicts that were later overturned by higher courts. Our model has the form

yi ∼ Binomial(ni, pi)
pi = logit−1(Xiβ), (6.6)

where X is a matrix of predictors. To start, we use

• A constant term

• 33 indicators for states

• A time trend for years (that is, a variable that equals 1 for 1973, 2 for 1974, 3
for 1975, and so on).

This model could also be written as

yst ∼ Binomial(nst, pst)
pst = logit−1(µ + αs + βt),

with subscripts s for state and t for time (that is, year−1972). We prefer the form
(6.6) because of its greater generality. But it is useful to be able to go back and
forth between the two formulations.

Overdispersion

When logistic regression is applied to count data, it is possible—in fact, usual—for
the data to have more variation than is explained by the model. This overdisper-
sion problem arises because the logistic regression model does not have a variance
parameter σ.

More specifically, if data y have a binomial distribution with parameters n and
p, then the mean of y is np and the standard deviation of y is

√
np(1 − p). As in
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model (6.4), we define the standardized residual for each data point i as

zi =
yi − ŷi

sd(ŷi)

=
yi − nip̂i√
nip̂i(1 − p̂i)

, (6.7)

where pi = logit−1(Xiβ̂). If the binomial model is true, then the zi’s should be
approximately independent, each with mean 0 and standard deviation 1.

As with the Poisson model, we can then compute the estimated overdispersion
1

n−k

∑n
i=1 z2

i (see model (6.5) on page 114) and formally test for overdispersion by
comparing

∑n
i=1 z2

i to a χ2
n−k distribution. (The n here represents the number of

data points and is unrelated to the notation ni in models (6.6) and (6.7) referring
to the number of cases in state-year i.)

In practice, overdispersion happens almost all the time that logistic regression
(or Poisson regression, as discussed in Section 6.2) is applied to count data. In the
more general family of distributions known as overdispersed models, the standard
deviation can have the form

√
ωnp(1 − p), where ω > 1 is known as the overdis-

persion parameter. The overdispersed model reduces to binomial logistic regression
when ω = 1.

Adjusting inferences for overdispersion

As with Poisson regression, a simple correction for overdispersion is to multiply the
standard errors of all the coefficient estimates by the square root of the estimated
overdispersion (6.5). Without this adjustment, the confidence intervals would be
too narrow, and inferences would be overconfident.

Overdispersed binomial regressions can be fit in R using the glm() function
with the quasibinomial(link="logit") family. A corresponding distribution is
the beta-binomial.

Binary-data model as a special case of the count-data model

Logistic regression for binary data as in Chapter 5 is a special case of the binomial
form (6.6) with ni ≡ 1 for all i. Overdispersion at the level of the individual
data points cannot occur in the binary model, which is why we did not introduce
overdispersed models in Chapter 5.

Count-data model as a special case of the binary-data model

Conversely, the binomial model (6.6) can be expressed in the binary-data form (5.1)
by considering each of the ni cases as a separate data point. The sample size of
this expanded regression is

∑
i ni, and the data points are 0’s and 1’s: each unit i

corresponds to yi ones and ni−yi zeroes. Finally, the X matrix is expanded to have∑
i ni rows, where the ith row of the original X matrix becomes ni identical rows in

the expanded matrix. In this parameterization, overdispersion could be included in
a multilevel model by creating an index variable for the original measurements (in
the death penalty example, taking on the values 1, . . . , 450) and including a varying
coefficient or error term at this level.
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Figure 6.2 Normal density function with mean 0 and standard deviation 1.6. For most
practical purposes, this is indistinguishable from the logistic density (Figure 5.5 on page
85). Thus we can interpret coefficients in probit models as logistic regression coefficients
divided by 1.6.

6.4 Probit regression: normally distributed latent data

The probit model is the same as the logit, except it replaces the logistic by the
normal distribution (see Figure 5.5). We can write the model directly as

Pr(yi = 1) = Φ(Xiβ),

where Φ is the normal cumulative distribution function. In the latent-data formu-
lation,

yi =
{

1 if zi > 0
0 if zi < 0

zi = Xiβ + εi

εi ∼ N(0, 1), (6.8)

that is, a normal distribution for the latent errors with mean 0 and standard devi-
ation 1.

More generally, the model can have an error variance, so that the last line of
(6.8) is replaced by

εi ∼ N(0, σ2),
but then σ is nonidentified, because the model is unchanged if we multiply σ by
some constant c and then multiply the vector β by c also. Hence we need some
restriction on the parameters, and the standard approach is to fix σ = 1 as in (6.8).

Probit or logit?

As is shown in Figure 6.2 (compare to Figure 5.5 on page 85), the probit model
is close to the logit with the residual standard deviation of ε set to 1 rather than
1.6. As a result, coefficients in a probit regression are typically close to logistic
regression coefficients divided by 1.6. For example, here is the probit version of the
logistic regression model on page 88 for well switching:

R output glm(formula = switch ~ dist100, family=binomial(link="probit"))
coef.est coef.se

(Intercept) 0.38 0.04
dist100 -0.39 0.06
n = 3020, k = 2
residual deviance = 4076.3, null deviance = 4118.1 (difference = 41.8)
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For the examples we have seen, the choice of logit or probit model is a matter of
taste or convenience, for example, in interpreting the latent normal errors of probit
models. When we see probit regression coefficients, we can simply multiply them
by 1.6 to obtain the equivalent logistic coefficients. For example, the model we have
just fit, Pr(y = 1) = Φ(0.38− 0.39x), is essentially equivalent to the logistic model
Pr(y = 1) = logit−1(1.6(0.38 − 0.39x)) = logit−1(0.61 − 0.62x)), which indeed is
the logit model estimated on page 88.

6.5 Multinomial regression

Ordered and unordered categorical outcomes

Logistic and probit regression can be extended to multiple categories, which can
be ordered or unordered. Examples of ordered categorical outcomes include Demo-
crat, Independent, Republican; Yes, Maybe, No; Always, Frequently, Often, Rarely,
Never. Examples of unordered categorical outcomes include Liberal, Labor, Con-
servative; Football, Basketball, Baseball, Hockey; Train, Bus, Automobile, Walk;
White, Black, Hispanic, Asian, Other. We discuss ordered categories first, includ-
ing an extended example, and then briefly discuss regression models for unordered
categorical variables.

The ordered multinomial logit model

Consider a categorical outcome y that can take on the values 1, 2, . . . , K. The
ordered logistic model can be written in two equivalent ways. First we express it as
a series of logistic regressions:

Pr(y > 1) = logit−1(Xβ)
Pr(y > 2) = logit−1(Xβ − c2)
Pr(y > 3) = logit−1(Xβ − c3)

. . .

Pr(y > K−1) = logit−1(Xβ − cK−1). (6.9)

The parameters ck (which are called thresholds or cutpoints, for reasons which we
shall explain shortly) are constrained to increase: 0 = c1 < c2 < · · · < cK−1, because
the probabilities in (6.9) are strictly decreasing (assuming that all K outcomes have
nonzero probabilities of occurring). Since c1 is defined to be 0, the model with K
categories has K−2 free parameters ck in addition to β. This makes sense since
K =2 for the usual logistic regression, for which only β needs to be estimated.

The cutpoints c2, . . . , cK−1 can be estimated using maximum likelihood, simul-
taneously with the coefficients β. For some datasets, however, the parameters can
be nonidentified, as with logistic regression for binary data (see Section 5.8).

The expressions in (6.9) can be subtracted to get the probabilities of individual
outcomes:

Pr(y = k) = Pr(y > k−1) − Pr(y > k)
= logit−1(Xβ − ck−1) − logit−1(Xβ − ck).
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β =

β ε

β =

β ε

β =

β ε

Figure 6.3 Illustration of cutpoints in an ordered categorical logistic model. In this example,
there are K = 4 categories and the cutpoints are c1 = 0, c2 = 0.8, c3 = 1.8. The three graphs
illustrate the distribution of the latent outcome z corresponding to three different values of
the linear predictor, Xβ. For each, the cutpoints show where the outcome y will equal 1,
2, 3, or 4.

Latent variable interpretation with cutpoints

The ordered categorical model is easiest to understand by generalizing the latent
variable formulation (5.4) to K categories:

yi =






1 if zi < 0
2 if zi ∈ (0, c2)
3 if zi ∈ (c2, c3)

. . .
K−1 if zi ∈ (cK−2, cK−1)
K if zi > cK−1

zi = Xiβ + εi, (6.10)

with independent errors εi that have the logistic distribution, as in (5.4).
Figure 6.3 illustrates the latent variable model and shows how the distance be-

tween any two adjacent cutpoints ck−1, ck affects the probability that y = k. We
can also see that if the linear predictor Xβ is high enough, y will almost certainly
take on the highest possible value, and if Xβ is low enough, y will almost certainly
equal the lowest possible value.

Example: storable votes

We illustrate ordered categorical data analysis with a study from experimental
economics, on the topic of “storable votes.” This example is somewhat complicated,
and illustrates both the use and potential limitations of the ordered logistic model.
In the experiment under study, college students were recruited to play a series of
voting games. In each game, a set of k players vote on two issues, with the twist
being that each player is given a total of 4 votes. On the first issue, a player has
the choice of casting 1, 2, or 3 votes, with the remaining votes cast on the second
issue. The winning side of each issue is decided by majority vote, at which point
the players on the winning side each get positive payoffs, which are drawn from a
uniform distribution on the interval [1, 100].

To increase their expected payoffs, players should follow a strategy of casting more
votes for issues where their potential payoffs are higher. The way this experiment is
conducted, the players are told the distribution of possible payoffs, and they are told
their potential payoff for each issue just before the vote. Thus, in making the choice
of how many votes to cast in the first issue, each player knows his or her potential
payoff for that vote only. Then, the players are told their potential payoffs for the
second vote, but no choice is involved at this point since they will automatically
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Figure 6.4 Data from some example individuals in the storable votes study. Vertical lines
show estimated cutpoints, and curves show expected responses as estimated using ordered
logistic regressions. The two left graphs show data that fit the model reasonably well; the
others fit the model in some ways but not perfectly.

spend all their remaining votes. Players’ strategies can thus be summarized as their
choices of initial votes, y = 1, 2, or 3, given their potential payoff, x.

Figure 6.4 graphs the responses from six of the hundred or so students in the
experiment, with these six chosen to represent several different patterns of data.
We were not surprised to see that responses were generally monotonic—that is,
students tend to spend more votes when their potential payoff is higher—but it
was interesting to see the variety of approximately monotonic strategies that were
chosen.

As is apparent in Figure 6.4, most individuals’ behaviors can be summarized by
three parameters—the cutpoint between votes of 1 and 2, the cutpoint between 2
and 3, and the fuzziness of these divisions. The two cutpoints characterize the chosen
monotone strategy, and the sharpness of the divisions indicates the consistency with
which the strategy is followed.

Three parameterizations of the ordered logistic model. It is convenient to model
the responses using an ordered logit, using a parameterization slightly different
from that of model (6.10) to match up with our understanding of the monotone
strategies. The model is

yi =






1 if zi < c1.5

2 if zi ∈ (c1.5, c2.5)
3 if zi > c2.5

zi ∼ logistic(xi, σ
2). (6.11)

In this model, the cutpoints c1.5 and c2.5 are on the 1–100 scale of the data x, and
the scale σ of the errors ε corresponds to the fuzziness of the cutpoints.

This model has the same number of parameters as the conventional parameter-
ization (6.10)—two regression coefficients have disappeared, while one additional
free cutpoint and an error variance have been added. Here is model (6.10) with
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K = 3 categories and one predictor x,

yi =






1 if zi < 0
2 if zi ∈ (0, c2)
3 if zi > c2

zi = α + βx + εi, (6.12)

with independent errors εi ∼ logistic(0, 1).
Yet another version of the model keeps the two distinct cutpoints but removes

the constant term, α; thus,

yi =






1 if zi < c1|2
2 if zi ∈ (0, c2|3)
3 if zi > c2|3

zi = βx + εi, (6.13)

with independent errors εi ∼ logistic(0, 1).
The three models are in fact equivalent, with zi/β in (6.13) and (zi − α)/β in

(6.12) corresponding to zi in (6.11) and the parameters matching up as follows:

Model (6.11) Model (6.12) Model (6.13)

c1.5 −α/β −c1|2/β
c2.5 (c2 − α)/β −c2|3/β
σ 1/β 1/β

We prefer parameterization (6.11) because we can directly interpret c1.5 and c2.5

as thresholds on the scale of the input x, and σ corresponds to the gradualness
of the transitions from 1’s to 2’s and from 2’s to 3’s. It is sometimes convenient,
however, to fit the model using the standard parameterizations (6.12) and (6.13),
and so it is helpful to be able to go back and forth between the models.

Fitting the model in R. We can fit ordered logit (or probit) models using the polr
(“proportional odds logistic regression”) function, which is part of the MASS package
in R. We illustrate with data from one of the persons in the storable votes study:

R code polr (factor(y) ~ x)

which yields

R output Coefficients:
x

0.07911799

Intercepts:
1|2 2|3

1.956285 4.049963

From the output we can see this has fitted a model of the form (6.13), with
estimates β̂ = 0.079, ĉ1|2 = 1.96 and ĉ2|3 = 4.05. Transforming to model (6.11) using
the table of the three models, we get ĉ1.5 = 1.96/0.079 = 24.8, ĉ2.5 = 4.03/0.079 =
51.3, and σ̂ = 1/0.079 = 12.7.

Displaying the fitted model. Figure 6.4 shows the cutpoints c1.5, c2.5 and expected
votes E(y) as a function of x, as estimated from the data from each of several
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students. From the model (6.11), the expected votes can be written as

E(y|x) = 1 · Pr(y = 1|x) + 2 · Pr(y = 2|x) + 3 · Pr(y = 3|x)

= 1 ·
(

1 − logit−1

(
x − c1.5

σ

))
+

+ 2 ·
(

logit−1

(
x − c1.5

σ

)
− logit−1

(
x − c2.5

σ

))
+

+ 3 · logit−1

(
x − c2.5

σ

)
, (6.14)

where logit−1(x) = ex/(1+ex) is the logistic curve displayed in Figure 5.2a on page
80. Expression (6.14) looks complicated but is easy to program as a function in R:

R codeexpected <- function (x, c1.5, c2.5, sigma){
p1.5 <- invlogit ((x-c1.5)/sigma)
p2.5 <- invlogit ((x-c2.5)/sigma)
return ((1*(1-p1.5) + 2*(p1.5-p2.5) + 3*p2.5))

}

The data, cutpoints, and curves in Figure 6.4 can then be plotted as follows:

R codeplot (x, y, xlim=c(0,100), ylim=c(1,3), xlab="Value", ylab="Vote")
lines (rep (c1.5, 2), c(1,2))
lines (rep (c2.5, 2), c(2,3))
curve (expected (x, c1.5, c2.5, sigma), add=TRUE)

Having displayed these estimates for individuals, the next step is to study the dis-
tribution of the parameters in the population, to understand the range of strategies
applied by the students. In this context, the data have a multilevel structure—30
observations for each of several students—and we pursue this example further in
Section 15.2 in the chapter on multilevel generalized linear models.

Alternative approaches to modeling ordered categorical data

Ordered categorical data can be modeled in several ways, including:
• Ordered logit model with K−1 cutpoint parameters, as we have just illustrated.
• The same model in probit form.
• Simple linear regression (possibly preceded by a simple transformation of the

outcome values). This can be a good idea if the number of categories is large
and if they can be considered equally spaced. This presupposes that a reasonable
range of the categories is actually used. For example, if ratings are on a 1 to 10
scale, but in practice always equal 9 or 10, then a linear model probably will not
work well.

• Separate logistic regressions—that is, a logistic regression model for y = 1 versus
y = 2, . . . , K; then, if y ≥ 2, a logistic regression for y = 2 versus y = 3, . . . , K;
and so on up to a model, if y ≥ K −1 for y = K−1 versus y = K. Or this can be
set up using the probit model. Separate logistic (or probit) regressions have the
advantage of more flexibility in fitting data but the disadvantage of losing the
simple latent-variable interpretation of the cutpoint model we have described.

• Finally, robit regression, which we discuss in Section 6.6, is a competitor to
logistic regression that accounts for occasional aberrant data such as the outlier
in the upper-right plot of Figure 6.4.
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Figure 6.5 Hypothetical data to be fitted using logistic regression: (a) a dataset with an
“outlier” (the unexpected y = 1 value near the upper left); (b) data simulated from a
logistic regression model, with no outliers. In each plot, the dotted and solid lines show
the fitted logit and robit regressions, respectively. In each case, the robit line is steeper—
especially for the contaminated data—because it effectively downweights the influence of
points that do not appear to fit the model.

Unordered categorical regression

As discussed at the beginning of Section 6.5, it is sometimes appropriate to model
discrete outcomes as unordered. An example that arose in our research was the well-
switching problem. As described in Section 5.4, households with unsafe wells had
the option to switch to safer wells. But the actual alternatives are more complicated
and can be summarized as: (0) do nothing, (1) switch to an existing private well,
(2) switch to an existing community well, (3) install a new well yourself. If these are
coded as 0, 1, 2, 3, then we can model Pr(y ≥ 1), Pr(y ≥ 2|y ≥ 1), Pr(y = 3|y ≥ 2).
Although the four options could be considered to be ordered in some way, it does not
make sense to apply the ordered multinomial logit or probit model, since different
factors likely influence the three different decisions. Rather, it makes more sense to
fit separate logit (or probit) models to each of the three components of the decision:
(a) do you switch or do nothing? (b) if you switch, do you switch to an existing
well or build a new well yourself? (c) if you switch to an existing well, is it a private
or community well? More about this important category of model can be found in
the references at the end of this chapter.

6.6 Robust regression using the t model

The t distribution instead of the normal

When a regression model can have occasional very large errors, it is generally more
appropriate to use a Student-t rather than normal distribution for the errors. The
basic form of the regression is unchanged—y = Xβ + ε—but with a different dis-
tribution for the ε’s and thus a slightly different method for estimating β (see the
discussion of maximum likelihood estimation in Chapter 18) and a different dis-
tribution for predictions. Regressions estimated using the t model are said to be
robust in that the coefficient estimates are less influenced by individual outlying
data points. Regressions with t errors can be fit using the tlm() function in the
hett package in R.

Robit instead of logit or probit

Logistic regression (and the essentially equivalent probit regression) are flexible
and convenient for modeling binary data, but they can run into problems with
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outliers. Outliers are usually thought of as extreme observations, but in the context
of discrete data, an “outlier” is more of an unexpected observation. Figure 6.5a
illustrates, with data simulated from a logistic regression, with an extreme point
switched from 0 to 1. In the context of the logistic model, an observation of y =
1 for this value of x would be extremely unlikely, but in real data this sort of
“misclassification” can definitely occur. Hence this graph represents the sort of
data to which we might fit a logistic regression, even though this model is not
exactly appropriate.

For another illustration of a logistic regression with an aberrant data point, see
the upper-right plot in Figure 6.4. That is an example with three outcomes; for
simplicity, we restrict our attention here to binary outcomes.

Logistic regression can be conveniently “robustified” by generalizing the latent-
data formulation (5.4):

yi =
{

1 if zi > 0
0 if zi < 0

zi = Xiβ + εi,

to give the latent errors ε a t distribution:

εi ∼ tν

(
0,

ν − 2
ν

)
, (6.15)

with the degrees-of-freedom parameter ν > 2 estimated from the data and the t
distribution scaled so that its standard deviation equals 1.

The t model for the εi’s allows the occasional unexpected prediction—a positive
value of z for a highly negative value of the linear predictor Xβ, or vice versa.
Figure 6.5a illustrates with the simulated “contaminated” dataset: the solid line
shows Pr(y = 1) as a function of the x for the fitted robit regression, and it is
quite a bit steeper than the fitted logistic model. The t distribution effectively
downweights the discordant data point so that the model better fits the main part
of the data.

Figure 6.5b shows what happens with data that actually come from a logistic
model: here, the robit model is close to the logit, which makes sense since it does
not find discrepancies.

Mathematically, the robit model can be considered as a generalization of probit
and an approximate generalization of logit. Probit corresponds to the degrees of
freedom ν = ∞, and logit is very close to the robit model with ν = 7.

6.7 Building more complex generalized linear models

The models we have considered so far can handle many regression problems in
practice. For continuous data we start with linear regression with normal errors,
consider appropriate transformations and interactions as discussed in Chapter 4,
and switch to a t error model for data with occasional large errors. For binary data
we use logit, probit, or perhaps robit, again transforming input variables and con-
sidering residual plots as discussed in Chapter 5. For count data, the starting points
are the overdispersed binomial and Poisson distributions, and for discrete outcomes
with more than two categories we can fit ordered or unordered multinomial logit
or probit regression. Here we briefly describe some situations where it is helpful to
consider other models.
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Mixed discrete/continuous data

Earnings is an example of an outcome variable with both discrete and continuous
aspects. In our earnings and height regressions in Chapter 4, we preprocessed the
data by removing all respondents with zero earnings. In general, however, it can
be appropriate to model a variable such as earnings in two steps: first a logistic
regression for Pr(y > 0), then a linear regression on log(y), conditional on y > 0.
Predictions for such a model then must be done in two steps, most conveniently
using simulation (see Chapter 7).

When modeling an outcome in several steps, programming effort is sometimes
required to convert inferences on to the original scale of the data. For example, in a
two-step model for predicting earnings given height and sex, we first use a logistic
regression to predict whether earnings are positive:

R code earn.pos <- ifelse (earnings>0, 1, 0)
fit.1a <- glm (earn.pos ~ height + male, family=binomial(link="logit"))

yielding the fit

R output coef.est coef.se
(Intercept) -3.85 2.07
height 0.08 0.03
male 1.70 0.32
n = 1374, k = 3
residual deviance = 988.3, null deviance = 1093.2 (difference = 104.9)

We then fit a linear regression to the logarithms of positive earnings:

R code log.earn <- log(earnings)
fit.1b <- lm (log.earn ~ height + male, subset = earnings>0)

yielding the fit

R output coef.est coef.se
(Intercept) 8.12 0.60
height 0.02 0.01
male 0.42 0.07
n = 1187, k = 3
residual sd = 0.88, R-Squared = 0.09

Thus, for example, a 66-inch-tall woman has a probability logit−1(−3.85 + 0.08 ·
66 + 1.70 · 0) = 0.81, or an 81% chance, of having positive earnings. If her earnings
are positive, their predicted value is exp(8.12+0.02·66+0.42·0) = 12600. Combining
these gives a mixture of a spike at 0 and a lognormal distribution, which is most
easily manipulated using simulations, as we discuss in Sections 7.4 and 25.4.
Latent-data models. Another way to model mixed data is through latent data, for
example positing an “underlying” income level zi—the income that person i would
have if he or she were employed—that is observed only if yi > 0. Tobit regression
is one such model that is popular in econometrics.

Cockroaches and the zero-inflated Poisson model

The binomial and Poisson models, and their overdispersed generalizations, all can
be expressed in terms of an underlying continuous probability or rate of occurrence
of an event. Sometimes, however, the underlying rate itself has discrete aspects.

For example, in a study of cockroach infestation in city apartments, each apart-
ment i was set up with traps for several days. We label ui as the number of trap-days
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and yi as the number of cockroaches trapped. With a goal of predicting cockroach
infestation given predictors X (including income and ethnicity of the apartment
dwellers, indicators for neighborhood, and measures of quality of the apartment),
we would start with the model

yi ∼ overdispersed Poisson(uie
Xiβ , ω). (6.16)

It is possible, however, for the data to have more zeroes (that is, apartments i
with cockroach counts yi = 0) than predicted by this model.3 A natural explanation
is that some apartments have truly a zero (or very near-zero) rate of cockroaches,
whereas others simply have zero counts from the discreteness of the data. The
zero-inflated model places (6.16) into a mixture model:

yi

{
= 0, if Si = 0
∼ overdispersed Poisson (uieXiβ , ω), if Si = 1.

Here, Si is an indicator of whether apartment i has any cockroaches at all, and it
could be modeled using logistic regression:

Pr(Si = 1) = logit−1(Xiγ),

where γ is a new set of regression coefficients for this part of the model. Estimating
this two-stage model is not simple—the Si’s are not observed and so one cannot
directly estimate γ; and we do not know which zero observations correspond to
Si = 0 and which correspond to outcomes of the Poisson distribution, so we cannot
directly estimate β. Some R functions have been written to fit such models and
they can also be fit using Bugs.

Other models

The basic choices of linear, logistic, and Poisson models, along with mixtures of
these models and their overdispersed, robust, and multinomial generalizations, can
handle many regression problems. However, other distributional forms have been
used for specific sorts of data; these include exponential, gamma, and Weibull mod-
els for waiting-time data, and hazard models for survival data. More generally,
nonparametric models including generalized additive models, neural networks, and
many others have been developed for going beyond the generalized linear modeling
framework by allowing data-fitted nonlinear relations between inputs and the data.

6.8 Constructive choice models

So far we have considered regression modeling as a descriptive tool for studying how
an outcome can be predicted given some input variables. A completely different
approach, sometimes applicable to choice data such as in the examples in Chapters
5 and 6 on logistic regression and generalized linear models, is to model the decisions
as a balancing of goals or utilities.

We demonstrate this idea using the example of well switching in Bangladesh
(see Section 5.4). How can we understand the relation between distance, arsenic
level, and the decision to switch? It makes sense that people with higher arsenic
levels would be more likely to switch, but what coefficient values should we expect?
Should the relation be on the log or linear scale? The actual health risk is believed

3 In our actual example, the overdispersed Poisson model did a reasonable job predicting the
number of zeroes; see page 161. But in other similar datasets the zero-inflated model can both
make sense and fit data well, hence our presentation here.
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to be linear in arsenic concentration; does that mean that a logarithmic model
is inappropriate? Such questions can be addressed using a model for individual
decisions.

To set up a choice model, we must specify a value function, which represents the
strength of preference for one decision over the other—in this case, the preference
for switching as compared to not switching. The value function is scaled so that zero
represents indifference, positive values correspond to a preference for switching, and
negative values result in not switching. This model is thus similar to the latent-data
interpretation of logistic regression (see page 85); and in fact that model is a special
case, as we shall see here.

Logistic or probit regression as a choice model in one dimension

There are simple one-dimensional choice models that reduce to probit or logit re-
gression with a single predictor, as we illustrate with the model of switching given
distance to nearest well. From page 88, the logistic regression is

R output glm(formula = switch ~ dist100, family=binomial(link="logit"))
coef.est coef.se

(Intercept) 0.61 0.06
dist100 -0.62 0.10
n = 3020, k = 2
residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

Now let us think about it from first principles as a decision problem. For house-
hold i, define
• ai = the benefit of switching from an unsafe to a safe well

• bi + cixi = the cost of switching to a new well a distance xi away.
We are assuming a utility theory in which the benefit (in reduced risk of disease) can
be expressed on the same scale as the cost (the inconvenience of no longer using
one’s own well, plus the additional effort—proportional to distance—required to
carry the water).
Logit model. Under the utility model, household i will switch if ai > bi + cixi.
However, we do not have direct measurements of the ai’s, bi’s, and ci’s. All we can
learn from the data is the probability of switching as a function of xi; that is,

Pr(switch) = Pr(yi = 1) = Pr(ai >bi + cixi), (6.17)

treating ai, bi, ci as random variables whose distribution is determined by the (un-
known) values of these parameters in the population.

Expression (6.17) can be written as

Pr(yi = 1) = Pr
(

ai − bi

ci
>xi

)
,

a re-expression that is useful in that it puts all the random variables in the same
place and reveals that the population relation between y and x depends on the
distribution of (a − b)/c in the population.

For convenience, label di = (ai − bi)/ci: the net benefit of switching to a neigh-
boring well, divided by the cost per distance traveled to a new well. If di has a
logistic distribution in the population, and if d is independent of x, then Pr(y = 1)
will have the form of a logistic regression on x, as we shall show here.

If di has a logistic distribution with center µ and scale σ, then di = µ + σεi,
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Figure 6.6 (a) Hypothesized logistic distribution of di = (ai − bi)/ci in the population and
(b) corresponding logistic regression curve of the probability of switching given distance.
These both correspond to the model, Pr(yi = 1) = Pr(di > xi) = logit−1(0.61−0.62x). The
dark part of the curve in (b) corresponds to the range of x (distance in 100-meter units)
in the well-switching data; see Figure 5.9 on page 89.
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Figure 6.7 (a) Hypothesized normal distribution of di = (ai − bi)/ci with mean 0.98 and
standard deviation 2.6 and (b) corresponding probit regression curve of the probability of
switching given distance. These both correspond to the model, Pr(yi = 1) = Pr(di > xi) =
Φ(0.38 − 0.39x). Compare to Figure 6.6.

where εi has the unit logistic density; see Figure 5.2 on page 80. Then

Pr(switch) = Pr(di > x) = Pr
(

di − µ

σ
>

x − µ

σ

)

= logit−1

(
µ − x

σ

)
= logit−1

(
µ

σ
−

1
σ

x

)
,

which is simply a logistic regression with coefficients µ/σ and −1/σ. We can then fit
the logistic regression and solve for µ and σ. For example, the well-switching model,
Pr(y = 1) = logit−1(0.61 − 0.62x), corresponds to µ/σ = 0.61 and −1/σ = −0.62;
thus σ = 1/0.62 = 1.6 and µ = 0.61/0.62 = 0.98. Figure 6.6 shows the distribution
of d, along with the curve of Pr(d > x) as a function of x.

Probit model. A similar model is obtained by starting with a normal distribution
for the utility parameter: d ∼ N(µ, σ2). In this case,

Pr(switch) = Pr(di > x) = Pr
(

di − µ

σ
>

x − µ

σ

)

= Φ
(

µ − x

σ

)
= Φ

(
µ

σ
−

1
σ

x

)
,

which is simply a probit regression. The model Pr(y = 1) = Φ(0.38 − 0.39x)
corresponds to µ/σ = 0.38 and −1/σ = −0.39; thus σ = 1/0.39 = 2.6 and
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Figure 6.8 Decision options for well switching given arsenic level of current well and
distance to the nearest safe well, based on the decision rule: switch if ai · (As)i > bi + cxi.

µ = 0.38/0.39 = 0.98. Figure 6.7 shows this model, which is nearly identical to
the logistic model shown in Figure 6.6.

Choice models, discrete data regressions, and latent data

Logistic regression and generalized linear models are usually set up as methods
for estimating the probabilities of different outcomes y given predictors x. A fitted
model represents an entire population, with the “error” in the model coming in
through probabilities that are not simply 0 or 1 (hence, the gap between data
points and fitted curves in graphs such as Figure 5.9 on page 89).

In contrast, choice models are defined at the level of the individual, as we can see
in the well-switching example, where each household i has, along with its own data
Xi, yi, its own parameters ai, bi, ci that determine its utility function and thus its
decision of whether to switch.

Logistic or probit regression as a choice model in multiple dimensions

We can extend the well-switching model to multiple dimensions by considering the
arsenic level of the current well as a factor in the decision.
• ai · (As)i = the benefit of switching from an unsafe well with arsenic level Asi

to a safe well. (It makes sense for the benefit to be proportional to the current
arsenic level, because risk is believed to be essentially proportional to cumulative
exposure to arsenic.)

• bi + cixi = the cost of switching to a new well a distance xi away.
Household i should then switch if ai · (As)i > bi + cxi—the decision thus depends
on the household’s arsenic level (As)i, its distance xi to the nearest well, and its
utility parameters ai, bi, ci.

Figure 6.8 shows the decision space for an individual household, depending on
its arsenic level and distance to the nearest safe well. Given ai, bi, ci, the decision
under this model is deterministic. However, ai, bi, ci are not directly observable—all
we see are the decisions (yi = 0 or 1) for households, given their arsenic levels Asi

and distances xi to the nearest safe well.
Certain distributions of (a, b, c) in the population reduce to the fitted logistic

regression, for example, if ai and ci are constants and bi/ai has a logistic distribution
that is independent of (As)i and xi. More generally, choice models reduce to logistic
regressions if the factors come in additively, with coefficients that do not vary in
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the population, and if there is a fixed cost (bi in this example) that has a logistic
distribution in the population.

Other distributions of (a, b, c) are possible. The corresponding models can be fit,
treating these utility parameters as latent data. There is no easy way of fitting
such models using glm() in R (except for the special cases that reduce to logit and
probit), but they can be fit in Bugs (see Exercise 17.7).

Insights from decision models

A choice model can give us some insight even if we do not formally fit it. For
example, in fitting logistic regressions, we found that distance worked well as a
linear predictor, whereas arsenic level fit better on the logarithmic scale. A simple
utility analysis would suggest that both these factors should come in linearly, and
the transformation for arsenic suggests that people are (incorrectly) perceiving the
risks on a logarithmic scale—seeing the difference between 4 to 8, say, as no worse
than the difference between 1 and 2. (In addition, our residual plot showed the
complication that people seem to underestimate risks from arsenic levels very close
to 0.5. And behind this is the simplifying assumption that all wells with arsenic
levels below 0.5 are “safe.”)

We can also use the utility model to interpret the coefficient for education in the
model—more educated people are more likely to switch, indicating that their costs
of switching are lower, or their perceived benefits from reducing arsenic exposure are
higher. Interactions correspond to dependence among the latent utility parameters
in population.

The model could also be elaborated to consider the full range of individual op-
tions, which include doing nothing, switching to an existing private well, switching
to an existing community well, or digging a new private well. The decision depends
on the cost of walking, perception of health risks, financial resources, and future
plans.

6.9 Bibliographic note

The concept of generalized linear model was introduced by Nelder and Wedder-
burn (1972) and developed further, with many examples, by McCullagh and Nelder
(1989). Dobson (2001) is an accessible introductory text. For more on overdisper-
sion, see Anderson (1988) and Liang and McCullagh (1993). Fienberg (1977) and
Agresti (2002) are other useful references.

The death penalty example comes from Gelman, Liebman, et al. (2004). Models
for traffic accidents are discussed by Chapman (1973) and Hauer, Ng, and Lovell
(1988). For more on the New York City police example, see Spitzer (1999) and
Gelman, Fagan, and Kiss (2005).

Maddala (1983) presents discrete-data regressions and choice models from an
econometric perspective, and McCullagh (1980) considers general forms for latent-
parameter models for ordered data. Amemiya (1981) discusses the factor of 1.6 for
converting from logit to probit coefficients.

Walker and Duncan (1967) introduce the ordered logistic regression model, and
Imai and van Dyk (2003) discuss the models underlying multinomial logit and probit
regression. The storable votes example comes from Casella, Gelman, and Palfrey
(2006). See Agresti (2002) and Imai and van Dyk (2003) for more on categorical
regression models, ordered and unordered.

Robust regression using the t distribution is discussed by Zellner (1976) and
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Lange, Little, and Taylor (1989), and the robit model is introduced by Liu (2004).
See Stigler (1977) and Mosteller and Tukey (1977) for further discussions of ro-
bust inference from an applied perspective. Wiens (1999) and Newton et al. (2001)
discuss the gamma and lognormal models for positive continuous data. For general-
ized additive models and other nonparametric methods, see Hastie and Tibshirani
(1990) and Hastie, Tibshirani, and Friedman (2002).

Connections between logit/probit regressions and choice models have been stud-
ied in psychology, economics, and political science; some important references are
Thurstone (1927a, b), Wallis and Friedman (1942), Mosteller (1951), Bradley and
Terry (1952), and McFadden (1973). Tobit models are named after Tobin (1958)
and are covered in econometrics texts such as Woolridge (2001).

6.10 Exercises

1. Poisson regression: the folder risky.behavior contains data from a random-
ized trial targeting couples at high risk of HIV infection. The intervention pro-
vided counseling sessions regarding practices that could reduce their likelihood
of contracting HIV. Couples were randomized either to a control group, a group
in which just the woman participated, or a group in which both members of
the couple participated. One of the outcomes examined after three months was
“number of unprotected sex acts.”

(a) Model this outcome as a function of treatment assignment using a Poisson
regression. Does the model fit well? Is there evidence of overdispersion?

(b) Next extend the model to include pre-treatment measures of the outcome and
the additional pre-treatment variables included in the dataset. Does the model
fit well? Is there evidence of overdispersion?

(c) Fit an overdispersed Poisson model. What do you conclude regarding effec-
tiveness of the intervention?

(d) These data include responses from both men and women from the partici-
pating couples. Does this give you any concern with regard to our modeling
assumptions?

2. Multinomial logit: using the individual-level survey data from the 2000 National
Election Study (data in folder nes), predict party identification (which is on a
five-point scale) using ideology and demographics with an ordered multinomial
logit model.

(a) Summarize the parameter estimates numerically and also graphically.
(b) Explain the results from the fitted model.
(c) Use a binned residual plot to assess the fit of the model.

3. Comparing logit and probit: take one of the data examples from Chapter 5.
Fit these data using both logit and probit model. Check that the results are
essentially the same (after scaling by factor of 1.6; see Figure 6.2 on page 118).

4. Comparing logit and probit: construct a dataset where the logit and probit mod-
els give different estimates.

5. Tobit model for mixed discrete/continuous data: experimental data from the
National Supported Work example are available in the folder lalonde. Use the
treatment indicator and pre-treatment variables to predict post-treatment (1978)
earnings using a tobit model. Interpret the model coefficients.
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6. Robust linear regression using the t model: The folder congress has the votes
for the Democratic and Republican candidates in each U.S. congressional district
in 1988, along with the parties’ vote proportions in 1986 and an indicator for
whether the incumbent was running for reelection in 1988. For your analysis,
just use the elections that were contested by both parties in both years.

(a) Fit a linear regression (with the usual normal-distribution model for the er-
rors) predicting 1988 Democratic vote share from the other variables and
assess model fit.

(b) Fit a t-regression model predicting 1988 Democratic vote share from the other
variables and assess model fit; to fit this model in R you can use the tlm()
function in the hett package. (See the end of Section C.2 for instructions on
loading R packages.)

(c) Which model do you prefer?

7. Robust regression for binary data using the robit model: Use the same data as
the previous example with the goal instead of predicting for each district whether
it was won by the Democratic or Republican candidate.

(a) Fit a standard logistic or probit regression and assess model fit.
(b) Fit a robit regression and assess model fit.
(c) Which model do you prefer?

8. Logistic regression and choice models: using the individual-level survey data from
the election example described in Section 4.7 (data available in the folder nes),
fit a logistic regression model for the choice of supporting Democrats or Repub-
licans. Then interpret the output from this regression in terms of a utility/choice
model.

9. Multinomial logistic regression and choice models: repeat the previous exercise
but now with three options: Democrat, no opinion, Republican. That is, fit an
ordered logit model and then express it as a utility/choice model.

10. Spatial voting models: suppose that competing political candidates A and B have
positions that can be located spatially in a one-dimensional space (that is, on
a line). Suppose that voters have “ideal points” with regard to these positions
that are normally distributed in this space, defined so that voters will prefer
candidates whose positions are closest to their ideal points. Further suppose
that voters’ ideal points can be modeled as a linear regression given inputs such
as party identification, ideology, and demographics.

(a) Write this model in terms of utilities.
(b) Express the probability that a voter supports candidate S as a probit regres-

sion on the voter-level inputs.

See Erikson and Romero (1990) and Clinton, Jackman, and Rivers (2004) for
more on these models.

11. Multinomial choice models: Pardoe and Simonton (2006) fit a discrete choice
model to predict winners of the Academy Awards. Their data are in the folder
academy.awards.

(a) Fit your own model to these data.
(b) Display the fitted model on a plot that also shows the data.
(c) Make a plot displaying the uncertainty in inferences from the fitted model.




